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Cascades have been used as models of precipitation for nearly 25 years yet many basic questions remain
unanswered and most applications have been to small or to regional scales. In this paper we revisit some
of these issues and present an inter comparison of four global scale data sets each with exceptional char-
acteristics: the hourly (and �200 km) resolution Climate Prediction Center (CPC) gridded precipitation
over the continental US, the three hourly global ECMWF reanalysis stratiform precipitation product at
1.5� resolution, the six hourly Twentieth Century reanalysis at 2� (1871–2008) and an analysis of 5300
orbits (1 year) of the Tropical Rainfall Measuring Mission (TRMM) satellite rainfall over ±40� latitude.
The data were analysed zonally, meridionally and in time. Each showed cascade structures; in space
up to planetary scales and in time up to 5–10 days. For each we estimated the moment scaling exponent
(K(q)) as well as its characterisation near the mean (C1) and the effective outer cascade scales. The com-
parison of the cascade structures in different directions indicate that although anomalies remain, they are
relatively isotropic in (horizontal) space–time. For any given direction, the comparison of the different
products indicates very similar but not identical scaling properties. In order to be properly inter cali-
brated at more than a unique resolution, the different products must have the same exponents and outer
scales so that - while the similarities are encouraging – the remaining anomalies point to needed
improvements in techniques for estimating areal rainfall. Our main conclusion is that the rain rate biases
introduced by the measurement techniques are larger than the deviations from perfect log–log linearity
(scaling) so that multifractal models will be needed for improving space–time precipitation measure-
ments.

Our analyses clarify various fundamental issues. For example, the CPC data show that at ‘‘weather’’
scales smaller than �2 days in time; H = 0.17 ± 0.11 so that rain is apparently not the direct product of
a cascade process (which would have H = 0). Similarly, for the low frequency weather regime (scales
>�2 weeks) we find H � �0.42 so that fluctuations tend to decrease rather than increase with scale
and display long range statistical dependencies. Finally, we find power law probability tails with expo-
nent qD � 3 so that the orders of singularity are apparently not bounded, ruling out several model types
including microcanonical and log-Poisson models.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Theoretical considerations

Precipitation is highly significant not only for meteorology
where it plays a key role in the earth’s energy and water budget,
but also in hydrology. Yet it has a number of peculiarities making
it somewhat different from most other atmospheric variables. First,
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from the empirical standpoint, the problem of estimating spatial
(i.e. areal) rain rate fields – whether from (typically sparse)
in situ networks of gauges, or from remote sensing (especially ra-
dar reflectivities) – is still not completely resolved. Strictly speak-
ing – due to the resolution dependence associated with the
intermittency – this could also be said of any of the other standard
techniques used to produce smooth (gridded) fields from any
in situ meteorological data (such as Kriging, optimal interpolation
or 3D or 4D var); however, since rain is much more intermittent
than the other fields this resolution effect is much stronger and
more difficult to ignore. Indeed a main focus of this study is
precisely to highlight the differences and similarities between
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precipitation and the standard meteorological state variables. Sec-
ond, unlike the latter, rain intermittency probably has a significant
‘‘on/off’’ component: it is apparently zero at most times and places;
yet even the exact definition of the (nonzero) ‘‘support’’ – the dis-
tinction between rain and no rain – is quite ad hoc, typically
depending on the sensitivity of the instrument or the application
area. It is possible that the on/off intermittency might be a thresh-
old type effect in which case it is not scaling at all; the scale at
which the threshold is introduced breaks the scaling. The possibil-
ity – even likelihood – that instrumental sensitivity introduces
important artefacts can be surmised from the fact that minimum
detectable rain rates (from remote or in situ techniques) are typi-
cally of the same order or larger (sometimes much larger) than the
climatological mean rain rate (below – according to the ECMWF
reanalysis – the global mean is �0.126 mm/hr). Indeed such
threshold – induced scale breaks may explain many of the claims
of breaks in the literature. Finally, from a modelling viewpoint,
there are no theoretically ‘‘clean’’ ways to represent the rain rate
in the same way as the main state variables – i.e. as coupled non-
linear partial differential equations. This forces precipitation mod-
ellers to resort to strong, largely ad hoc ‘‘parametrizations’’.

The idea of scaling in rain – especially in the hydrology litera-
ture – goes back at to least the study of streamflow time series
[1]; it includes early contributions on long range statistical depen-
dencies and extremes (essentially fractional Brownian motion and
Levy processes, [2]), and also the wide range spatial scaling of rain
[3]. The scaling idea also played a key role in the development of
multifractals and for testing multiplicative cascades: an early re-
view in rain already included over fifty references [4]. As scaling
and cascade notions were increasingly applied to rain, a series of
issues surfaced; some were related to the cascades themselves,
whereas others concerned their relations to the multifractals they
generate and to real world applications.

Before applying cascade models to rain we must first ask an
apparently simple question: is the rainrate field itself the direct
outcome of a cascade process or is it only driven/forced by a turbu-
lent cascade generated flux? Certainly, the answer is not self-evi-
dent since in the usual meteorological cascades associated with
the various state variables - the latter are only indirectly related
to the underlying turbulent fluxes. Since multiplicative cascades
conserve (on average) the turbulent fluxes from one scale to the
next, the degree of (scale by scale) nonconservation needs to be
determined, the conservation exponent H quantifies this (the sym-
bol ‘‘H’’ is in honour of Hurst, but it is not the same as the ‘‘Hurst’’
exponent). For a pure multiplicative cascade, H = 0, if H > 0 then
fluctuations tend to increase with scale, when H < 0, they tend to
decrease with scale (see the next section and see Section 4 for
the use of wavelets to quantify this). For example, in Kolmogorov
three dimensional isotropic turbulence, the cascade is of energy
flux which mathematically conserved scale by scale by the nonlin-
ear dynamical terms; however, the observable wind field has an
extra linear contribution to its scaling exponent corresponding to
H = 1/3. In rain, at ‘‘weather scales’’ (<�5–10 days), it seems likely
that H > 0 – as theoretically expected for passive scalars in turbu-
lence – at small scales in space H � 1/3 (as for the liquid water den-
sity, [5]). However at larger scales – at least for the related radar
reflectivity and in the horizontal direction – we find that
H = 0.00 ± 0.01 [6]. The low H result gives an ex-post-facto justifi-
cation for the common assumption in the precipitation literature
that H is identically zero (e.g. [7–11]).

Unfortunately, as we see in Section 3.1 using the huge CPC
hourly precipitation data base, we find in time for rain rates
H � 0.17 ± 0.11 up to 2–3 days, a result which itself is somewhat
dependent on the rain/ no rain threshold of the gauges. This new
value is somewhat larger than several older published results on
rain; both [12,13] estimate H � � 0.1 in time [14] find
H � � 0.02, [15] find H � 0.04, and [16] finds H = 0.00 ± 0.003. Re-
cently there has been some interesting work on this [17,18] where
important differences were found when comparing exponents for
the rain rate on all the data (including the zeroes) and those only
for the raining part (the support). Using radar data on regions with-
out rain free ‘‘holes’’ it was found that H � 0 for data with holes,
but H � 0.4 for purely raining regions. These authors also per-
formed numerical simulations that confirmed the strong impact
of zeroes on the parameter estimates including the intermittency
parameter C1 discussed below. In a similar vein, we find here on
the CPC data that as the threshold increases, H decreases: for
example, if thresholds are chosen so that they are exceeded only
3.5% of the time, then from the same data we obtain
H � 0.12 ± 0.11 while for higher thresholds corresponding to 1%
raining, we find H � 0.05 ± 0.10 so that these extremes could
apparently be generated by a conserved (H = 0) process. It is thus
significant that the result H � 0.0 for the spatial reflectivities is va-
lid for a satellite radar whose minimum detectable signal is double
the mean and that gives a signal above the noise level only 3.5% of
the time. Finally, we should note that various common data analy-
sis techniques exist which are only justified if H = 0 so that the
common habit of blindly assuming H = 0 may have contributed
to the current lack of consensus on the scaling properties of rain.

