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Abstract: 
Precipitation and clouds are fundamentally point-like but when averaged over larger enough 

scales are usually considered to be continuous and are mathematically modeled using fields (or densities 

of measures).  Until recently when it has been essential to have a particle description, the latter have been 

modeled using uniform Poisson processes in which the number density of particles is considered uniform 

in space and/or time.  Since empirical drop distributions (typically measured with disdrometers) are never 

spatially or temporally homogeneous, attempts have been made to model the heterogeneity using classical 

compound Poisson processes in which heterogeneity over narrow ranges of scales “control” the Poisson 

process.  

While the disdrometer based experiments have increasingly recognized the importance of drop 

heterogeneity, there has been a growing consensus – at least over the smaller scales – that atmospheric 

turbulence can be accurately modeled by cascade processes in which energy and other conservative fluxes 

are concentrated into a hierarchy sparse fractal sets, (more precisely, multifractal measures) in which the 

heterogeneity occurs over huge ranges of space-time scales in a power law manner.  Since the turbulent 

wind and the drops are strongly coupled, it is natural to suppose that the drop heterogeneity also occurs 

over wide ranges, and that the latter is largely “controlled” by the turbulence.  Recently [Lovejoy, et al., 

2003], [Lilley, et al., 2005] the connection between the drop statistics and (Corrsin-Obukov) turbulence 

has been directly made thanks to the use of stereophotography of rain drops in 10m3 volumes (the 

“HYDROP” experiment [Desaulniers-Soucy., et al., 2001]).  

In this paper, we show how the turbulence and particle processes can be combined in a 

nonclassical compound Poisson-cascade process and we verify the result on the HYDROP data.  The key 

is the liquid water density ! variance flux (") which - following the HYDROP  observations and Corrsin-

Obukhov passive scalar theory – is conserved from scale to scale (it is the basic multifractal field).  The 

link to the particle description is via the particle number density (n); we show how this can be determined 

from ! and the turbulent energy flux #; we theoretically predict a (classical) k-5/3 spectrum for ! and a new 

k-2 spectrum for n which we confirm is close to observations. 

In order to perform simulations respecting these turbulence constraints we start with cascade 

models of " and # cut-off by viscosity at the dissipation scale (roughly 1cm).  From these fluxes we 

determine ! and n by fractional integration.  At scales below 10cm or so, there is typically only one drop 

in the corresponding sphere; we interpret n as the number density of a (compound) Poisson process and 

randomly determine the positions of the ith particle: xi. The masses mi, are determined from a unit 

exponential (Marshall-Palmer) random variable ui: mi=ui !(xi)/n(xi).  The resulting measure (mi, xi) has the 

observed energy spectrum, the observed multifractal statistics (including the transition from particle 

scales to field scales) it also has realistic probability (fat tailed, power law) distributions for total mass in 

a large sphere M.  In this case, it predicts a power law with exponent qD=3 (this is an exact result coming 
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from theory and dimensional analysis).  We show both on numerical simulations and on the HYDROP 

data that this prediction is accurately obeyed.  In addition, it potentially explains several reports that qD!3 

for the rain rate.  Since it incorporates (in a highly inhomogeneous framework) the Marshall-Palmer 

exponential drop distribution as well as a Poisson particle process, it bridges the gap between classical 

and turbulence approaches. 

Numerical simulations spanning the range 1cm to 1000km can be readily produced.  These 

simulations can be used for simulating radar reflectivity factors, effective radar reflectivity factors; 

extensions of the model can be used to simulate rain rates and rain gauges.  These models can thus 

potentially solve various precipitation observer problems. 
 

1. Introduction 

Rain is a highly turbulent process yet there 

is widening gap between turbulence and 

precipitation research.  On the one hand 

turbulence is increasingly viewed as a highly 

intermittent, highly heterogeneous process 

with turbulent energy, passive scalar variance 

and other fluxes concentrated into a hierarchy 

of increasingly sparse fractal sets; over wide 

ranges, the fields are multifractal (see e.g. 

[Anselmet, 2001] for a recent review).  

