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Abstract.  
We consider three developments in high number of degrees of freedom approaches to nonlin-
ear geophysics: a) the transition from fractal geometry to multifractal processes, b) the self-
organized critical (SOC) generation of extremes via classical and nonclassical (multifractal) 
SOC, c) the generalization from isotropic scale invariance (self-similar fractals, multifractals) 
to (anisotropic) generalized scale invariance.  We argue that these innovations are generally 
necessary for geophysical applications.  We illustrate these ideas with data analyses from both 
the atmosphere and the earth’s surface, as well as with multifractal simulations. 

1. Introduction: Which Chaos for geophysics? 

During the 1960’s, 70’s and 80’s developments in physics and mathematics 
spawned three related nonlinear geophysics paradigms.  The first, determinis-
tic chaos, was centred around the discovery [Lorenz, 1963] that systems with 
as few as three degrees of freedom could have random-like “chaotic” behav-
iour.  The second, fractal geometry - proposed that many natural systems 
could be modeled as (stochastic, scale invariant) fractal sets [Mandelbrot, 
1967].  The third, “self-organized criticality” (SOC) [Bak, et al., 1987] pro-
posed that extreme events could be the result of seemingly simple generic 
avalanche-like processes.  By the early 1980’s further developments had 
made the first two quite practical.  In particular, the discovery of universality 
in chaos by [Feigenbaum, 1978] had made it possible to make chaotic mod-
els of real world systems, and the revolution in computer graphics had made 
fractals – including “strange” chaotic attractors – palpable.   
This short expose gives an overview of certain subsequent developments 
covering roughly the twenty years celebrated by the conference.  While de-
terministic chaos is essentially a low degrees of freedom paradigm, fractals 
and SOC are both high number of degrees of freedom frameworks and could 
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thus be called “stochastic chaos” since they involve infinite dimensional 
probability spaces [Lovejoy and Schertzer, 1998a].  While the question of 
whether deterministic or stochastic chaos is more geophysically relevant 
continues to be debated [Schertzer, et al., 2002], here we focus on the latter.  
We outline three key developments which allow the fractal and SOC para-
digms to be widely applicable in geosciences: a) the transition from scale 
invariant sets (fractals) to scale invariant fields (multifractals), b) the recogni-
tion of the link between extreme events, heavy tailed (algebraic) probabilities 
(SOC) and space-time scaling, c) the generalization of scale invariance from 
isotropic (self-similar) systems to very general anisotropic ones (self-affine 
and beyond) within the framework of Generalized Scale Invariance (GSI).  
Rather than attempt a systematic survey, we illustrate our discussion using 
results from key fields in solid earth and atmospheric geophysics: the earth’s 
topography and clouds and rain.  This choice is motivated by both the fun-
damental significance of the fields and for the availability of relevant high 
quality data. 

2. The link between descriptions and models: 

It is an old truism that one cannot make a measurement without first having a 
theory of what is to be measured.  This is well illustrated in nonlinear geo-
physics where theoretical developments are not only necessary for making 
more sophisticated theories and better applications: they are necessary simply 
in order to quantitatively describe geofields.  We illustrate this statement 
with two significant examples.  The first is the long debate starting in the 
1980’s about what was the (supposedly unique) fractal dimension of the 
earth’s topography.  If the topography could be adequately modeled as a 
geometrical fractal set, then many different techniques (including spectral 
analysis) could be used to estimate its unique dimension D.  Unfortunately, 
different techniques applied to different data commonly gave different values 
of D (see the review in [Klinkenberg and Goodchild, 1992]).  Consequently 
by the end of the 1990’s the mainstream surface geomorphology community 
had “moved on”, relegating fractals to narrow ranges of scale and to very 
technical applications.  This near abandonment of scaling occurred in spite of 
the fact that entire fields of research such as surface hydrology (see e.g. the 
excellent review [Rodriguez-Iturbe and Rinaldo, 1997]) are riddled with 
scaling laws which virtually require the topography to respect some form of 
scaling.  At the same time, due to their random singularities, multifractals 
have such strong variability that they violate many conventional geostatisti-
cal assumptions so that normal multifractal variability can easily be misinter-
preted in terms of spurious scale breaks, spurious nonstationarity etc.  The 
loss of interest in scaling was encouraged by the extensive use of (low vari-
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ability) fractional Brownian motion (fBm) models of topography.  As argued 
in [Gagnon, et al., 2006], the topography in fact has excellent multiscaling 
(multifractal) properties (see fig. 2, 4, 7) – but an infinite hierarchy of fractal 
dimensions; this requires new analysis techniques.  Consequently the lack of 
an adequate theoretical framework for scaling has led the baby to be thrown 
out with the bathwater.   
Similarly, in the atmosphere the still dominant model of atmospheric dynam-
ics is of a small scale 3D isotropic turbulence superposed on a large scale 2D 
isotropic turbulence with the two separated by a “dimensional transition” 
somewhere near the 10km scale thickness (the “meso-scale gap”, [Van der 
Hoven, 1957]).  This model is increasingly at odds with modern data – par-
ticularly of the vertical structure - which fails to find evidence of any iso-
tropic turbulent regime whatsoever (see [Lovejoy, et al., 2006])!  Indeed, the 
mainstream experimentalists espouse anisotropic but scaling gravity wave 
models (e.g. [Dewan, 1997] [Gardner, 1994]) which are equivalent to “ellip-
tical dimensions” (see below) Ds=7/3 (in between 2 and 3), whereas high 
resolution vertical cross data (from lidars) favour a value closer to 23/9 
[Lilley, et al., 2004].  Today, probably the key element blocking a consensus 
is the fact that there is still no general agreement about the horizontal struc-
ture.  This is where a marriage between theory and measurements is required: 
how to interpret the aircraft data which are our primary source of dynamical 
(velocity) data in the horizontal?  The basic problem is that even aircraft on 
scientific missions cannot maintain perfectly “flat” trajectories.  In a 2D tur-
bulence, the vertical would be smooth and there would be no biases in esti-
mates of spectral exponents.  Similarly, in 3D isotropic turbulence, even if 
the trajectories are non-smooth there is a single exponent (independent of 
direction), so again the measured exponent can plausibly be taken at face 
value.  However, if the turbulence is anisotropic with different vertical and 
horizontal exponents – then the aircraft can have fractal trajectories implying 
long-range correlations between the aircraft position and atmospheric struc-
tures, leading to possible biases in the exponents.  In addition, even very 
small mean vertical slopes can lead to statistics being dominated by vertical 
rather than horizontal exponents.  Both of these effects have been found in 
stratospheric flights which can have both 1.56 dimensional trajectories 
[Lovejoy, et al., 2004], and then at scales > 300km, Bolgiano-Obukhov (k-11/5) 
rather than Kolmogorov spectra (k-5/3; k is a wavenumber).  This has made it 
possible for the first time to explain the major aircraft campaigns (GASP 
[Nastrom and Gage, 1983], MOZAIC [Lindborg and Cho, 2001]).   This set 
the ground for a clear understanding of the horizontal structure. 
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3. Wide range scaling 