But no matter how rain is related to a multiplicative cascade –
no matter what the value of H – there remains the issue of what is
the relevant type of cascade. One aspect of this is the now old de-
bate about multifractal universality ([19–21]) which continues to-
day in the guise of (weak) log–Poisson universality, ([22–24])
versus (strong) log–Levy universality ([25,26,13,27,6,28,15,17,
18,16,29]). Similarly, the low and zero rain rates are notoriously
difficult to accurately measure, and they are prone to spurious
breaks and spurious behaviours [30]. This has lead to two alterna-
tive modelling approaches. The first assumes that the ‘‘support’’ of
the precipitation – where the rate R > 0 – is a fractal set [31–33,
28,24], the second that the zero rain rate values are the conse-
quence of a combined physical and instrumental thresholding
mechanism wherein the rainrate below some low value is set to
zero ([5,6,17,18], and see Gires et al. this volume). The former
hypothesis is somewhat unsatisfactory – if only because it implies
that in the small scale limit, that the rain areas are strictly zero so
that finite raining areas depend sensitively on the inner and outer
cascade scales. In comparison, the thresholding mechanism im-
plies – as found empirically – that the regions with low (and zero)
rates will have poor/broken scaling.

At the other end of the spectrum, the nature of the extreme
large rain rates also continues to be debated. Does the rainfall cas-
cade intrinsically generate singularities of all orders (such as the
universal multifractal cascades based on Levy generators), or is
there an intrinsic physical upper bound (as in the log–Poisson
models)? The former generally leads to power law tails on proba-
bilities of extreme rainrates with the maximum on any given real-
isation being a widely varying random variable. In contrast, the
latter implies that rainrates exceeding a critical level are impossi-
ble so that the maxima (of series, of radar scans) are roughly con-
stant. Note that these cascades whether with bounded orders of
singularities or not, are genuinely intermittent multifractals, they
should not be confused with the ‘‘Bounded Cascades’’ introduced
by Cahalan and coworkers [34,35] and Menabde et al. [36] in which
the cascade is progressively weakened at each step and which ulti-
mately yields processes which in the small scale limit are essen-
tially classical nonintermittent quasi-gaussian process [37].

Even seemingly technical issues can have consequences for the
way we analyse the data. For example if we assume that the cas-
cade’s scale by scale conservation of turbulent fluxes is rigorously
enforced at each cascade step – i.e. that it respects this strong
‘‘microcanonical’’ constraint – then the statistics could be
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completely deduced from ‘‘weights’’ or ‘‘multipliers’’ which are
simply the empirical ratios of cascade processes at neighbouring
resolutions (e.g. differing by a factor of two or four; e.g.
[38,8,10,11,24]). However, if the conservation is only on the
ensemble – i.e. if it only respects the much weaker ‘‘canonical’’
constraint (corresponding to the more general situation) – then
the standard moment-based analysis methods (which involve wide
ranges of scales) must be used (see.[39] for a discussion). Finally,
the microcanonical assumption also implies a bound on the largest
singularity so that it too has implications for the nature of the ex-
tremes: unbounded, canonical cascades are necessary to explain
power law extreme tails on the probability distributions and
numerous such claims have been made, see Section 3.2 for new
evidence and a discussion.

While these issues may seem removed from practical applica-
tions, this is not the case: their clarification is necessary if only
to measure space–time rainfall! Indeed, a main conclusion of this
paper is that the reconciliation of the scale by scale gauge, remote
and reanalysis field statistics will require not only explicit scaling
assumptions but also explicit numerical cascade models. These
theoretical issues also inform some of the more recent applications
of cascades to rain such as to downscaling/disaggregation where
current techniques assume rain is a pure multiplicative cascade
(H = 0) and most of them, that the support is fractal (e.g.
[8,10,11,24]).

1.2. Precipitation at global scales

In spite of the now significant literature on cascades and multi-
fractals in precipitation, applications to date have been restricted
to regional spatial scales, typically not exceeding the area of a sin-
gle ground based radar (with linear extents <�500–1000 km). The
only exceptions appear to be the recent global scale study of TRMM
satellite radar data [6] which found that the scaling is quite
remarkable and extends from kilometres to the size of the earth
and [40] that used daily rain rates from gauges with global cover-
age and attempted to take into account the fractal clustering of sta-
tions. The only markedly poor scaling was for the low (and zero)
rain rates, and the highest rates at the smallest scales. Yet the for-
mer behaved nearly as expected of a scaling process whose reflec-
tivities were effectively ‘‘thresholded’’ by the inadequate
dynamical range of the TRMM radar (in this case, the weakest sig-
nal it could detect above the noise was double the mean value)
while the high rain rate deviations could likely be explained as ra-
dar attenuation effects. In other words there was no compelling
evidence for a breakdown in the underlying scaling symmetry.

Encouraged by the success of this global analysis, and by the re-
cent finding that the traditionally meteorological state variables
(notably the wind, temperature, humidity, geopotential heights)
have accurate global scale cascade structures in weather forecast
models and reanalyses [41–43] in situ data sets including aircraft
[44], and in radiances from satellites.[45], it is natural to compare
the planetary scale space–time cascade structure of precipitation
from reanalyses, from in situ networks and from satellite radar.
In addition, if the spatial scaling continues to essentially planetary
scales, then it is natural to interpret the critical scale sw � 5–10 days
as the rough lifetime of planetary scale structures, it defines the
upper limit of the weather regime. For s > sw, the spectrum is rel-
atively flat and it has been proposed that for scales s > � 1 month
that it is in fact a Gaussian white noise (e.g. [46]). If true, this would
have important implications for both the interpretation and mod-
elling of precipitation. In order to study this, below we exploit both
the 29 year gridded hourly CPC data over the US as well as the
unique 138 year, 6 hourly global Twentieth Century reanalysis data
[47]. Aside from its unique length, the 20CR reanalysis is particular
in that it only uses surface pressure and monthly sea surface
temperature data as inputs, this leads to very homogeneous data
quality over its entire duration.

The basic aim of this paper is thus to use some of the more
exceptional global scale precipitation data sets – they collectively
span 1 h to 138 years in time and 4.3 to 20,000 km in space – in or-
der to obtain an overall empirical scaling characterisation the
space – time scaling of precipitation. Along the way our analyses
clarify the fundamental issues raised in the above discussion.

This paper is structured as follows. In Section 2 we review the
basic cascade theory needed to understand the analyses and we
present the data sets and the basic spatial analyses. In Section 3
we continue to the more involved temporal analyses, presenting
in separate sections an analysis of the high and low frequency
weather regimes as well as an analysis of the extremes and the
temporal cascade structure. In Section 4 we present a discussion
of the latitudinal dependence of the precipitation cascade includ-
ing space–time relations. In Section 5 we conclude.

2. The cascade properties of ground and space radar, gauge
networks and reanalysis rain fields

2.1. The basic prediction of multiplicative cascade models

Multiplicative cascade models involve the multiplicative modu-
lation of small structures by larger ones with a basic scale invariant
mechanism repeating scale after scale from large to small scales.
After a total range of scales k0, the qth order statistical moment
of the dimensionless cascade flux u0 is given by the following basic
equation:

u0qk0
� �

¼ k0KðqÞ ð1Þ

k0 = Leff/Lres is the ratio of the ‘‘effective outer scale’’ Leff to the small-
est (resolution) scale of the cascade Lres. ‘‘h.i’’ indicates statistical
(ensemble) averaging.