Furthermore, advances in high powered lidars 

have produced turbulent atmospheric  data 

sets of unparalleled space-time resolution.  

Analysis of such data from aerosols have 

shown that if classical Corrsin-Obukhov 

theory of passive scalar turbulence is given 

anisotropic extensions to account for 

atmospheric stratification and multifractal 

extensions to account for intermittency, that 

these rejuvenated classical theories account 

remarkably well for passive pollutants 

([Lilley, et al., 2004]).  In contrast, 

applications of turbulence theory either to 

interpreting radar echoes, or to disdrometer 

experiments almost invariably assume that the 

turbulence is uniform resulting in 

homogeneous Poisson rain statistics (e.g. 

[Marshall and Hitschfeld, 1953], [Wallace, 

1953]), or that it is only weakly heterogeneous 

and can be modeled by ad hoc compound 

Poisson processes (e.g. [Uijlenhoet, et al., 

1999], [Jameson and Kostinski, 1999]). 

At a theoretical level, combining turbulence 

theory with rain drop physics poses two 

related difficulties.  One the one hand rain is 

particulate and is strongly coupled to the 

multifractal wind field so it is not continuous 

and its classical treatment as a mathematical 

space-time field (e.g. that R(x,t) is well 

defined without explicit reference to its 

scale/resolution) is not obvious ([Lovejoy, et 

al., 2003]).  One the other hand, it does not 

obviously fit into the classical turbulence 

framework of passive scalars: rain 

simultaneously modifies the wind field while 

moving with speeds from different than that of 

the ambient air.  So far, attempts to attack the 

full interaction at its most fundamental level 

by taking these two aspects into explicitly into 

account (e.g. [Falkovitch and Pumir, 2004], 

[Falkovitch, et al., 2006]), have made limited 

progress.  At a more phenomenological level, 

there has been more progress following the 

proposal ([Schertzer and Lovejoy, 1987]) that 

even if rain is not a passive scalar that it 

nevertheless has an associated scale-by-scale 

conserved turbulent flux leading to a coupled 

turbulence/rain cascade model and predicting 

multifractal rain statistics over wide ranges of 

scale.  The predictions that rain should have 

anisotropic (especially stratified) multifractal 

statistics although based essentially on the use 

of scaling symmetry arguments has been quite 

fruitful (see e.g. the early review [Lovejoy and 

Schertzer, 1995]).  However these empirical 

studies have been at scales larger than drop 

scales and outstanding problems include the 

characterization of low rain rate events and the 
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identification of the conserved (cascaded) flux 

itself.  In other words, the connection with 

turbulence has remained implicit rather than 

explicit. 

In order to bridge the gap between the drop 

physics and turbulence, data spanning the drop 

and turbulence scales were needed.  Starting 

in the 1980’s, various attempts have been 

made including experiments with chemically 

coated blotting paper ([Lovejoy and Schertzer, 

1990]) and lasers, ([Lovejoy and Schertzer, 

1991]).  The most satisfactory of these was the 

HYDROP experiment ([Desaulniers-Soucy., 

et al., 2001]) which involved 

stereophotography of rain drops in !10m3 

volumes typically capturing the position and 

size of 5,000 -20,000 drops (nominal rain 

rates were between 2 and 10mm/hr; see fig. 1 

for an example, and table 1 for information 

about HYDROP).  Analyzes to date ([Lovejoy, 

et al., 2003], [Lilley, et al., 2005]) have shown 

that at scales larger than a characteristic scale 

determined by both the turbulence intensity 

and the drop size distribution (but typically 

around 20-30 cm see e.g. fig. 1a, b) that the 

liquid water content (LWC) and other 

statistics cluster in a scaling manner as 

predicted by cascade theories.  While these 

results suggested that rain is strongly coupled 

to the turbulent wind field at scales larger than 

20-30cm (potentially explaining the 

multifractal properties of rain observed at 

much larger scales), the analyses did not find 

an explicit connection with standard 

turbulence theory.   