Scale invariance – no matter how theoretically appealing – would not be of 
general geophysical interest were it not for the basic empirical fact that 
geofields display wide range scaling.  Figs. 1, 2 show spectral analyses of 
visible cloud radiances covering the range of roughly 1 m to 5000 km, and 
fig. 2 of topography covering the range 1 m  to 20,000 km.  In both cases, the 
spectra are “isotropic” i.e. the squared modulus of the 2D fourier transform 
has been angle integrated (and in the case of the cloud data, averaged over 
the available data).  In solid earth geophysics it is more usual to angle aver-
age the spectrum; in 2D this will reduce the exponent by one.  Below we use 
angle integration since for isotropic processes, the resulting exponents are 
independent of the dimension of the analysis space.  The use of energy spec-
tra has the advantage of relying on familiar data analysis techniques which 
are quite sensitive to breaks in the scaling.  The angle integration “washes 
out” much of the anisotropy and explains why – in spite of highly diverse 
cloud morphologies – the isotropic spectra (E(k)) can approximately be of 
the power law form: 

E k( ) ! k"#           (1) 

(k is the modulus of the wavevector k).  The exponents of such power law 
spectra are scale invariant because they are invariant under the scale change 
k! "k  (corresponding in real space to the scale reduction x! "

#1
x  

where r is position vector); the spectra – which keeps its form but which 
changes by the factor λ−β - is called “scaling”.  In physics the term “scaling” 
is generally reserved for invariance under space-time scale transformations, 
although occasionally it is also used to describe the tails of algebraic prob-
ability distributions, (in this case it refers to scaling in a probability space; 
see the discussion of SOC below).  In the geosciences there is an unfortunate 
tendency to use “scaling” to denote the general problem of changing from 
one scale to another even if there are no conserved properties; below we re-
serve the term for the more precise physics sense referring to invariant prop-
erties under (possibly anisotropic) scale changes. 
Geodata are frequently scaling in time as well as space: i.e. in space-time.  
Indeed, geofluids generally have well-defined space-time relations so that 
structures of a given spatial extent live for a statistically well-defined dura-
tion.  For example in turbulence – and in the atmosphere – the lifetime of a 
structure (“eddy”) is referred to as the “eddy-turn over time”.  The lifetime 
corresponding to structures of planetary extent (the “synoptic maximum”, 
[Kolesnikov and Monin, 1965]) is about 2 weeks and is thus the natural time 
scale separating the weather from the climate; the latter being the result of 
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evolution over many eddy turn over times, the former over a single turn-over 
time.  We may therefore expect the long time behaviour of the atmosphere to 
have different scaling properties from the short time behaviour.  In fig. 3a, 
we show a mean temperature surrogate (from the Greenland GRIP core), the 
O18/O16 ratio showing a clear turbulent-like signal going back over 40,000 
years (including highly intermittent “Dansgaard events”, the sharp high fre-
quency spikes).   

 
Fig. 1: The average spectra (displaced in 
the vertical for clarity) obtained for GMS, 
NOAA 12, data as well as a SPOT image 
over France.  The GMS spectrum shows a 
range of scales of 5120–10 km, the NOAA 
12 spectrum shows a range from 256 to 2 
km and the SPOT spectrum shows a range 
from 10 km to 40 m. At the far right we 
also show the average of 38 ground based 
pictures (some with resolutions of 50 cm, 
this is the average of the data discussed in 
[Sachs, et al., 2002]).  Reproduced from 
[Lovejoy and Schertzer, 2005]. 

 
 

Fig. 2: Log/log plot of the spectral energy for 
four Digital Elevation Maps (DEMs).  From 
right to left: Lower Saxony (with trees, top), 
Lower Saxony (without trees, bottom), the U.S. 
at 90 m (in grey), at 30” (about 1km, 
GTOPO30) and the earth (including bathyme-
try) at 5’ (about 10km), ETOPO5. A reference 
line of slope −2.10 is on the graph to show the 
overall slope of the spectra.  The small arrows 
show the frequency at which the spectra are not 
well estimated due to the inadequate dynamical 
range of the data; see [Gagnon, et al., 2006] for 
this theoretical estimate (for ETOPO5, it is well 
estimated over the whole range).  The “semi 
error bar” symbols indicate the amount of offset 
due to the resolution dependent factor  λ

K(2)
 (see 

[Gagnon, et al., 2006] for this necessary resolu-
tion dependent correction).  Reproduced from 
[Gagnon, et al., 2006]. 

Fig. 3b shows that the spectrum is also scaling; with exponent only a little 
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smaller than for turbulent temperatures (β≈1.4 compared to 5/3).  In fact, it 
seems that the scaling goes back to about 40,000 years [Lovejoy and 
Schertzer, 1986] after which the spectrum flattens out.  Note that there is no 
strong (above background) signal from the precession of the earth’s axis so 
this analysis tends to make the Milankovitch theory for the ice ages less con-
vincing.  Since temperature is the basic climate variable, this suggests that 
scaling is an appropriate framework for modeling and understanding climate. 