In empirical analyses such as those discussed here, the outer
scale is not known a priori but is itself a significant empirically
determined quantity. We will instead use the symbol k as the ratio
of a convenient reference scale to the smallest resolution and u
will be the usual dimensional flux:

Mq ¼ u0qk
� �

; u0 ¼ uk

hui ð2Þ

(hui is the ensemble mean large scale flux, i.e. the climatological va-
lue, it is independent of scale, hence there is no need for a sub-
script). Following Eq. (1), the nondimensional qth moment Mq

obeys the multiscaling relation:

Mq ¼ k0KðqÞ ¼ k
keff

� �KðqÞ

; k0 ¼ k=keff ; k ¼ Learth=L;

keff ¼ Learth=Leff ð3Þ

Here, k is a convenient scale ratio for the spatial analyses, we base it
on the largest great circle distance on the earth: Learth = 20,000 km
and the scale ratio k0 = k/keff is the overall ratio from the scale where
the cascade started to the resolution scale L, it is determined empir-
ically. From the foregoing discussion we expect Leff � Learth so that
keff � 1 which corresponds to planetary scale cascades. Since even
at planetary scales each field nonlinearly interacts with the other
fields, it is possible (and we often find) that Leff is somewhat larger
than Learth. For the temporal analyses, we simply take the large ref-
erence time scale as the total duration of the data set.

In order to investigate possible zonal/meridonal and space/time
anisotropies and to test the general predictions of multiplicative
cascades (Eq. (1)), we must analyse the data without relying on
any specific theories of turbulence; we must use an approach that
does not require a priori assumptions about the physical nature of



Fig. 1a. This shows a typical 4 day (64 orbit) coverage by the TRMM PR instrument
at 100 km resolution. The black indicates the 100 � 100 km boxes without data; the
white those with at least one satellite pass (giving at least 60% coverage of the pixel:
the raw data was at 4.3 km resolution and the swath was 220 km wide).
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the relevant fluxes; nor of their scale symmetries (isotropic or
otherwise). If atmospheric dynamics are controlled by scale invari-
ant turbulent cascades of various (scale by scale) conserved fluxes
u then in a scaling regime, the fluctuations DR(Dx) in the rain rate
R (or other observable such as wind, temperature or radiance) over
a distance Dx are related to the turbulent fluxes by a relation of the
form:

DRðDxÞ � uDxH ð4Þ

(this is a generalisation of the Kolmogorov law for velocity fluctua-
tions, the latter has H = 1/3 and u = eg, g = 1/3 where e is the energy
flux to smaller scales). Without knowing g nor H – nor even the
physical nature of the flux – we can use this to estimate the norma-
lised flux u0 at the smallest resolution (Dx = l) of our data:

u0 ¼ u=hui ¼ DR=hDRi ð5Þ

Note that if the fluxes are realisations of pure multiplicative cas-
cades then the normalised g powers ug/huig are also pure multipli-
cative cascades, so that u0 = u/hui is a normalised cascade. The
fluctuation, DR can be estimated in various ways; in the following
(with the exception of Fig. 1b), rather than using fluctuations in
space (Dx), we estimate them in time (Dt) we used the 2nd centred
differences: DR(x,y, t) = jR(x,y, t) � (R(x,y, t + Dt) + R(x,y, t � Dt))/2j
where Dt is the time difference between successive (x,y) sections.
In general, fluctuations are defined using wavelets; the second dif-
ference is an extension of the poor man’s wavelet (which is the first
difference: DR = R(t + Dt) � R(t)). The second differences are gener-
ally adequate when 0 < H < 2 – and hence for most of our present
purposes (see however Section 3.4 where we discuss fluctuations
defined by Haar wavelets). The resulting high resolution flux esti-
mates can then be degraded (by averaging) over 1-D ‘‘pencils’’ in
(x,y, t) space, i.e. in the east–west, north–south or temporal direc-
tions to resolution k times lower.

2.2. The data sets analysed

2.2.1. The TRMM satellite radar data
One of the data sets we analysed was 5300 orbits of the Tropical

Rainfall Measuring Mission (TRMM; the entire year 1998) The
reflectivities (Z) were given an attenuation correction and con-
verted into rainrate estimates (R) using the power law Z = aRb with
the recommended TRMM value b = 1.4 [48]. In order to check the
basic scaling of this surrogate rain rate field (which is ‘‘along
track’’, i.e. primarily in the NE or SW directions and nearly instan-
taneous in time), we estimated the flux from the absolute finite dif-
ference (spatial) Laplacian (u = jR(x,y) � (R(x + l,y) + R(x � l,y) +
R(x,y + l) + R(x,y � l))/4j) where l = 4.3 km, the interpixel distance
(this is the nominal resolution, but due to the narrow swath, it var-
ied by only about 20%). The results are shown in Fig. 1b which
show that with the main exception of the low moments – affected
by the low and zero rain rate problems – the scaling is generally
well respected over the entire range. There are also deviations
for the higher moments at smaller scales these are likely to be con-
sequences of imperfect attenuation corrections; see [6]. Actually,
our results are not changed much if we perform the same analysis
by directly degrading R (i.e. by taking u = R). This is because using
the reflectivity directly one obtains H � 0.0 ± 0.01 (note that the
scaling at the small scales was a little better for Z than for R [6]).
Note that here, as for the other moment analyses presented below,
the log–log linear regression were forced to go through a common
point, the effective external scale of the cascade. The slopes of the
lines yield K(q) and numerical derivative of the latter at q = 1 gives
an estimate of the parameter K0(q) = C1.

In order to compare the TRMM results with those from the
gauge network and the reanalyses, we degraded it over
100 � 100 km boxes between ±40�; the limits were imposed by
the orbital parameters. All the data within a four day period
(roughly the mean time for the satellite to return to a given loca-
tion) were averaged to produce a 4 day resolution precipitation
map, see Fig. 1a which shows the coverage of a typical example
(see Table 1 for a summary of the characteristics of this and the fol-
lowing precipitation products). For this 100 � 100 km product, the
flux was estimated by the centred differences in time
(u = jR(x,y, t) � (R(x,y, t + Dt) + R(x,y, t � Dt))/2j). This definition of
the flux using the second temporal differences was also used in
CPC and ECMWF products discussed below; not much difference
was found when the corresponding spatial flux estimate (the abso-
lute Laplacian) was used instead. When averaging (degrading the
resolution) of the fluxes along successively the x, y, t directions,
we only used ‘‘pencils’’ that had less than 20% missing data.

The moment analyses are shown in Fig. 2 (east–west) and Fig. 3
(north–south); these are not too different from the typically NE or
SW along-orbit results (Fig. 1b) except that a strong north–south/
east-east anisotropy is evident (at least for the outer scales; see Ta-
ble 2 and discussion below).

2.2.2. Gridded gauges over the continental US, the CPC network
Since the Z–R transformation has only been theoretically justi-

fied using various problematic assumptions (such as the spatial
uniformity of the drop size distribution), it is important to compare
this satellite rain with in situ (gauge) measurements and to reanal-
yses. For this purpose, we used NOAA’s CPC (Climate Prediction
Center), US hourly gridded precipitation (rainrate) product. This
product is unique in its high temporal resolution over a large num-
ber of contiguous grid points. We selected a (near complete) subset
of the CPC data for the 29 years 1948–1976 (at this date there is a
data gap of several weeks so that we did not extend the analysis to
more recent times). The CPC data was gridded on 2.5� � 2.0� boxes
by using a modified Cressman Scheme (an interpolation tech-
nique); we used its central rectangular 13 � 21 point region from:
�122.5� to � 72.5� longitude (every 2.5� � 210 km at these lati-
tudes), and from 30� to 54� latitude (every 2�, �220 km). Each grid
box had a near complete �257,000 point long hourly series. The
spectrum (Fig. 4a) shows very strong annual and diurnal (and sub-
harmonic) spikes so that the data were detrended both annually
and daily before determining the fluxes. This detrending somewhat
improves the low q scaling without affecting the high q statistics
much. The annual detrending was performed by replacing the Fou-
rier components corresponding to frequencies x = ± (1 yr)�1 by the
average of the ‘‘background’’ at the neighbouring frequencies. The
daily detrending was performed by removing the daily cycle (the
latter simultaneously removes or weakens the many subharmonics
of the daily cycle). The analysis results are shown in Figs. 2 and 3
showing that the gridded data also have a cascade structure in
the east–west and north–south directions, and that the extrapo-
lated outer scale is nearly the same as for the ground and satellite
based radar reflectivities in Figs. 2 and 3 (see Table 2).