In this paper, we perform the first spectral 

analyses on the HYDROP data demonstrating 

quantitatively the connection with passive 

scalar advection.  We then go on to propose a 

phenomenological turbulence - drop 

coalescence equation which we use as the 

basis for a compound multifractal process 

model of rain.  The resulting model is based in 

turbulence theory yet generates realistic drop 

size distributions (including nonclassical 

extreme tails) and can be readily extended to 

account for spatial anisotropy (in particular, 

vertical stratification) and is very close to the 

HYDROP and other scaling analyses.  It can 

be used for modeling radar measurements of 

rain from drop scales on up.  Quite realistic 

(visually, statistically) radiative transfer and 

other simulations can be made, including for 

the low-zero rain rate regions. 

 

2. The connection between drops and 

turbulence 

2.1 Recap of the classical turbulence laws 

In order to make a connection between the 

drop processes and turbulence, we recall the 

equations and phenomenology of passive 

scalar advection: 

 

!v

!t
+ v "#v = $

1

% f

#p + &#2
v  (1) 

! " v = 0  (2) 

D!

Dt
="#2!;

D

Dt
=

$

$t
+ v % #  (3) 

 

Eqs. 1, 2 are the standard fluid equations for 

the wind (v, eq. 1), with incompressible 

continuity for the fluid density (!f,  eq. 2) and 

for passive scalar concentration (!, eq. 3).  ", 

$ are respectively the molecular viscosity and 

molecular diffusivity of the passive scalar, p is 

the pressure.  In eq. 1 we have neglected the 

effect of gravity (this leads to a nontrivial 

scaling stratification discussed see e.g. [Lilley, 

et al., 2004]; for simplicity here we assume 

isotropy in three dimensional space). 

The standard Kolmogorov and Corrsin-

Obukhov laws are obtained by noting that the 

nonlinear terms in the above conserve the 

fluxes: 

    

! =
!v

2

!t
; " =

!#2

!t
 (4) 
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This follows by multiplying the equations 

by v, ! respectively and using the 

incompressible continuity equation for v 

followed by standard manipulations. 

One can also show that in fourier space the 

passive scalar variance flux " and energy flux 

# are indeed fluxes from large scales to small: 

according to the equations these fluxes are 

only dissipated at molecular scales.  In 

addition, between an outer injection scale and 

the dissipation scale, there is no characteristic 

scale, hence at any intermediate scale l one 

expects: 

    

!
l
!

v
l

2

"
l

; #
l
!
$

l

2

"
l

 (5) 

where vl is the typical shear across an l sized 

eddy, and !l is the corresponding typical 

gradient of passive scalar; the %l’s are the 

corresponding transfer times (the “eddy 

turnover time” in turbulence jargon).  In both 

cases the time scale is determined by the only 

relevant velocity and the length scale:   

   

!
l

=
l

v
l

 (6) 

This leads to: 

    

!
l
!

v
l

3

l
; "

l
!
#

l

2
v
l

l
 (7) 

These equations lead directly to the 

classical Kolmogorov and Corrsin Obukhov 

laws: 

    
v
l

= !
l

1/3
l
1/3  (8) 

    
!

l
= "

l

1/2
#
l

!1/6
l
1/3  (9) 

laws.  Finally, we might add that by invoking 

a third property of the equations – that they 

are “local” in fourier space, i.e. interactions 

are strongest between neighbouring scales, we 

obtain the standard cacade phenomenology, 

the basis of cascade models.  In the 1980’s it 

was discovered that such cascades generically 

yielded multifractal fluxes, hence accounting 

for turbulent intermittency. 

 

2.2 The turbulence drop coalescence 

equation 

Our aim is to find an equation analogous to 

eq. 3 but for rain liquid water concentration 

and which can account for both coalescence of 

drops and their decoupling from the ambient 

wind field due to drop inertia and gravity.   