 
Fig 3a:  This figure shows O18/O16 in parts 
per thousand for the Greenland GRIP ice core 
at 200 year resolution; this is a standard 
temperature surrogate.  The present is at the 
origin, the past is to the right.  Note that the 
above corresponds to the initial dating of the 
core; the more modern dating shortens the 
time scale by nearly a factor of 2 (however, it 
does not much affect the scaling exponents, 
F. Schmitt private communication).  The 
“Dansgaard events” are the equivalent of 
going in and out of an ice age in perhaps as 
little as 100 years.  Adapted from [Schmitt, et 
al., 1995].  

Fig 3b: The spectrum E(f) of the temperature 
surrogate (fig 3a), with reference slope f-1.4, 
this is only a little less steep than the f -5/3 
spectrum observed in the atmosphere at 
weather scales (f is the frequency).  Adapted 
from [Schmitt, et al., 1995]. 

 

4.  From monofractal sets to multifractal fields 

Using fourier spectra, we have seen that the basic atmospheric and earth 
surface fields display wide range scaling in space and  time.  Spectra were 
first widely used to characterize turbulence, and in the early 1970’s in con-
junction with the development of quasi-gaussian statistical closure models, 
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the theoretical or empirical determination of the spectral exponent became a 
key task.  In quasi-gaussian processes (essentially the “fractional Brownian 
motions” generalizations of Brownian motion), there is a single basic expo-
nent hence the spectral exponent is simply related to the (unique) fractal di-
mension of exceedence sets (the set of points exceeding a fixed threshold).  
However, by the early 1980’s, the development of cascade models to study 
turbulent intermittency lead to the realization that in general an infinite num-
ber of dimensions were needed, in fact, the generic result of a cascade proc-
ess is that the cascade quantity at resolution ελ has the statistics: 

!
"

q
= "

K q( )           (2) 
where K(q) is (convex) the moment scaling function and λ is the ratio of the 
largest (outer) cascade scale and the scale of observation.  The symbol “ε” is 
used for the turbulent (scale by scale) energy flux. 
Viewed from the point of multifractals, spectra are second order statistics 
(for statistically stationary processes, they are the fourier transforms of the 
autocorrelation functions; the Wiener-Khintchin theorem), so that the spec-
trum is only a very partial description of its properties.  A more complete and 
direct description follows from the use of thresholds (T) to convert fields ε(x) 
into exceedence sets (x is a position vector), and then the use of box-counting 
to systematically degrade the resolution of the sets, determining the fractal 
dimension using the formula: 

N
T
(L)! "D(T )

L ; P
T
(L) # N

T
(L) / "d

L #
c(T )

L ; c T( ) = d " D T( )    (3) 

where NT(L) is the number of LXL sized boxes needed to cover the set of 
points satisfying ε(x)>T.  Since L-d is the total number of boxes in the space 
at resolution L, PT is the probability that a box (size L) placed at random on 
the set will cover part of the set.  D(T) is the dimension and c(T) is the codi-
mension function which is thus a probability exponent.  Since probability 
exponents can be defined without reference to the embedding space of the 
process (i.e. whether it occurs in a 1-D, 2-D… or for stochastic processes, in 
infinite D probability spaces), codimensions are generally needed for sto-
chastic fractals and multifractals. 
When this “functional” box-counting was done for the topography (fig. 4) or 
radar reflectivities of rain (fig. 5), it was found that the scaling was excellent: 
the power law eq. 3 was accurately obeyed for all T, L.  However D(T) sys-
tematically decreases with threshold, it is not constant as assumed in the 
monofractal models.  Indeed, from the point of view of multifractals, it 
would have been a miracle if for each threshold T, each (different) set had 
exactly the same fractal dimension. 
It is worth mentioning that the functional box-counting results have impor-
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tant consequences for classical geostatistics (e.g. [Matheron, 1970]) which 
assume (explicitly or implicitly) that geomeasures such as the areas of the 
topography exceeding a threshold are regular with respect to Lebesgue 
measures.  If this assumption were true, then the areas above a given thresh-
old T would be well-defined independently of the resolution L, i.e. the ex-
pression L2NT(L) would be independent of L; however since D(T)<2 we see 
that generally it vanishes as L->0.  Ultimately at millimetric or small scales, 
the scaling will break down yielding a finite limit of L2NT(L).  However this 
value will depend on the very small scale details; at any larger resolutions the 
result will be subjective depending on the observing resolution L. 
If we express the field values as powers of the resolution with random expo-
nents γ, i.e. if we write T ! "#  then we obtain: 

Pr !" > T( ) = Pr !" > "#( )$ "%c #( )        (4) 

 
Fig. 4: Functional box-counting on French 
topography data at 1km resolution.  For each 
threshold, the scaling is quite accurate, but as 
the threshold increases, the slope systemati-
cally decreases so that the topography is 
apparently not monofractal.  The line with 
slope -2 is shown since this is the theoretical 
assumption of classical geostatistics.  
Adapted from [Lovejoy and Schertzer, 1990].  

Fig. 5: Functional box-counting on radar 
reflectivity data of rain; the data taken from a 
weather radar in Montreal, Canada.  Each 
line corresponds to a reflectivity factor in-
creasing by a factor of about 2.5 (starting at 
the top which is the lowest detectable signal).  
Although all the different levels are accu-
rately power laws (scaling), the more and 
more intense rain regions (lower curves) have 
lower and lower slopes, again we conclude 
that rain is multifractal.  Again, the geostatics 
theory slope 2 is shown for reference.  
Adapted from [Lovejoy, et al., 1987]. 
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where “Pr” indicates “probability”.  Since the moments (eq. 2) are integrals 
over the probability density (dPr), c(γ) determines K(q); indeed, the relation-
ship can generally be inverted; we obtain the simple Legendre relation: 

c !( ) = max
q

q! " K q( )( ); K q( ) = max
!

q! " c !( )( ){ }    (5) 

showing that there is a one-to-one relation between the orders of moments q, 
and orders of singularity γ and between c(γ), K(q) [Parisi and Frisch, 1985]. 