Table 1
The characteristics of the various precipitation data sets discussed in the text. The raw 20 CR data were at 3 h but with the exception of the spectrum (Fig. 4a), we used the data at
6 h resolution.

Spatial resolution
(EWxNS)

Spatial extent EW Spatial extent NS Temporal
resolution

Length of record

ECMWF (interim reanalysis) 1.5� � 1.5� 360� 180� 3 h 3 months (1/06–3/06)
CPC (Climate Prediction Center,

gages)
2.5� � 2� 122.5� � 72.5�W

(�4000 km)
30� � 54�(�3000 km) 1 h 29 years (1947–1976)

TRMM (satellite radar) 100 � 100 km 360� 40S�–40 N� 4 days 1 year, 1998 (5300
orbits)

20CR 2� � 2� 360� 2� (only 44�–46�
analysed)

6 hrs 138 years (1871–2008)

Fig. 1b. The nondimensional moments Mq from the TRMM rainrate estimates. The
moments are for q = 0, 0.2, 0.4, . . .3, outer scale �39,000 km, C1 = 0.48, for the
rainrates estimated from the reflectivity with b = 1.4 along the orbit direction,
spatial resolution 4.3 km. k = 1 corresponds to 20,000 km. The poor scaling
(curvature) for the low q values are likely to be artefacts of the fairly high
minimum detectable signal, at the high q values by attentuation. Lref = 20,000 km so
that k = 1 corresponds to 20,000 km. The regression lines were for scales >20 km.
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2.2.3. The ECMWF and Twentieth Century reanalyses
Before making a quantitative satellite/gauge intercomparison,

let us first consider the corresponding analyses on the ECMWF in-
terim ‘‘stratiform rain’’ product (at the time of the research the
new ‘‘convective precipitation’’ product was not yet available).
We used the first 3 months of 2006 at the full (3 h) resolution.
The results in the east–west and north–south directions are also
shown in Figs. 2 and 3, the parameters and those of the other prod-
ucts are shown in Table 2. We have also made more limited use of
the uniquely long (1871–2008) Twentieth Century (20CR) reanaly-
sis which especially helps to clarify the low frequency behaviour
(Section 3.4). As a first comment, from the figure we see that the
basic cascade structures are quite well respected and are very sim-
ilar for each of the data sets. Indeed, for a given data set, when
averaged of all scales and moments q 6 2, the deviations from
log–log linearity are of the order of a few percent. This is signifi-
cantly smaller than the variations between the different data sets
which in some cases are as large as a factor of 2 (e.g. the q = 2 mo-
Table 2
An comparison of some of the cascade parameters for the precipitation products discusse
meridional aspect ratios a are: 1.6, 1.3, 2.5, for the ECMWF, CPC, TRMM fields respectively. T
45�N.

ECMWF CPC

C1 Leff or seff C1 Leff or s

East West 0.39 50,000 km 0.27 40,000
North South 0.45 32,000 km 0.32 16,000
Time 0.34 71 days 0.30 1100 d
ments at 400 km for the 20CR and TRMM data). Since all the rain
measurement techniques have various problems, it would not be
surprising if the differences reflect the limitations of the measure-
ment techniques rather than a breakdown in the scaling symme-
tries. Indeed, in order to improve the measurement techniques it
is tempting to extrapolate the observed scaling to subsensor scales
and use this heterogeneity assumption to replace the homogeneity
assumptions which are typically made in when interpreting gage
networks, radar or reanalysis fields.

2.2.4. Scale by scale intercomparison: the spatial scaling
For a given moment order q, we find that the exponents K(q) are

much higher than when compared with any of the usual meteoro-
logical fields (e.g. for temperature, wind, humidity). A simple way
to quantify this is to use the parameter C1 = K0(1) which character-
ises the intermittency near the mean: theoretically, C1 is the codi-
mension of the fractal set which gives the dominant contribution
to the mean. From Table 2 we see that the values for C1 for precip-
itation which are in the range 0.25 to 0.5; this may be compared to
the values for the state variables which are much smaller: typically
in the range 0.05–0.10 see [42,49] (although the C1 for the turbu-
lent energy flux is also �0.5, it is not observed directly in the same
way as precipitation). This confirms our intuition about rain: that it
is much more intermittent than the other atmospheric fields (recall
that C1 is an exponent so that for statistics near the mean (q = 1)),
the difference between a field with C1 = 0.05 and one with 0.5 is a
factor k0.05 compared to k0.5 which – depending on the range of
scales k – can be enormous. We also note the reasonable agree-
ment between the outer scale estimates: (39 ± 10) � 103 km in
the east- west direction and (27 ± 9) � 103 km in the north/south
direction (the spread is the variation from one product to another
and the raw outer scale estimates in the table are only quoted to
within 1 dBk i.e. to the nearest tenth of an order of magnitude, to
within a factor �1.25). Taking the ratio of the east–west to
north–south outer scales gives us the ‘‘trivial anisotropy’’, i.e. the
typical aspect ratio in the horizontal (assuming that there is no dif-
ferential, scale by scale anisotropy). The ratios of the means
(excluding the 20CR data which were analysed only zonally) gives
a factor 1.61 which is almost the same as for the mean of the state
variables (wind, temperature and geopotential height estimated
from the other ECMWF interim fields, see [43]).
d in the text. The temporal analyses are discussed in Sections 3.1 and 3.4. The zonal/
he 20CR data set was mostly used because of its long length, the analyses were only at

TRMM R / Z1/1.4 20CR

eff C1 Leff or seff C1 Leff or seff

km 0.49 40,000 km 0.26 25,000 km
km 0.51 32,000 km – –
ays 0.37 42 days 0.22 50 days



Fig. 2. East–west analyses of the gridded precipitation products discussed in the text. Note that the vertical scales are different. The regressions were over the scales 400–
5000 km.
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The precise variations of the C1 values in Table 2 are not so easy
to explain. First, the east–west C1 values are not quite the same as
those in the north–south direction. Depending on the product, the
differences are between 4 and 16% in the exponents, if these vari-
ations are statistically significant they would indicate systematic
scale by scale scaling anisotropies. However, it is not obvious that
they are in fact significant. On the one hand, even with all this data,
statistical exponents are very hard to accurately estimate; this is
especially true since the large C1 values indicate huge sample to
sample variability (intermittency). On the other hand, there are
fairly large variations from one product to another – larger than
the north–south/east–west differences – and in any case, the
east–west values are not even systematically larger than the
north–south ones (they are smaller in the ECMWF product, larger
in the others). For the moment we we may reasonably consider
that the C1’s are the same in the east–west and north south direc-
tions so that the trivial anisotropy is real, whereas the scale by
scale anisotropy (reflected in directional variations in C1) may be
an artefact.

There remains the interesting task of understanding the prod-
uct-to-product differences and this should shed light not only on
the fundamental nature of rain, but also on the optimum way of
estimating rainrates from in situ and remote measurements and
of simulating rain in numerical models. Recall that since we are
discussing exponents that characterise the scale by scale statistical
properties, for the products to agree about the rain rate at any par-
ticular space–time point, it is necessary – but not sufficient – that
they have identical cascade parameters (both exponents and outer
scales). Although at this point it would be quite possible – follow-
ing the detailed TRMM analysis in [6] – to quantify scale by scale,
moment by moment, product by product the deviations from per-
fect log–log linear scaling, along with detailed parameter uncer-
tainty estimates, at present this does not seem worthwhile. The
reason is that the product to product variability – which presum-
ably reflects instrumental limitations – appears to be larger than
the deviations of any given product form log–log linearity. It there-
fore would be more reasonable to expend effort on modelling and
understanding the instrumental problems rather than attempting
overly precise characterisations of uncertainties and biases which
may well be partially if not largely instrumentally generated.

A full characterisation of the cascade requires the full K(q) func-
tion; in practice, this must be parametrized. If the precipitation
process is the domain of attraction of universal multifractals, then
K(q) = C1(qa � q)/(a � 1) where 0 6 a 6 2 is the Levy index. How-
ever, in Table 2 we did not include estimates of the Levy index a
(which can be estimated as K00(1)/K0(1), i.e. it characterises the cur-
vature near the mean q = 1): its estimation depends sensitively on
the low values of the rainrate and these are poorly measured. Ref-
erence [6] pays much attention to this and with the help of cascade
models concludes that a � 1.5 but the evidence is still not compel-
ling (see e.g. [50] for a review of empirical estimates). We defer the
discussion of a to a future paper.