We first note that (ignoring condensation) 

the usual coalescence (Smolukowski) equation 

used for example in cloud and rain modeling 

[Srivastava and Passarelli, 1980] can be 

written: 

  

!N

!t
= ! N H N   (10) 

where 
   
N = N M,x,t( )  is the drop mass 

distribution function i.e. the number of drops 

with mass between M and M+dM  per unit 

volume of space at location x, time t. The right 

hand side term is (in compact notation, see 

[Lovejoy, et al., 2004]), the drop coalescence 

term where &(x,t) is the coalescence rate and 

N H N  is the coalescence operator:  

   

N H N =
1

2
H M ! "M ,M( )N M ! "M ,x,t( )N "M ,x,t( )d "M

0

M

#

-N M,x,t( ) H "M ,M( )N "M ,x,t( )d "M

0

$

#

 (11) 

The full coalescence kernel  H  has been 

factorized 
     
H !M ,M,x,t( ) = ! x,t( )H !M ,M( )  so 

that the drop-drop collision mechanism is 

time-space independent: 
   
H !M ,M( ) , space-time 

variations are accounted for by #. 

Motivated by the preceeding, we propose 

the following turbulent-drop coalescence 

equation: 

    

!N

!t
+ v " #N = !

d
N( ) + " x,t( ) N H N  (12) 

where we have used the advective derivative 

(D / Dt , eq. 3) instead of ! / !t  and added a 

new phenomenological drop diffusivity term 

with a dissipation function 
   
!

d
N( )  which is 

only important at the small scales.  We shall 



14.4  5 

 5 

see below that there is a natural averaging 

scale where the wind/drop decoupling occurs 

(in the data analyzed, at around 30cm), this 

dissipation term accounts for the deviation of 

drop velocities from the wind velocity v due to 

the fall speeds.  This could be regarded as our 

“parametrization” assumption since in a single 

term we include all the non wind-advected 

drop motions.  At this stage, this term is 

unimportant, we do not specify it explicitly; 

recall that for passive scalars, the dissipation 

is via molecular diffusion so that 

!
d
N( ) =!"2

N .  In the form given it assures 

that the drop scale processes dominate at small 

scales where gradients in N are important, it 

also assures that the usual passive scalar 

advection equation is obtained at larger scales. 

With the exception of the dissipation term, eq. 

12 is the same as that invoked in [Falkovitch, 

et al., 2006] (although only the non turbulent 

v=0 case was considered). 

We now consider the first two moments of 

the turbulence-drop coalescence equation; the 

number density (n) and drop mass density (!): 

 

n x,t( ) = N M , x,t( )dM
0

!

" ; # x,t( ) = N M , x,t( )MdM
0

!

"
(13) 

We now multiply eq. 12 by dM and MdM 

respectively and integrate with respect to M. 

The results are: 

    

!n x,t( )
!t

+ v " #n = !
d
#

2
n $" x,t( ) N H N   

 (14) 

    

!! x,t( )
!t

+ v " #! = "
d
#

2!  (15) 

where 

N H N = N H NdM

0

!

"  (16) 

and where we have used the fact that the 

coalescence operator conserves drop mass:  

N H NM = N H NMdM

0

!

" = 0  (17) 

but not number so that for the ! equation (15), 

coalescence is not directly relevant whereas it 

is relevant for the n equation (14). 

By comparing equations 14, 15, we can see 

that the right hand side (dissipation terms) are 

quite different, so that it is quite possible that 

there in addition to " (eq. 4), there is a new 

conserved flux ': 

    

! =
!n

2

!t
 (18) 

As in the above, we argue that in the scaling 

regime;  

    

!
l
!

n
l

2

"
l,R

 (19) 

The key point here is that due to the 

importance of coalescence for n (but not !), 

that the time scale for the transfer is 

determined by rain drop scale processes, 

denoted %l,R which is not the same as the 

turbulent time scale (“eddy turn over time”) 

%l=l/vl. relevant for ! and hence ".  The time 

scale for the number variance flux ' is 

determined by the coalescence processes and 

can be estimated from the particle fall speeds 

vl,R as: 

    

!
l,R
!

l

v
l,R

  (20) 

where vl,R is a typical drop fall speed with 

respect to the local wind.  Combining eq. 20, 

18 we obtain: 

    
n

l
= v

l,R
!1/2
!

l

1/2
l
1/2  (21) 