5.  Cascades and data analyses 

The nonlinear terms in the Navier-Stokes equations ruling 3D turbulence 
conserve the scale by scale (fourier) flux of energy from large to small 
scales.  In addition, structures interact most strongly with other structures of 
nearly similar size.  Finally, over a wide range, there is no characteristic scale 
in the nonlinear mechanism.  This fourier conservation, fourier “locality” and  
scale invariance imply a cascade phenomenology, the basis for phenomenol-
ogical cascades models.  Starting with [Novikov and Stewart, 1964] [Yaglom, 
1966, Mandelbrot, 1974] these models were developped to study the effects 
of intermittency.  They start with an initially uniform large scale which is 
successively subdivided into smaller and smaller sub-structures, each multi-
plicatively modulating the energy flux from the larger scales, with  the proc-
ess repeating scale after scale until in turbulence, viscosity eventually cuts 
off the cascade (for the atmosphere, at millimetres).  The resulting cascades 
have fluxes which respect eq. 2. 
In order to empirically test this cascade prediction we may attempt to “in-
vert” the cascade by successively degrading the resolution of the cascade 
quantities.  The only complication is that observable quantities such as the 
turbulent velocity or the topographic altitude are generally not conserved 
scale by scale.  For example in Kolmogorov turbulence, the velocity gradient 
Δv is related to the conserved energy flux (εΔx) at resolution Δx by: 

!v = "
!x

a
!x

H
; a = 1 / 3; H = 1 / 3        (6) 

The usual interpretation of this formula (which is essentially the result of 
dimensional analysis), is that it expresses the equality of the scaling of the 
left and right hand sides of the equations, hence, averaging the qth power of 
eq. 6.: 

!v
q

= "!x

qa

!xqH = !x# q( )
; #(q) = qH $ K qa( )     (7) 

where “<.>” means statistical averaging, and ξ(q) is the (generalized) “qth 
order structure function exponent”.  We see that to determine the K(q) expo-
nent characterizing the flux, we must either remove the ΔxH term in eq. 6 to 
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estimate εa, or we may use the structure function to directly determine ξ(q) 
from eq. 7 and then remove the linear contribution qH.  Since power law 
filtering of εa by k-H in fourier space has the effect of introducing the linear 
scaling term ΔxH (see section 8), this suggests that to obtain εa from Δv, that 
we invert the integration by fractionally differentiating by an order H.   It 
turns out that it suffices to fractionally differentiate with order > H so that for 
H<1 (the usual case), a standard finite difference approximation (such as in 
1-D taking the absolute differences at the finest resolution, or in 2-D taking 
the modulus of the finite difference gradient vector), is adequate [Lavallée, et 
al., 1993].  Figs, 6, 7, show the results on global atmospheric and topog-
raphic data.  We see clearly that eq. 2 is accurately obeyed over the entire 
available ranges of scale, and that the effective outer scale (i.e. the scale 
where the cascade must have started if it is the only source of variability), is 
of the order of planetary scale (and in fig. 6 slightly larger indicating that 
there are other sources of variability at this scale).  The figures show that the 
variability of both the weak (low q) and strong (high q) fluctuations at all the 
observed scales can be accurately accounted for by multiplicative cascade 
processes. 

6. Multifractal Universality: 

We have already mentioned that the generic result of cascade processes is 
that the conserved flux obeys eq. 2; i.e. it involves the convex function K(q).  
At this level the theory effectively involves an infinite number of parameters 
(K(q)).  If no simplifications were to occur, this would be unmanageable.  
However, as is usually the case in physics when processes are sufficiently 
iterated or when interactions are sufficiently numerous, we expect that only 
some of the details will be important.  This is the general problem of “univer-
sality”; for cascades the issue is complicated because of the highly singular 
small scale limit (see section 7).  It is therefore important to consider the 
issue of universality over a fixed, (finite) range of scales, and only then take 
the small scale limit (see the debate [Schertzer and Lovejoy, 1997], and [She 
and Levesque, 1994] for a weaker “Log-Poisson” universality), the result is a 
kind of “multiplicative central limit theorem” leading to: 
K q( ) =

C
1

! "1
q
!
" q( )          (8) 
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Fig. 6: Satellite radar reflectivities (Z) from the Tropical Rainfall Monitoring Mission 
(TRMM) covering the full planetary scale down to 5km.  With the exception of very low order 
moment dominated by (nominally) zero rain reflectivity, the multiscaling holds remarkably 
well.  The bars indicate the orbit to orbit variability, they are not errors.  This figure uses data 
from the same local time of day, once every day, May 1-30, 2006, 250km swath, TRMM data 
(30 orbits).  Analysis shows that K(q) satisfies the universal form (eq. 8) with α=1.5, C1=0.63, 
but with rain detectable above instrumental noise having a fractal support of codimension 
Cs=0.41.  Multifractal modelling shows that the slight curvature in the above for low q is well 
explained by this simple threshold detection model: the moments of order <2 are determined 
within 7% over the entire range 20,000-5km by the two parameters α, C1, and a threshold 
equal to one half the mean reflectivity, and an “effective external scale” ≈40,000km.   

where 0<α≤2 is the Levy index, and 0<C1<d is the codimension of the mean 
[Schertzer and Lovejoy, 1987].  This can be roughly understood by taking the 
logs of the cascade which is the sum of a large number of logarithmic contri-
butions and therefore (if appropriately centred, normalized) is subject to the 
additive central limit theorem (which is in fact one of the original applica-
tions of “universality” well before the idea became a generally recognized 
physics principle).  The special case α=2 corresponds to “log-normal” cas-
cades [Kolmogorov, 1962], the special case α=0 to the monofractal “β 
model” [Frisch, et al., 1978].  Many atmospheric and terrestrial surface fields 
have now been shown to be compatible with eq. 8, and the universality pa-
rameters H, C1, α have been estimated for several dozen geofields (for a re-
view, see [Lovejoy and Schertzer, 1995]). 
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Fig. 7: Log/log plot of the normalized trace moments versus the scale ratio λ = Louter/l (with 
Louter = 20 000 km) for the three DEMs used in fig. 2 (circles correspond to ETOPO5, X’s to 
U.S. and squares to Lower Saxony). The solid lines are there to distinguish between each 
value of q (from top to bottom, q=2.18, 1.77, 1.44, 1.17, 0.04, 0.12 and 0.51). The moments of 
the Lower Saxony DEM with trees for q=1.77 and q=2.18 are on the graph (indicated by 
arrows). The theoretical lines are computed with the global K(q) function i.e. with α=1.79, 
C1=0.12, for the parameter estimation and figure, reproduced from [Gagnon, et al., 2006]. 