The spatial values of C1 in Table 2 can be compared with those
in the literature, notably [40], C1 � 0.16; [25], C1 � 0.02–0.1 [51],
C1 � 0.35 ± 0.2 [17,18], C1 � 0.5, H � 0 for data with zeroes,
C1 � 0.15, H � 0.4 for data without zeroes. These estimates are
(mostly) from gauges (although the latter reference also consider
radar scans); we see that our values are more in accord with the
more recent estimates but there is still much uncertainty. Under-
standing the sensitivity to zeroes thus seems to hold the key to a



Fig. 3. Same as Fig. 2 but for the north–south analyses. The 20CR data was at 45�N and this was not analysed in the meridional direction. The regressions were over the scales
400–5000 km.

Fig. 4a. A comparison of the temporal spectra of the CPC data (red) and the ECMWF
3 hourly data set (green). The blue curve is the CPC spectrum averaged over
logarithmically spaced frequency bins (10 per order of magnitude). The long black
curve is from the 20CR at 45�N, from the full 3 h resolution data (from 1871–2008).
The transition scale from the high frequency weather regime and low frequency
weather-climate regime is indicated by the dashed line at periods of 5 days. The
axis is in units such that x = 1 is (29 yrs)�1; i.e. the full length of the CPC series.
There are three reference lines with absolute slopes indicated; the value 0.08 is
from the Haar structure function analysis (Section 3.4) from 3 months to 29 years.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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better understanding of the variation in the literature of both H and
C1 parameters.

Upper left: The TRMM 100x100, 4 day averaged product.
Upper right: The ECMWF interim stratiform rain product (all
latitudes were used). Note that the data were degraded in con-
stant angle bins so that the outer scale is 180�. To compare with
the other analyses, a mean map factor of 0.69 has been applied
(the mean east–west outer scale was �14,000 km).
Lower left: The CPC hourly gridded rainfall product (US only).
Lower right: The 20CR reanalysis at 45�N only (data at 4�
resolution).
Upper left: The TRMM 100 � 100, 4 day averaged product.
Upper right: The ECMWF interim stratiform rain product.
Lower left: The CPC hourly gridded rainfall product (US only).

3. Temporal analyses

3.1. The weather regime: estimating H

Dimensionally, space and time are connected by a velocity;
physically in fluid systems by advection. If the relevant velocity
is scaling and – and it is in reanalyses [41,43] and in aircraft data
(although see the debate [52]) - then we expect the spatial scaling
of precipitation to be accompanied by temporal scaling. Before tak-
ing a look at the analyses of the cascade structure (i.e. the fluxes),
we can therefore consider the 1-D temporal spectra of the CPC,



Fig. 4b. This figure shows the log10 of the probability distribution Pr(DR > s) of the
absolute rain rate difference DR for the CPC hourly gauges (middle, blue) and the
daily ECMWF reanalysis (orange, top, for 2005–2008, multiplied by a factor 4 for
clarity) and the 138 year long 20CR 6 hourly data (at 45�N only, shown in red, left),
all as functions of the log10 threshold s. For the CPC data there were 13 � 21 = 273
CPC series, each 257,000 h long (�7.0 � 107 points total); the ECMWF had
1460 days with 29040 grid points each (a total of �4.2 � 107 points) while the
20CR data was every 2nd longitudinal pixel at 45�N for a total of 1.8 � 107 points.
The reference lines have qD = 3 (which is very close to the tail of the CPC data),
qD = 2.2 which is plausible for an intermediate region of the ECMWF data and for
the 20CR data, qD = 7 which is not so convincing but is nevertheless shown for
reference. The units of s are hundredths of inches per hour. The differences in the
amplitudes are partially due to the different time lags (Dt).
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ECMWF and 20CR series (i.e. the average of the temporal spectra
from each pixel), Fig. 4a. We did not include the TRMM spectrum
since the series had too many missing data points (see Fig. 1a).
From Fig. 4a we can see that as for all meteorological fields, there
are two regimes: a high frequency (usual) ‘‘weather’’ regime and a
‘‘low frequency weather’’ regime’. As indicated in the figure, the
transition is at about 5 days. Starting with the top of the atmo-
sphere solar flux �1 kW/m2, this transition time can be theoreti-
cally deduced essentially from first principles. By using a
conversion efficiency of 2% to kinetic energy we can obtain the
mean tropospheric turbulent energy flux e � 10�3 m2/s3 so that
the lifetime of planetary structures (at scale Le � 2 � 107 m) is
sw = e�1/3L2/3 � 10 days. As argued in [53,42,49], for scales s > sw,
we have ‘‘low frequency weather’’ characterised by a ‘‘spectral pla-
teau’’ with relatively small exponent spectral b = blw defined by the
power spectrum E(x) �x�b, where x is the frequency. We return
to this regime in Section 3.4.

From Fig. 4a we see that the CPC, ECMWF and 20CR spectra
agree quite well for durations longer than one day; for higher fre-
quencies, the 20CR and especially the ECMWF spectra are too
smooth; they have small diurnal peaks but respectively large 12
and 6 h peaks. The more trustworthy CPC spectra indicate that at
high frequencies bw � 0.8. More refined analyses obtained from
each CPC grid point series and estimating bw using frequencies
>(2 days)�1 yields bw = 0.76 ± 0.23 where the spread is from series
to series (i.e. grid point to grid point). Since the spectrum is a sec-
ond order (q = 2) moment, from Eq. (4) we find that
b = 1 + 2H � K(2) and from the (cascade) analysis of the moments
in time (Fig. 5) we find the temporal CPC q = 2 exponent
K(2) = 0.59, yielding the estimate H � 0.17 ± 0.11. We therefore
see that at least for the CPC data that it is important to perform
the cascade (moment) analyses on the fluxes (estimated here by
the absolute second time differences) rather than directly on the
rainrates.

3.2. The extreme rain rates; estimating qD

We mentioned that a feature of (general) canonical cascades
with unbounded orders of singularities is that they display non-
classical probability distributions with power law tails. This im-
plies that extreme values occur much more frequently than
predicted by classical ‘‘thin’’ (exponential) tailed distributions or
even than predicted by intermediate ‘‘long’’ log-normal type tails.
Such power law distributions are of the form:

PrðDR > sÞ � s�qD ; s� 1 ð6Þ

where Pr(DR > s) is the probability of a rainrate fluctuation DR
exceeding a fixed threshold s, ‘‘Pr’’ indicates ‘‘probability’’ (strictly
speaking, this is one minus the Cumulative Distribution Function
i.e. 1-CDF). qD is the critical exponent; the subscript ‘‘D’’ indicates
that we expect the value of qD to depend not only on the ‘‘bare’’ cas-
cade statistics (i.e. on K(q)) but also on the dimension of space–time
D over which the rain rate is ‘‘dressed’’ (averaged); this is true as
long as the averaging scale is much larger than the inner cascade
scale which is sub-metric. All the statistical moments hDRqi?1
for q P qD (hence we limited our study to q 6 3 to avoid possible
divergences).