However, the fluxes !, $ are closely linked 

since they are both determined by different 

moments of N, indeed, since ! is quadratic in 

N, we expect at least for large enough 

averaging volumes: 

    
!

l
= M

2( )
l

"
l
 (22) 

where l is a spatial scale and: 

   

M
2( )

l

=
1

vol B
l

( )
M

2
P M,x,t( )dMdx

B
l

! (23) 
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where Bl is a “ball” (e.g. sphere) of scale l of 

volume vol(Bl) and 
   
P M,x,t( )  is the 

probability density of particles with mass 

between M and M+dM: 

   

P M,x,t( ) =
N M,x,t( )

n x,t( )
 (24) 

the mean mass is averaged over the drop 

probability distribution.   Here and below, 

drop averaging is denoted by an overbar, and 

ensemble averaging over turbulent statistics 

(see below), by “<.>”.  

From eq. 21 and 22, we obtain the 

fundamental prediction of the turbulence-drop 

coalescence equation: 

    
n

l
= A

l
!

l

1/2
l
1/2; A

l
= M

2( )
l

v
l,R( )

!1/2

" M
2
v

R( )
l

!1/2

 (25) 

where: 

   

M
2
v

R( )
l

=
1

vol B
l( )

M
2
v

R
M,x,t( )P M,x,t( )dMdx

B
l

!  (26) 

vR(M) is the characteristic (nonturbulent) fall 

speed of a drop of mass M.  Physically this is 

plausible since vR is the result of the 

decoupling of drops from the turbulence; this 

will be a kind of random walk with an overall 

drift imposed by gravity. 

Eq. 26 is the key result of this section, in 

fourier space (ignoring multifractal 

intermittency corrections), this implies En(k)! 

k-2 whereas for !, we have the classical 

Corrsin-Obukhov result: E!(k)! k-5/3.  We shall 

see that the number density, combined with 

the mass density and assuming the scaling 

laws for v, !, n, all with assumptions about the 

statistics of the fluxes ", #, implicitly 

determine the drop size distributions. 

3.  Empirical test of the number size 

distribution: 

3.1  Discussion: 

The key predictions of the turbulence –drop 

coalescence equation is that at least at large 

enough scales, the liquid water density 

follows the Corrsin-Obukhov (l1/3) law, while 

the corresponding number density follows the 

new l1/2 law (eq. 25).  We thus seek to test 

both predictions using the HYDROP data. 

 

Table 1: Reproduced from [Lilley, et al., 2005], 

characteristics of the HYDROP triplets.  
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3.2  Empirical test of the mass and number 

density laws on HYDROP data: 

Fig 1a shows the 3D isotropic (angle 

averaged) spectrum of the 19 

stereophotographic drop reconstructions 

averaged over each of the five storms.  Each 

storm had 2 - 7 “scenes” (from matched 

stereographic triplets) with 5,000 – 20,000 

drops each taken over a 15-45 minute period 

(see table 1). The angle averaging was done so 

that a white noise appears flat.  The low 

wavenumber reference line indicates the 

theoretical Corrsin-Obukhov k-(5/3+2) angle 

averaged spectrum (the usual spectrum is 

angle integrated; the angle averaging -dividing 

by 4%k2 - contributes the 2 in the exponent).  It 

can be seen that the transition between passive 

scalar behaviour - where the drops are 

effectively prisoners of the turbulence and the 

high wavenumber regime, where the drops are 

totally chaotic (white noise) occurs at scales of 

roughly 20-30cm.  Many more details on these 

data sets are available in [Lilley, et al., 2005], 

note however that the mean interdrop distance 

is about 10cm, so that at the transition scale 

there will be typically 10-50 drops.   

 
Fig. 1a:  This shows the 3D isotropic (angle 

integrated) spectrum of the 19 stereophotographic 

drop reconstructions, for &, the particle mass 

density.  Each of the five storms had 3- 7 “scenes” 

(from matched stereographic triplets) with 5,000 – 

40,000 drops each taken over a 15-30 minute 

period (orange = f207, yellow = f295, green = f229, 

blue green = f142, cyan = f145).  The extreme low 

wavenumber corresponds to !2m (log10k=0.3, the 

minima correspond to about 20-40cm). The reference 

lines have slopes -5/3, +2, the theoretical values 

for the Corrsin-Obukhov (l1/3) law and white noise 

respectively. 