 

7.  Multifractals, extremes and SOC; the multifractal Butterfly effect: 

We have mentioned the huge impact of [Bak, et al., 1987]’s paper linking 
apparently simple avalanche like “sandpile” models to extreme events with 
algebraic probability distributions.  This “classical SOC” has spawned a large 
number of variants which exploit a cellular-automaton framework with a 
simple threshold rule applied at a small scale (grid) which leads to both frac-
tal structures and algebraically distributed extremes.  What is still underap-
preciated is the fact that multifractal cascade processes also generate fractal 
structures with algebraic probabilities: “nonclassical SOC”.  This effect - as 
in the usual (chaotic) butterfly effect - is the result of small scale disturbances 
dominating the large scale and has therefore been called the “multifractal 
butterfly effect” [Lovejoy and Schertzer, 1998b].  It’s origin lies in the highly 
singular small scale cascade limit.  This singular behaviour is particularly 
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wild in the general case where the cascade only respects “canonical” (scale 
by scale) conservation in which it is only the ensemble average energy flux 
which is conserved scale by scale [Mandelbrot, 1974].  In order to avoid the 
attendant technical difficulties, the simpler but much more restrictive “mi-
crocanonical conservation” is all too often considered but it does not have 
these strong extremes (e.g. the “p model”, [Meneveau and Sreenivasan, 
1987]).  In the general canonical cascades, the small scale limit is only well-
defined for integrals over finite sets; this leads to the distinction between 
“bare” cascades quantities (which are the result of the cascade developed 
over a given range of scales), and the “dressed” properties which are the 
result of the cascade developed down to infinitely small scales and then aver-
aged up to the same scale.  Below a critical order of moment qD (which de-
pends on the dimension of the averaging space, D), both the bare and dressed 
properties respect eq. 2; however, for q>qD, the dressed moments (and hence 
K(q)) diverge whereas the “bare” moments converge (for all q≥0).  This im-
plies: 

!
"

q
#$; q > q

D{ }% Pr !
"
> s( ) & s'qD ; s >> 1{ }   (9) 

so that the dressed fluxes display the key feature of SOC: algebraic probabili-
ties.  This “nonclassical SOC” [Schertzer and Lovejoy, 1994] may often be 
physically more realistic than classical SOC since whereas the latter is only 
valid in the “zero-flux limit” (e.g. each sand grain must be added one by one 
only after the avalanches provoked by the preceding have ended), the mul-
tifractal SOC is a generic SOC mechanism valid in systems with quasi-
constant fluxes.  Note that moments are only infinite in the limit of infinite 
sample sizes.  For a finite number of samples, we may have either first or 
second order “multifractal phase transitions” [Schertzer, et al., 1993].  Fig. 8 
shows that atmospheric turbulence is indeed apparently a SOC phenomenon.   
The extreme nature of multifractals is due to the fact that they can be viewed 
as random hierarchies of singularities (eq. 4); the structure of the extreme 
singularities can thus readily stand out.  To study this it is helpful to make 
numerical simulations.  Fig. 9 shows an example with a log-spiral singularity 
showing how cyclones can be modeled without needing special “cyclone” 
models, their “order” apparently emerging from chaos; in the next section we 
discuss simulations further. 
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Fig. 8  This shows the probability distribution (cumulated from the largest to smallest) for 
horizontal velocity differences from the stratospheric ER2 aircraft.  The horizontal gradients 
are given for distances of 40m, 80m (left, right), the reference slopes corresponds to eq. 9 with 
qD=5.7 and.  This value is in between the value 5 found in the vertical [Schertzer and Lovejoy, 
1985a] and the temporal value qD=7 (a surrogate for the horizontal, [Schmitt, et al., 1994]).  
See also [Tchiguirinskaia, et al., 2006], [Tuck, et al., 2004].  The data are from 18 aircraft 
flights, each over paths 1000 -2000 km in length. 

8. The Fractionally Integrated Flux model and Multifractal simulations: 

To model scaling processes, it is natural to use combinations of scale invari-
ant basis functions, i.e. mathematical singularities.  Let’s first consider the 
basic additive scaling process, fractional Brownian motion (fBm) and it’s 
generalization, fractional Levy motion (fLm).  These can be written as con-
volutions of noises with power laws i.e. fractional integrations: 

v x( ) =
!" #x( )d #x

x $ #x
D$ #H% ; #H = H + D /"        (10) 

φα is a Levy noise made of uncorrelated Levy random variables and H’ is the 
order of fractional integration.  Introducing the fluctuation Δv(Δx)=v(x+Δx)-
v(x), the resulting v field has statistics obeying: 

!v !x( )
q

" !x
# q( )
; # q( ) = qH       (11) 

when α<2, ξ(q) diverges for q>α.   These models are monofractal because the 
fractal codimension of any level set v(x)=T has a codimension c(T)=H (i.e. 
independent of T).   
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Fig. 9: A cyclone emerging from chaos.  This multifractal simulation has roughly the observed 
universal multifractal parameters (α=1.8, C1=0.1, H=0.33), but is symmetric with respect to a 
G with complex eigenvalues (hence structures rotate with scale).  From time to time, the proc-
ess produces particularly strong singularities which can dominate the simulation.  Here, the 
event was sufficiently rare that it was “helped” by artificially increasing a single value of the 
224 elements of the subgenerator.  