There is increasing evidence that precipitation probability dis-
tributions have power law tails. For example [19], claimed a prob-
ability exponent qD � 1.1 for radar reflectivities, and for raindrop
volumes [5] found qD � 5. For the rain rate there is even an emerg-
ing consensus on the value qD � 3; for example at various resolu-
tions, [54] claimed qD � 3.5; [62] claimed qD � 2.8–8.5 [12],
qD � 3.6 ± 0.07 [55], qD � 2 [13], qD � 3.5 [56], qD � 4.0 [57],
qD � 3 [58], qD � 2.9 ± 0.7. Finally, on the basis of a compound Pois-
son-cascade process reference [59] theoretically predicted that for
the total liquid water in a region obeying passive scalar (Corrsin–
Obhukhov) statistics, that qD = 3 (exactly) and confirmed the result
using stereophotography of rain drops. In Fig. 4b, using the very
large (hourly) CPC data base we give more evidence that qD � 3
for the rain rate – over a range of factor of 103–104 in probability.
In contrast, the figure shows that the ECMWF and 20CR probability
distribution (for daily and six-hourly – not hourly – differences)
while being similar in shape for the smaller fluctuations appears
to be ‘‘truncated’’ at the largest fluctuations. This suggests that
the reanalyses have trouble estimating extreme rain events. Simi-
larly, [6] considered in some detail the extremes of the TRMM
reflectivities (Z) and concluded although there was some evidence
for qDZ � 2 for Z (corresponding to qDR � bqDZ � 2.8; with Z = aRb,
b = 1.4) but that due to the attenuation at large Z, (which was
not sufficiently corrected), that the extremes were truncated;
hence we did not reconsider the TRMM probabilities here.

The existence of a finite exponent qD is primae facea evidence
that the rain process is capable of occasionally producing singular-
ities of very high orders so that a priori, models with unbounded
orders of singularity should be used. This rules out microcanonical
cascades, Log-Poisson cascades or universal multifractal cascades
with Levy index a < 1 (although the latter models could conceiv-
ably generate finite qD’s if the parameters were carefully chosen).

3.3. The temporal cascade structure

The temporal parameters for the precipitation fields were al-
ready shown in Table 2. In spite of the fact that the temporal C1

estimates are not so different (0.31 ± 0.07), the external scales vary
considerably with the TRMM external scale (seff � 3 years) being
about 20 times larger than that of the CPC, ECMWF and 20CR
reanalysis products of the estimate seff � 90 days from [16] using
gauges. In any case, although it is much larger than the external
scales of other meteorological fields, it is comparable to the outer
scale of the ocean variability. Lovejoy and Schertzer [60] show that
for the ocean surface eo � 10�8 m2/s3 which implies
so ¼ e�1=3L2=3

e � 1 year. Since the TRMM data are mostly over the



Fig. 5. Temporal analyses of precipitation products. The 2nd time flux for the 100 � 100 km gridded (4 day resolution) TRMM radar satellite rain rate estimates (upper left),
for the 3 months of the 3 hourly ECMWF interim stratiform rain product (upper right) and 29 years of NOAA’s CPC hourly gridded surface raingauge network (lower left). Note
the variation in the vertical scale. These are the temporal analyses corresponding to the spatial analyses presented in Figs. 2, 3. We have added (lower right) the unique very
long Twentieth Century reanalysis product analysed at 45�N at 2� resolution in space and 6 h in time from 1871–2008. Note that there is an indication of a second lower
intermittency cascades from about 10 days to 1 year. The regression were performed over the range of scales 8 days to 1 year (TRMM), 6 h to 10 days (ECMWF), 1 h to 10 days
(CPC) and 6 h to 4 days (20CR).

Fig. 6a. The K(q) for the TRMM PR instrument at 100 km, 4 day resolution. On right,
the top is the north–south curve, middle is the east–west, the bottom is time.

Fig. 6b. ECMWF 3 h, on right, the top is the north–south curve, middle is the east–
west, the bottom is time.
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ocean this could be an explanation for the large TRMM seff. It
should be noted that the disagreements in the moments at mea-
sured scales are not as large as they might seem at first sight. This
is because a large (scale by scale) variability indicated by a large C1

can be partially offset by a small external scale and from Table 2,
we see an inverse correlation between the C1 values and the exter-
nal scales: consequently the actual moments in Fig. 5 are fairly
similar for the CPC in situ and ECMWF interim products.

Although there are still anomalies, it seems that cascade expo-
nents in horizontal space and in time are compatible with the
hypothesis that they have the same values (i.e. it seems likely that
the small remaining differences are due to various unresolved data
measurement, calibration and interpretation issues). Since the a
estimates are not too precise (due to the zero rain rate problem
which tends to seriously bias them towards low a values), we
can attempt to substantiate this by comparing spatial and tempo-
ral C1 estimates (see Table 2), as well as the K(q) curves (6a–6c).
These indicate that the conclusions drawn from the variations in
C1 are relatively robust (see Fig. 6d).

The temporal estimates of C1 in Table 2 can be compared with
those in the literature, notably C1 � 0.6 [40]; C1 � 0.2 [61];
C1 � 0.6 [54]; C1 � 0.04–0.19 [62]; C1 � 0.30–0.51 [13,14];
C1 � 0.344, 0.303 [51,56]; C1 � 0.38 ± 0.02, 0.40 ± 0.1 [51];
C1 � 0.345 ± 0.038 [27]; C1 � 0. 434 ± 0.005 [15,27]; C1 � 0. 38
[16]; C1 � 0.47 ± 0.08 [58]. These are all from gauges; a radar esti-
mate from [40], gives C1 � 0.6. We see that – as for the spatial C1



Fig. 6c. CPC: on right, the top is the north–south curve, middle is time, the bottom
is east–west.

Fig. 6d. This is an intercomparison of the zonal (east–west) K(q) curves from the
analyses of Figs. 2, 3, 5 (extracts from Figs. 6a, 6b, 6c, and the 20CR result at 45�N).
On the right, top to bottom: we have the CPC (gauges), next from the ECMWF
interim (reanalyses), next is from the TRMM (satellite radar) data, and the bottom,
is the 20CR result.

Fig. 7a. A comparison of the first order (q = 1) Haar structure function analysis of
the CPC (whole grid, resolution, 1 h, 29 years, red (dots) mean, thin lines are the grid
point to grid point spread; one standard deviation intervals) and 20CR reanalysis at
45�N (6 hours, 2� resolution, 138 years, thick green line). The short thick purple line
(upper right) is the CPC spatial analysis in the east–west direction; the common
reference line corresponds to a speed of 280 km/day. The reference lines with
corresponding slopes are indicated. The magnitudes of the fluctuation rain rates
indicate the rough magnitudes, they are accurate to � ± 40%. The line slope � 0.5 is
the behaviour expected for Gaussian white noise.
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estimates – our values are more in accord with the more recent
values but there is still much uncertainty in the estimates, and
again the zero/low rain rate issue is a likely source of this uncer-
tainty [5,18].

3.4. The low frequency weather regime: white noise or long range
statistical dependencies?

We mentioned in Section 3.1 that the lifetime of planetary scale
structures sw was about 5–10 days and we discussed the precipita-
tion statistics in the high frequency weather regime (s < sw). The
scale sw marks the beginning of a qualitatively new ‘‘low frequency
weather regime’’ which extends out to the time scale sc� sw after
which the spectral exponent b increases again (bc > blw); as dis-
cussed in [60], this is the climate regime proper. According to
paleotemperature data this regime apparently continues to inter-
glacial scales of the order of 50 kyrs (see [49] for a review).

According to the predictions of cascade models, the key differ-
ence between the weather and low frequency weather is that at
higher ‘‘weather’’ frequencies x > xw (where xw ¼ s�1

w Þ, the fluctu-
ation exponent H > 0 so that fluctuations DR � DtH grow with
increasing time lag Dt whereas for x < xw, H < 0 so that on the
contrary they are reduced in amplitude as the scale Dt is increased.
In the low frequency weather regime s > sw, we find below
K(2) � 0.07 which is not so large so that b � 1 + 2H and H > 0,
H < 0 corresponds to b > 1, b < 1 respectively. For x < xw; log–log
spectra are indeed fairly flat ‘‘spectral plateaus’’; see Fig. 4a where
we see that the low frequency CPC exponent is blw � 0.08. For
x > xw the fluctuations depend on interactions in both space and
in time, whereas at lower frequencies, only the temporal interac-
tions are important so that sw marks a ‘‘dimensional transition’’
[42]. For x < xw cascade models predict a low frequency regime
with spectral exponents that are insensitive to the high frequency
weather statistics. Surprisingly they depend primarily on the over-
all scale range over which the cascade operates (the ratio xw/xc),
with 0.2 < blw < 0.4 predicted for xw/xc � 103–105. Since the ocean
has a similar transition but at so � 1 year similar coupled ocean–
atmosphere models predict blw � 0.6 for the analogous ‘‘low fre-
quency ocean weather’’ [60].