 

In order to test the l1/2 law for the number 

density, we replaced each drop mass by the 

indicator function and produced the spectra shown 

in fig. 1b. 

 
Fig. 1b:  Same as previous but for n, the 

particle number density (calculated using an 

indicator function on a 1283 grid.  The reference 

lines have slopes -2, +2, the theoretical values for 

the l1/2 law and white noise respectively.  

 

In fig. 1b, we see that the convergence to the 

low wavenumber theoretical k-2 behaviour (straight 

line) occurs at slightly smaller scales than for the 

k-5/3 behaviour of ! since n is less variable 

(smoother) than !. 

Finally, we display fig. 1c which show the ratio 

of the ensemble spectra (all 19 triplets) for E&(k), 

En(k); this is a sensitive indication that the number 

density field really is smoother (by about k1/3) than 

the corresponding spectrum for the mass density.  

Because we have taken the ratio of the spectra, the 

y axis is “blown up” with respect to the previous; 

this is quite a sensitive indicator that the basic 

theory is roughly correct. 
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Fig. 1c: This shows the ratio of the ensemble 

spectra E&(k)/En(k); for each of the 5 storms, and 

the overall ensemble (purple), with theoretical 

reference line slope -1/3.  This is a sensitive test of 

the prediction of eqs. 9, 25. 

4.  The compound Poisson-rain-turbulence 

model 

4.1  Discussion 

The general approach to numerical 

modelling of rain and clouds is to explicitly 

model the fluid dynamics and to parametrize 

the “cloud physics” i.e. the complicated 

coalesence, condensation and other particle 

scale processes are dealt with in a relatively ad 

hoc way.  On the contrary, most attempts to 

explicitly deal with drop physics processes 

have made great simplifications in the fluid 

dynamics, usually ignoring the advection and 

turbulence (e.g. [Srivastava and Passarelli, 

1980]), or occasionally by the converse: by 

including turbulence as a kind of 

parametrization of the coalescence kernel H; 

[Khain and Pinsky, 1995].  Other approaches 

which attempt both detailed microphysics and 

fluid dynamics (e.g. LES models, 

[Khairoutdinav and Kogan, 1999], actually 

end up parametrizing both the particle 

distributions (e.g. lognormal) and the small 

scale advection  (see however [Feingold, et 

al., 1998] for an LES with a “bin approach” to 

the particle distribution).  In all cases, the 

turbulent structures in the wind field are 

parameterized at scales much larger than the 

particle scales so that the kind of turbulent- 

drop interactions predicted by the number 

drop scaling law (eq. 25) coupled with the 

Corrsin-Obukhov law (eq. 9) are absent.  

Surprisingly, in the literature, we have found 

no reference to the Corrsin-Obukhov law in 

the context of rain drop-turbulence modeling. 

In this section, we exploit the fact that the 

above derived turbulent scaling laws:  

v
l
= !

l

1/3
l
1/3

"
l
= #

l

1/2!
l

$1/6
l
1/3

n
l
% A

l
#
l

1/2
l
1/2

 (27) 

to make a full explicit drop model valid from 

drop scales on up to the outer turbulent scales. 

In terms of modelling particle behaviour, 

the modelling of n is critical since it can be 

used to control a Poisson process to determine 

particle positions.  We can see from eq. 28 

that it is jointly determined by the turbulent 

mass variance "l as well as by the drop 

processes via A
l

!2
= M

2
v
R( )

l

 which we expect 

to vary only slowly as a function of scale l.  

We shall see that due to the scaling, eqs. 27 

are actually very demanding on the way that 

water is distributed. 