 
Fig. 10 shows a comparison of fBm, fLm and a universal multifractal process 
with the same H value.  The multifractal process can also be modeled as a 
fractional integration of a noise, although this time, the noise is a conserva-
tive (cascade) multifractal (a “flux”, hence the name Fractionally Integrated 
Flux, FIF model): 
v! x( ) =

"! #x( )d #x

x $ #x
D$H% ; "! #x( ) = e&! #x( )

; &! x( )'
() #x( )d #x

x $ #x
D$ #H

1< #x <!
%     (12) 

where !"  is a maximally skewed Levy  noise process and H’=D(1−1/α).  The 
resulting ελ is multiplicative because it is an exponentiation of the additive 
generator Γλ.  From fig. 10 we can see that the fBm gives a relatively unin-
teresting texture.  fBm is fairly limited in its possibilities since due to the 
central limit theorem (the gaussian special case), a process with the same 
statistical properties can be produced by using singularities of quite different 
shapes; it is insensitive to the shape.  The fLm on the contrary has extremes 
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which are too strong; as one can see, several strong mountain peaks stand 
out; in fact, the strong peaks are too strong. Although far from Gaussian, real 
topography empirically seems to have finite variance (i.e. the probability 
density tail falls off faster than x−3), so fLm is not a good model. Finally, the 
multifractal simulation has much more interesting structures, however we are 
missing the interesting ridges, valleys and other anisotropic features of real 
geomorphologies. 

 
 
Fig. 10: The upper left simulation shows fBm, with H=0.7, lower left fLm with H=0.7, α =1.8, 
and the right the Multifractal FIF with H=0.7, α =1.8, C1=0.12 (close to observations for to-
pography, see [Gagnon, et al., 2006]).  For more examples of multifractal simulations, see the 
multifractal explorer site: http://www.physics.mcgill.ca/~gang/multifrac/index.htm. 

Considering the “universal multifractals” vλ, defined by eq. 12 we see that 
they are isotropic (the singularities have no preferred directions, they depend 
only on the vector norm), they are therefore “self-similar”; “zoomed” struc-
tures will (on average) resemble the unzoomed ones.  In addition, they de-
pend on three parameters: the H in eq. 12, and the α, C1 which define the 
statistics of the generator Γλ.  While the parameter H is the order of fractional 
integration and quantifies the degree of scale invariant smoothing, the quali-
tative effects of the codimension of the mean (C1) and the Levy index (α) are 
less easy to see.  We therefore performed multifractal simulations (fig. 11) 
which systematically show the morphologies of the structures obtained by 
varying these three parameters.  The simulations use false colors and each 
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has the same initial random “seed” so that the basic structures are the same.  
For reference, note that the empirically most common values of α are in the 
range 1.5-1.8 (the latter being appropriate for topography and cloud radi-
ances, the former, for rain and atmospheric turbulence).  The parameter C1 is 
often fairly low (e.g. in the range 0.05-0.15 for the wind, cloud radiances, 
topography), although it can be large (0.25-0.7) for rain and turbulent fluxes.  
While the basic Kolmogorov value of H is 1/3, many fields (such as cloud 
radiances) are near this, while rain is nearly zero, topography is in the range 
0.45-0.7.  From fig. 11 we can see that high values of C1 lead to fields totally 
dominated by one or two strong structures, while low α values lead to fields 
dominated by “Levy holes”: large regions with extremely low values. 
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Fig. 11:  This shows the effect of varying α, C1, H values on multifractal simulations.  The 
upper figures show the effect of increasing α (left to right, 0.4, 0.8, …2.) and H (top to bottom 
0.05, 0.2, …0.8) with C1 fixed (=0.05 left, 0.35 right).  The lower figures show the effect of 
varying α (left to right, 0.4, 0.8, …2.) and C1 (top to bottom 0.05, 0.2, …0.8) with H fixed 
(=0.05 left, 0.35 right). 
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Fig. 12a: This self-affine simulation illustrates the 
“phenomenological fallacy” since both the top and 
bottom look quite different while having the same 
generators (G is diagonal with elements 0.8, 1.2), 
same (anisotropic) statistics at scales differing by a 
factor of 64 (top and bottom blow-up).  The figure 
shows the proverbial geologists’ lens cap at two 
resolutions differing by a factor of 64.  Seen from 
afar (top), the structures seem to be composed of 
left to right ridges, however closer inspection 
(bottom) shows that in fact this is not the case at 
the smaller scales. 

 

Fig. 12b: This shows a multifractal simulation 
looking horizontally through a horizontally strati-
fied cloud layer with α=1.8, C1=0.1, H=0.333 of a 
stratified 3D cloud with G diagonal with elements 
1, 5/9.. This corresponds to a Kolmogorov scaling 
in the horizontal (k-5/3) but a Bolgiano-Obukhov 
(k-11/5) scaling in the vertical.  Single scatter radia-
tive transfer was used for the rendering. 

 

 



20 Lovejoy and Schertzer 
 

 
Fig. 13: A multifractal simulation of a 3D stratified cloud (with the same G as fig. 10b) with 
single scattered radiative transfer.  Henyey-Greenstein phase functions were used with asym-
metry factor g=0.85. 

9.  The phenenological fallacy and Generalized Scale Invariance: 

Geophysicists commonly derive their models from phenomenological classi-
fications based largely on classical (scale bound) notions of scale and shape.  
Once a phenomenon has been defined - often involving somewhat subjective 
criterion – models are constructed to explain them.  However in this section 
we shall see that scaling processes – if based on sufficiently strong anisot-
ropic singularities, can lead to quite different looking structures at different 
scales even though the basic mechanism is scale invariant; see fig. 12a for an 
example (and below for a more systematic survey).  This possibility demon-
strates what we call the “phenomological fallacy” i.e. the danger of inferring 
process from appearance.   
In order to change the shape of the singularities while conserving the basic 
statistical properties of the process, it turns out to be sufficient to make the 
replacement everywhere eqs. 10-12: 

 !x " !x ; D" D
el

       (13) 

i.e. to replace the usual distance (“ ”) by a “scale function” (“ ”) and 
usual dimension of space by an “elliptical dimension” Del which satisfies the 
following basic equation scaling: 
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T
!
x = !