We have seen that for rain, blw is close to zero, which is the va-
lue that would be obtained for Gaussian white noise. Indeed there
have been claims that monthly rainfall is exactly a Gaussian white
noise i.e. K(q) = 0; e.g. [63,46]. One should be sceptical of these
claims on both physical and statistical grounds. First, Gaussian
white noise in precipitation would be uncorrelated and this would
contradict the meteorological phenomenology of ‘‘clustering’’ of
rainy months, years, decades which is observed even after the re-
moval of seasonal effects. Second, b = 0 does not imply K(q) = 0,
but only the weaker condition 2H = K(2), so that we cannot con-
clude there is white noise simply on the basis of the value of the
spectral exponent.

In order to obtain a more sensitive assessment of the low fre-
quency precipitation regime, rather than use the second order sta-
tistic (the spectrum) corrected for intermittency, we can directly
consider the statistics of the mean fluctuations of DR. The usual
way to define fluctuations is simply as a difference: DR(Dt) =
R(t + Dt) � R(t), this is the ‘‘poor man’s wavelet’’ (in Section 2.1
we used the 2nd differences). From the fluctuations, the scaling
exponents can be estimated from the qth order moments:
hDRðDtÞqi � DtnðqÞ with structure function exponent n(q) =
qH � K(q). A limitation of these difference (poor man’s wavelet)
structure functions is that the fluctuation DR is only dominated
by the scales near Dt (i.e. the frequencies near 1/Dt) if 0 < H < 1
(i.e. roughly, for 3 > b > 1). This means that if H is outside this range
that the structure function will not capture the scaling of DR with



Fig. 7b. This shows the ratio of the mean q = 1 and RMS fluctuations for the CPC
data set. Reference lines have slopes K(2)/2 � C1 and shows the transition from high
intermittency behaviour at scales less than a few days (the ‘‘weather regime’’) to
low but not insignificant intermittency behaviour at scales of months to years (the
‘‘low frequency weather regime’’). Gaussian white noise would be flat (K(2) = 0).

Table 3
This shows various Haar estimated exponents for the CPC data base. The figures with
the one standard deviation spread are the means of the grid point by grid point
exponents (with the indicated spread), the figures without spreads are the exponents
of the ensemble statistics (i.e. for each parameter the top row is the mean of the
exponents, the row below is the exponent of the mean). For Gaussian white noise
n(2)/2 = H = 1/2, b = 0.

1 h < Dt < 5 days 2 months < Dt < 3 years 3 months < Dt < 29 years

H 0.092 ± 0.076 �0.436 ± 0.063 �0.43 ± 0.073
0.093 �0.434 �0.419

n(2)/2 �0.147 ± 0.107 �0468 ± 0.056 �0.47 ± 0.075
�0.16 �0.456 �0.44

b 0.71 ± 0.21 0.07 ± 0.11 0.06 ± 0.15
0.68 0.09 0.08

Fig. 8a. This compares the latitude dependence of the zonal and temporal C1 from
daily ECMWF reanalyses (2005–2008) (blue and red curves respectively) with the
global mean ECMWF reanalyses (every three hours, red flat lines) and the CPC (blue
flat lines, continental US gauges) data (hourly) and the TRMM satellite radar data
(4 day resolution); dashed lines are for the temporal analyses, solid for the zonal
analyses. For the latter two, the latitude ranges are indicated by dashed lines. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 8b. This shows the latitude dependence of the zonal spatial outer scale (red)
and temporal outer scales (blue) from the daily ECMWF reanalyses from 2005–2008
(same as in Fig. 8a). The reference scales defining keff are 20000 km, 1460 days (4
years) respectively. The CPC (gauges) and ECMWF 3 hourly and TRMM results are
shown as flat reference lines. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 8c. This shows the effective speeds obtained as the ratios of the spatial to
temporal outer scales for the data in Figs. 8a and 8b.
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Dt. Since for scales s > sw we have seen that b is close to 0, H < 0,
we must therefore estimate the fluctuations using other wavelets.
The Haar wavelet is convenient and the corresponding Haar
fluctuations at scale Dt can easily be computed by introducing
the running integral/sum s(t):

DR ¼ 2
Dt

s t þ Dt
2

� �
þ s t � Dt

2

� �� �
� 2sðtÞ

� �
;

sðtÞ ¼
Z t

0
Rðt0Þdt0 ð7Þ

DR(Dt) is proportional to the difference between the means of the
first and second halves of the interval. Estimatving structure func-
tions hDRqi with this definition of fluctuation gives correct scaling
exponents for 1 < H < � 1 (i.e. ignoring intermittency, for
3 > b > � 1) (see [63] for a discussion of applications to multifrac-
tals). In Fig. 7a we show hDRi � Dtn(1) as estimated by Haar wavelets
on both the CPC hourly gridded gauge data and the 20CR reanalysis
at 45�N. Due to scale by scale conservation of the cascade, K(1) = 0
so that we obtain n(1) = H. For Dt < � 2 days, we see H � 0.15
(essentially the same as deduced from the spectrum in Section 3.1).
We have also estimated the Haar structure function in space in the
zonal direction; we see that it is essentially identical to the time
behaviour if a space–time transformation velocity of 280 km/day
is used; we discuss this in Section 4.

Turning to the low frequency weather regime, s > sw, we see
that for Dt > � 10 days, Hlw � � 0.42 and this is convincingly differ-
ent from the value �0.5 predicted for Gaussian white noise. In
addition, we see that the 20CR and CPC fluctuations are quite sim-
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ilar although due to the larger Dt available, we see hints that
sc � 30 years after which the fluctuations begin to increase again.
One of the advantages of the Haar wavelet over other techniques
such as the Detrended Fluctuation Analysis (DFA, see e.g. [46])
technique is that the magnitudes of the fluctuations can be readily
interpreted in terms of differences (when H > 0), or tendencies
(when H < 0, i.e. the mean of the fluctuations averaged over Dt),
these are indicated on the vertical axis in the figure.

To make the case for the existence of long range correlations
(i.e. nontrivial scaling) even stronger, we can take the ratio of the
mean (absolute) fluctuation to the RMS fluctuation. Theoretically,
since n(q) = qH � K(q), this ratio scales as DtK(2)/2 so that the result
directly shows the deviations from Gaussianity. In addition, for
universal multifractals K( q) = C1(qa � q)/(a � 1) so that for a � 2,
K(2)/2 � C1 hence the exponent K(2)/2 is a straightforward mea-
sure of the intermittency. The result is shown in Fig. 7b; although
the low frequency weather regime has a low intermittency, it is
non negligible right through to the limits of the CPC data. This is
consistent with the significant trace moments even at fairly large
Dt in Fig. 5. A summary of the regression exponents is given in Ta-
ble 3. For comparison, the meteorological state variables typically
have blw in the range �0.2 to �0.4 [63] so that we conclude that
in the low frequency weather regime there are long range statisti-
cal dependencies so that precipitation is much like the other mete-
orological variables only with somewhat larger intermittency (C1).
4. The latitudinal dependence of the precipitation cascade

Up until now we have tacitly assumed that the fundamental
precipitation exponents were the same all over the globe. In order
to study possible regional variations (which might also help illumi-
nate some of the observed variations in the exponents from differ-
ent study regions), it is useful to examine the latitudinal
dependences. The CPC network is confined to too narrow a latitu-
dinal band (30–50�N) to make such a study worthwhile. Similarly,
the TRMM data is primarily tropical in character; we therefore con-
sidered the latitudinal dependence of the ECMWF interim reanaly-
sis product which is global. In order to get good statistics with
seasonal variations largely averaged out, we used the daily ECMWF
stratiform precipitation products for the four years 2005–2008,
using 15� wide latitude bands. Fig. 8a shows the zonal and tempo-
ral C1 variations; unsurprisingly we see that there is high degree of
north and south symmetry. In addition, the high latitudes have the
lowest intermittency (C1) and the tropics the highest although
there appears to be a dip near the equator which has no obvious
explanation. Space and time values are extremely close to each
other supporting the idea that at the level of the exponents, that
horizontal space and time are isotropic (there can still be a ‘‘trivial’’
anisotropy i.e. ‘‘squashing’’ of structures that is independent of
scale). Mirroring this variation in C1 is the variation in the spatial
and temporal outer scales (Fig. 8b). We see that (with the excep-
tion of the TRMM temporal outer scale) that there is more agree-
ment between the different analyses and the ECMWF interim
outer scales than with the C1 estimates; in space the latter are
within about ±50% of 30,000 km. We see that the temporal outer
scale varies in nearly the same way.