Before continuing, it is worth interpreting 

the key equation for nl.  We first note that 

since 1/nl is the volume required so that there 

is typically a single particle, the local value of 

of nl defines the (local) mean interparticle 

distance.  Considering the number density at 

smallest scale of the turbulent cascade nl* and 

averaging over the turbulence, we see that the 

typical interparticle distance is: 

L
int
! n

l*

"1/3

=
A

"1/3

#
l*

1/2
1/3

l
*

1/6

 (28) 

This equation shows how the mean 

interparticle distance is controlled by the large 

to small scale turbulent fluxes ("), the inner 

scale of the cascade (l*), and the drop 
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statistics/physics M
2
v
R( ) .  In particular, for a 

given turbulent cascade process, M
2
v
R( )  

controls the typical interparticle distances. 

4.2 Bare and dressed turbulent fields 

Our aim is to produce a stochastic model 

which combines the turbulent cascade 

processes (to produce vl*, !l*, nl*), with a small 

scale Poisson model of the drop processes.  

There are therefore two independent stochastic 

processes; the first determines the turbulent 

fields down to the smallest scale l*, while the 

second, takes the first as given and distributes 

the drops and masses in such a way that at 

large enough scales, the degraded, averaged, 

“dressed” statistics follow at least roughly the 

observed Corrsin-Obukhov and corresponding 

number density laws.  

The model starts by using a turbulent 

cascade to obtain stochastic realizations for 

the fluxes with the prescribed scalings (i.e. 

which obey eq. 27 for all scales l " l*), and 

multifractal intermittencies i.e. the fluxes at 

scale l have the following multiscaling 

properties: !l
q

= l
"K! q( )

; #l

q
= l

"K# q( )
 

where the K’s are convex functions of the 

order of statistical moment q.  In order to 

understand the model, we start with the 

distinction between bare and dressed cascade 

quantities (c.f. [Schertzer and Lovejoy, 1987]).  

The bare quantities are purely the result of 

turbulent cascade processes starting from a 

large external scale down to the smaller scale 

l, and stopped at that scale.  In contrast, the 

“dressed” quantities (denoted with a subscript 

“d” below) are the result of continuing the 

cascade down to its smallest inner scale, 

denoted l* (in principle the limit l*->0 could be 

taken) and then spatially averaging over the 

corresponding scale l: 

 

n
d ,l

=
1

volB
l

n
l*
dx

Bl

!

"
d ,l

=
1

volB
l

"
l*
dx

Bl

!
 (29) 

Note that here and below, we drop explicit 

reference to time, but all of the results extend 

readily from space to space – time, as long as 

an appropriate space-time stratification is used 

and the causality of the resulting process is 

respected (see e.g. [Marsan, et al., 1996]).   

The relation between the bare and dressed 

quantities are relatively well understood.  For 

example for the flux !, we have 

!
d ,l

= !
h, l /l*( )

!
l
 where !

h, l /l*( )
 is a “hidden” 

factor (hidden by the spatial integration 

[Schertzer and Lovejoy, 1987]), which is a 

random factor which most of the time is of 

order unity, but occasionally takes large 

values such that the tail of its probability 

distribution is algebraic with exponent qD.  

This implies: 

!l

q
= l

"K! q( )
; q # 0

!l ,d

q $
l
"K! q( )

q < qD

% q # qD

 (30) 

(strictly speaking the above divergence occurs 

in the limit l
*
! 0 ). 

4.3 The Poisson drop field: 

At the finest resolution l*, the Poisson 

number density field np,l
!

x( )  and the Poisson 

mass density field !p,l"
x( )  (the “p” for 

“Poisson”) can be defined as the random 

“Dirac comb”: 

    

n
p,l

*
,!

x( ) = ! x " xi( )
i

#  (31) 

where the positions xi are subordinated to the 

bare number density at the highest resolution 

nl* and the sums are over all the particles 

indexed by I, and “(” is the Dirac delta 

function.  The second index l* refers to the 
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resolution of the subordinating cascade 

process, the third index, to the scale of the 

Poisson drop process; in eq. 32 the symbol 

“! ” is used because the Dirac ( function has 

infinitely small resolution.  This means that 

with the help of n
l
!

x( )  we introduce the 

random Poisson measure dµ with the property 

that for any function n
l
!

x( )  any set Bl:  

   

Num B
l

( ) = n
l!

x( )dµ

B
l

"
 (32) 

 

where “Num(Bl)” means number of events in 

the set Bl.  This is a Poisson random variable 

with the probability density: 

    
Pr Num B

l
( ) = !( ) =

vol B
l

( )n
d,l( )
!