"1
x ; T

!
= !

"G
; D

el
= TraceG     (14) 

where T λ is a scale changing operator which reduces the scale of a vector by 
a factor λ.  In order for the scale function to be scaling (i.e. have no charac-
teristic scale), it must satisfy group properties, hence it must admit a genera-
tor G as indicated.   

Once all the unit vectors x1 are specified the nonunit vectors ( x
!
= !; ! " 1) 

are then generated by the action of T λ: x! = T!
x
1 ; see [Schertzer and Lovejoy, 

1985b] for technical details on this Generalized Scale Invariance, GSI.  The 
set of all vectors x ! "  is called a “ball”, denoted Bλ; for physical scale func-

tions Bλ must be strictly decreasing (i.e. B !" # B" ; !" < " ).  We can see that if 
the replacements x ! x" # x ! x" ; D# D

el
 are made in the denominators of eqs. 10, 

12, with scale functions satisfying eq. 14  then the convolutions will have 
power law dependencies under “zooming”, i.e. the models will be scaling as 
long as the noises are also scaling (hence the special choices of Gaussian or 
Levy noise, or in the multifractal case, of multifractal noises).  
To understand the relation between usual distances and generalized scales it 
is instructive to consider a simple scale function.  Consider a (real) 2-D G 
matrix which we diagonalize to yield G=diag(Hx, Hy) (note that what follows 
can be generalized to complex eigenvalues or nondiagonalizable matrices).  
We may now make the following nonlinear transformation: 

!x = !x , !y( ) = sgn x( ) x
1/Hx ,sgn y( ) y

1/Hy( )     (15) 

It is then easy to verify that !
" I

#x = !
"1

#x  i.e. x’ satisfies the scale eq. 
14 but with G=I=the identity corresponding to the generator of an isotropic 
scale transformation.  When G=I it is easy to verify that a family of solutions 
of the scale function eq. 14 is: 

!x = " !#( ) !r           (16) 

where (r’,θ’) are polar coordinates: 

!r = !x = x
2 /Hx + y

2 /Hy( )
1/2

; tan !" =
y '

x '
=
sgn y( ) y

1/Hy

sgn x( ) x
1/Hx

     (17) 

and Θ is an arbitrary positive function which specifies the shape of the unit 
ball (i.e. those vectors with !x = 1 ; their polar equation is r’=1/Θ(θ’)) it 
determines the “trivial” anisotropy (the nonscaling part).   
When scale functions are used as the basic singularities, the shapes can be 
extremely varied, hence demonstrating the possibility of modeling geomor-
phologies in this way.  First consider G = I: the resulting models will be 
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“self-similar” in the sense that their statistics will vary in power law ways 
under isotropic “zooming” (blow-ups).  If G is a diagonal matrix, then the 
singularities x

!"

 (where γ is the order of singularity, see eq. 4) are quite 
different in different directions and the resulting fractals/multifractals are 
“ self-affine ” (fig. 12 and 14a bottom row).  The case where G is nondi-
agonal and the eigenvalues are real is a generalization in which the main 
stretching/shrinking occurs along fixed nonorthogonal eigendirections 
(see fig. 12, 14). When the eigenvalues are complex, the eigenvectors rotate 
continuously as functions of scale, giving rise to spiral type singularities, see 
fig. 9.   
In order to systematically see the effect of varying G, we can parametrize it 
as follows: 
G =

d ! c f ! e
f + e d + c

"
#$

%
&'

         (18) 

Defining a2 = c2 + f
2
! e

2  we see that G has eigenvalues d+a, d-a, As indi-
cated above, real a is “stratification dominant” (structures rotate no more 
than once with scale) whereas imaginary a is “rotation dominant” structures 
rotate an infinite number of times with scale.  In order to explore the parame-
ter space, we note that there are 3 rotational invariants: d, a, (f2+c2)1/2.  Hence 
for example, taking f=0, and varying c loses no generality (other f values are 
obtained by rotation).  Also, we can fix d=1 since it turns out that we can 
always replace G by G/d as long as we compensate by simultaneously taking 
the d power of the scale function) i.e we lose no generality with d=1. The two 
G parameters we explore are thus c, e.  The use of a final parameter k allows 
us to examine the effect of possibly very nonroundish unit scales (see eq. 16).  
We define it as: 
! "#( ) = 1+

1$ 2
$k

1+ 2
$k
cos "#         (19) 

With this definition, we see that k= log2 (r’max/r’min) where r’max, r’min are the 
maximum and minimum radii of the sphero-scale (in the r’ space, but this 
will be close to the ratio in the r space).  k=10 thus corresponds to a unit 
scale which "mixes" conventional scales over a factor of more than 1000 
(210).   
The effect of varying the parameters c, e, k is shown in the multifractal simu-
lations shown in fig. 14.  All the simulations have α=1.8, C1=0.1, H=0.33 
(the empirical parameters for clouds), and are simulated on 256X256 grids 
with the same starting seed so that the differences are only due to the anisot-
ropy (the colours go from blue to white indicating values low to high).  For 
isotropic unit scales (k=0, top row fig. 14a) we see the effect of varying c.  
On the right we display the contours of the corresponding scale functions.   
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Fig. 14a:  Top row:  k=0,we vary c (denoted i) from  -0.3, -0.15, …0.45 left to right and e 
(denoted j ) from -0.5, -0.25, …0.75 top to bottom.  On the right we show the contours of the 
corresponding scale functions.  Middle row:  Same except that k=10.  Bottom row: e=0 the c is 
increased from -0.3, -0.15, …0.45 left to right, from top to bottom, k is increased from 
0,2,4,..10.  See text for more details. 
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Fig. 14b:  Top row: The same as the bottom row of 13a except that e =0.75.  Middle row: c=0 
and e left to right is: -0.5, -0.25, …0.75.  Bottom row: Same as the middle row except that 
c=0.15.  In all rows, from top to bottom, k is increased (0,2,4,..10), the right hand shows the 
corresponding scale functions. 