The ratio of the spatial and temporal outer scales defines a
space–time transformation speed (Fig. 8c). If the horizontal and
spatial cascade structures are the same (the same K(q) functions),
then this corresponds to a unique mean advection speed (i.e. inde-
pendent of scale k, independent of intensity, q). In addition we no-
tice that with the exception of the extreme high latitudes (where
the product is unreliable), the speed is pretty much independent
of latitude (about 200 km/day, close to that deduced for the CPC
data from the Haar wavelets in Fig. 7a). For the ECMWF products,
the K(q) for time and space are indeed very similar (Fig. 6b, similar
C1 values), so that the result has this broad interpretation. How-
ever, as can be seen from the comparison with the CPC and TRMM
results, the mean CPC and TRMM results are quite different (larger
and smaller respectively). This is perhaps not surprising since from
either the K(q) curves (Fig. 6a, 6c) or the zonal space versus tempo-
ral C1 values (Table 2), we see that the velocity does depend some-
what on scale and on intensity (implicitly since the ratio of the
corresponding spatial and temporal K(q)’s depends somewhat on
q), and at the time of writing it is not clear if this effect is real or
is an artefact of the techniques for estimating areal precipitation.
5. Conclusions

5.1. Discussion

There is now a large body of empirical evidence indicating that
the basic cascade framework is indeed appropriate for precipita-
tion. Surprisingly, applications of cascades to the atmosphere –
including to precipitation – have been largely confined to studies
at scales smaller than �500–1000 km and most often to time
scales less than a few days. However, the development of readily
accessible global scale data sets makes it now possible to extend
cascade analyses up to planetary spatial scales and centennial time
scales. In this paper, we performed an inter-comparison of four
rather different global (or near global) precipitation data sets: sa-
tellite radar, gridded in situ gauge series, and precipitation fields
from reanalyses. Overall, the four data sets spanned the range of
scales from hours to 138 years, from 4.3 km to planetary scales
(in both east–west and north south directions).

All eleven analyses – three data sets analysed in each of three
directions x, y, and t and a fourth in x and t only – showed very
good scaling and clear evidence of global scale cascades over all
the accessible spatial scales and in time out to about 5 days with
effective outer cascade time scales being somewhat larger. Indeed
although there are some deviations from scaling at the smallest
spatial scales these were mostly for the lowest order moments
which are sensitive to low and zero rain rate measurement issues
and to the highest moments which are sensitive to problems in
estimating the high rain rates. It is significant that the deviations
from log–log linearity of the individual products is of the order
of a few percent whereas the differences from product to product
in the logarithm of the q = 2 moments can be as large as �100%.
It is hard to avoid the conclusion that instrumental limitations
are considerable.

This analysis shows that rain is qualitatively like the conven-
tional meteorological state variables (in particular, the wind, tem-
perature, humidity, geopotential height) in having planetary scale
cascades in space and in time up to scales corresponding to the
lifetime of planetary structures: the transition from weather to
low frequency weather at sw � 5–10 days. However, a significant
difference with the state variables is that the intermittency –
whether characterised by the whole exponent function K(q) or by
its derivative C1 = K0(1) – is much larger than for the usual meteo-
rological variables (�0.3–0.4 rather than 0.05–0.1 although it is
close to the C1 � 0.5 of the turbulent energy flux), so that the mul-
tifractal intermittency of rain is of more central importance than
for the other state variables. While our qualitative conclusions
about the existence of planetary scale cascades seem robust, there
are still unexplained differences in the parameters; differences be-
tween products and differences depending on the direction of the
analysis (i.e. x, y, or t). For a single product, differences in direction
imply a scaling anisotropy whereas for a given direction, the differ-
ences between products imply that the different precipitation data
sets are not fully compatible with each other. In the case of possi-
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ble anisotropy, we argued that the data were probably compatible
with equal exponents in the different directions whereas, the dif-
ferences between data sets have still to be understood and have
implications for the various methods of estimating space–time
rainfall.

The exponents discussed above are large (roughly global) scale
averages; how representative are these of real rain – are there sig-
nificant regional variations? The ECMWF reanalyses were particu-
larly convenient for answering this question; we examined the
latitudinal variation of the cascades (in the zonal direction and
time). Significantly, although the spatial and temporal C1 values
and external scales varied somewhat, they remained highly corre-
lated so that it seems that the latitudinal variations of C1 are
important but that the cascade process remains isotropic in
space–time. For example, in the tropics the C1 values were �0.3–
0.4 whereas at high latitudes they were �0.2–0.25. The velocity
connecting space and time was relative constant at about
200 km/day. In this regard the rain field is again similar to the
other meteorological fields; see the study of latitudinal variations
in reanalysis state variables in [43].

5.2. Implications for precipitation

The marriage of turbulence and precipitation science that began
nearly 25 years ago has stimulated several important develop-
ments in cascade processes and has resulted in numerous applica-
tions throughout atmospheric science and hydrology. However,
applying cascade processes to precipitation raises many funda-
mental issues several of which are addressed by the analyses pre-
sented here. These theoretical issues include (a) the relation of the
rain rate field to the scale by scale precipitation ‘‘flux’’ field: what is
the value of H; is it zero or nonzero? (b) the nature of the scale by
scale cascade conservation: is it microcanonical or canonical? (c)
the question of universality: is it weak (log Poisson) or strong
(log Levy). . . or none at all? (d) the nature of the low and zero rain
rates: is the rain process on a fractal support or is there a low
threshold below which the values are effectively truncated to
zero? (e) what is the nature of the extremes: are they classical
(thin or long tailed) or are they power laws? (is qD infinite or fi-
nite?), finally, (f) are there long-range statistical dependencies at
monthly, yearly and longer scales or do the precipitation statistics
tend to Gaussian white noises? In the case of point (a) we used the
huge CPC gauge data set to provide the estimates H � 0.17 ± 0.11,
(i.e. H is apparently not zero) and in the case of point (e), we found
qD � 3: if true the latter would rule out microcanonical models
(point b) and make log Poisson models (point c) implausible. To an-
swer point (f) we used spectra and Haar wavelets to show that
there are indeed long range dependencies even beyond 20 year
scales.

At a more practical level, our results imply that there is still
much work to be done in measuring space–time rainfall: the statis-
tical differences between the various precipitation products is
large enough so that at most only one of the products could be
‘‘correct’’, it is more likely they all suffer from various systematic
deficiencies. Indeed, the scale by scale, intensity by intensity prod-
uct inter comparisons show that the relatively large deviations
from log–log linearity (i.e. from the scaling symmetry) are more
likely to be due to instrumental effects, so that it is premature to
conclude that the scaling symmetry itself breaks down until
sw � 5–10 days in time or below planetary scales in space. Con-
cretely, for the radar and gauges, the most obvious difficulties
are in accurately estimating low and high rain rates, in the former
of converting from effective reflectivity factors to rain rates and in
the latter in estimating areal rainrate fields from (possibly sparse,
fractal) networks of gauges. In all cases, the use of explicit
space–time multifractal models are likely to continue to be indis-
pensable tools in attempting to tame the huge intermittency of
rain and understanding the deficiencies in the various measure-
ment techniques. Similarly, the issue of whether H = 0 or otherwise
and the nature of the low and zero rain rates is important in disag-
gregating rain at higher resolutions.
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