 
Moving down to the middle row we take k=10 so that the unit ball has a 
range of scales of 210; the structures are more filamentary.  In the bottom row 
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we take e=0 displaying the effect of varying c: G is thus diagonal, the struc-
tures are “self-affine” (no rotation).   Fig. 14b (top row) is the same as the 
bottom row of fig. 14a except that e =0.75 showing the effect of rotation.  
Since a2=c2-e2<0 here (f=0), the eigenvectors of λ-G rotate continuously with 
scale.  In the middle row we fix c=0 and vary e, the bottom row is the same 
except that c=0.15 so that there is both the effect of stratification (c), and 
rotation (e).  Here the eigenvalues are again complex except in the third col-
umn with e=0.Finally, outside our present scope but presumably important 
for realistic geophysical modeling, we can consider G as a nonlinear operator 
(rather than a matrix).  In this case, the anisotropy depends not only on scale 
but also on the location. This allows for spatially varying morphologies.  In 
this case, the linear GSI discussed above is simply a locally valid approxima-
tion.  In this case, the anisotropy depends not only on scale but also on the 
location.  This allows for spatially varying morphologies.  In this case, the 
linear GSI discussed above is simply a locally valid approximation. 
 

10. Conclusions: 

We are all aware of the extreme variability of geophysical fields over huge 
ranges of scales: the atmosphere has structures as small as millimeters, and as 
large as the planet; a ratio of 1010; the surface topography apparently has an 
even larger ratio.  The mathematical modelling of this variability has long 
stimulated mathematicians and physicists.  For example [Perrin, 1913] con-
sidered the problem of differentiability: "Consider the difficulty in finding 
the tangent to a point of the coast of Brittany... depending on the resolution 
of the map the tangent would change.  The point is that a map is simply a 
conventional drawing in which each line has a tangent.  On the contrary, an 
essential feature of the coast is that ... without making them out, at each scale 
we guess the details which prohibit us from drawing a tangent...". The con-
verse problem -  integrability (“rectifiability”) was considered by [Steinhaus, 
1954] "... The left bank of the Vistula when measured with increased preci-
sion would furnish lengths ten, hundred, and even a thousand times as great 
as the length read off a school map.  A statement nearly adequate to reality 
would be to call most arcs encountered in nature as not rectifiable.  This 
statement is contrary to the belief that not rectifiable arcs are an invention of 
mathematicians and that natural arcs are rectifiable: it is the opposite which 
is true...".  [Richardson, 1961] quantified integrability by considering the 
empirical scaling of the coast of Britain and of several frontiers using the 
"Richardson dividers" method.  In his paper [Mandelbrot, 1967] "How long 
is the coast of Britain?" Richardson's scaling exponent was interpreted in 
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terms of a fractal dimension.  Later, in his seminal “Fractals: form, chance 
and dimension” [Mandelbrot, 1977] proposed that fractals are ubiquitous in 
nature.  However, when it came to geophysical applications although stimu-
lating, this audacious idea was disappointing: most geofields of interest were 
mathematical fields (i.e. with a value at each space-time point such as the 
atmospheric temperature), and cannot be reduced to geometric sets of points.  
Furthermore, at that time, the proposed fractal sets were only scale invariant 
under isotropic scale changes (or occasionally the slightly more general self-
affine scale changes in which different exponents act in different orthogonal 
directions).  In a number of fields, by the early 1990’s this restrictive iso-
tropic monofractal framework was found to be quite inadequate leading in at 
least one instance - earth surface morphology – to the virtual abandonment of 
scaling approaches.   
In this paper we argued that the key to understanding systems with large 
numbers of freedom with nonlinear dynamics acting over wide scale ranges 
was to generalize the notion of scale invariance (and indeed, of scale) in the 
framework of Generalized Scale Invariance and the basic mathematical ob-
ject from fractal sets to multifractal functions (or more precisely, densities of 
measures).  While the motivation of the former was to allow the nonlinear 
dynamics of the system to define the appropriate notion of scale (rather than 
to impose a priori isotropic, Euclidean notions), the motivation for the latter 
was to handle nonlinear processes which repeat scale after scale, the generic 
multifractal process being the cascade.   
However, cascades have nontrivial, nonclassical properties, one of them be-
ing their highly singular small scale limit which leads to the distinction be-
tween “bare” and “dressed” cascade quantities.  While the former is the result 
of the cascade developed from a large scale down to a given (finite) scale, 
and involves only the larger scale interactions – the latter is the result of inte-
grating (“dressing”) a fully developed cascade to the same scale.  While the 
former has long-tailed statistics (e.g. log-Levy, log normal), the latter has fat, 
“algebraic” tails.  If we adopt an operational definition of Self-Organized 
Criticality as a system with fractal structures and with strong algebraic distri-
butions of extremes, then multifractals generically provide a nonclassical 
route to SOC. 
As seductive as they are, multifractals involve an infinite hierarchy of expo-
nents, and hence would be useless without some simplifying principle.  For-
tunately, stable, attractive universality classes exist with only three parame-
ters, this enables both compact parametrisations of the exponent functions 
(and hence the empirical characterization of scaling geofields), it also allows 
for numerical simulations.  In the last part of this paper we show how to 
make numerical simulations of clouds and topography which are quite realis-
tic both statistically and visually. 
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During the last twenty years, we have seen the transition from fractal geome-
try to multifractal processes; we have seen how extremes can be tamed with 
the help of Self-Organized Criticality, we have witnessed the opening of new 
areas of applications by generalizing scale invariance from isotropic to ani-
sotropic systems.  These developments have in turn paved the way for sys-
tematic empirical characterizations of both solid earth and atmospheric 
geofields, they help overcome longstanding measurement problems (such as 
the interpretation of aircraft data).  They have created the framework needed 
for realistic modeling of geofields over potentially huge ranges of scale. 
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