! !
e
! vol B

l( )nd ,l( )

 
 (33) 

and the property: 

   

n
p,l! ,"

x( )dx

B
l

# = vol B
l( )nd,l

vol B
l( )nd,l

= n
l!

x( )dx

B
l

#
 (34) 

The overbar (here and throughout) indicates 

averaging with respect to the Poisson (drop) 

but not turbulent statistics. 

Now that we have used the bare turbulent 

number density field nl* to define a compound 

Poisson process for the drop locations, we 

must attribute a mass to each drop in such a 

way that the dressed Poisson density statistics 

will follow the Corrsin-Obukov law at large 

scales.  To do this, we first define the 

corresponding Dirac comb for the masss 

density: 

    

!
p,l

*
x( ) = M

i
" x ! xi( )

i

"  (35) 

Where the particle masses Mi must now be 

determined.  To do this, we note that at the 

smallest turbulent scale l*, we have a single 

drop so that the drop mass averaged over the 

Poisson process M
i
 is: 

M
i
=
!
l
*

x
i( )

n
l
*

x
i( )

 (36) 

The masses of each drop Mi may thus be 

chosen as: 

M
i
= u

i

!
l *
x
i( )

n
l *
x
i( )
; u = 1 (37) 

where the random variable ui is taken from the 

unit dimensionless bare drop mass probability 

density D(u).   

The resulting Poisson process defines the 

(dressed) Poisson number and water densities 

as: 

   

n
p,l

*
,l

=
1

vol B
l( )

n
p,l! ,"

x( )dx

B
l

#
 (38)

 

    

!
p,l

*
,l

=
1

vol B
l( )
!

p,l! ,"
x( )dx

B
l

#

=
1

vol B
l( )

M
i

xi $Bl

%  

We show in the next subsection that with this 

choice, for large enough l, the Poisson density 

field 
   
!

p,l
*
,l

 does indeed satisify the Corrsin-

Obukhov law. 

4.4 The dressed drop averaged statistics 

Comparing eq. 34 with 38 we see that: 

   
n

p,l
*
,l

= n
d,l

; l > l
*

 (39) 

Since for larger and larger l, the Poisson 

averaging is over more and more particles, 

this actually implies: 

   
n

p,l
*
,l
! n

d,l
! n

l
; l >> l

*
; q < q

D
 (40) 

so that the Poisson number density field will 

follow the observed l1/2 scaling law. 

We now seek to determine some of the 

statistical properties of !p,l* ,l
, in particular to 

determine the conditions under which the 

mean for large enough l satisfies the Corrsin-

Obukhov scaling law. 

 For the moment, we consider that the 

turbulent fields are fixed and seek the dressed 

statistics that result purely from the Poisson 

variability.  To do this, we introduce the 

(Laplace) characteristic function 
   
!

l,n
q( ) : 
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!
l,n

q( ) = eq! =

vol B
l( )nd,l( )

!

! !
e
" vol B

l( )nd ,l( )
eq!

= e
vol B

l( )nd ,l( ) eq "1( )!=0

#

$

 (41) 

Hence, the second characteristic function 

   
K

l,n
q( )  is:  

   
K

l,n
q( ) = log!

l,n
q( ) = vol B

l( )nd,l( ) eq
" 1( )

 (42) 

these are standard results for compound 

Poisson processes, see e.g. [Feller, 1971].  We 

can use this to calculate various statistics 

of  
n

p,l
*
,l , for example, we can confirm eq. 40: 

   

n
p,l

*
,l

=
!e

K
n,l

q( )

!q
q=0

= "K
n,l

0( )

=
1

vol B
l( )

n
l#

x( )dx

B
l

$ = n
d,l

 (43) 

We can now calculate the liquid water (!) 

statistics.  First, define )u as the characteristic 

function of the random variable u with respect 

to D, we have: 

    

!
M

q( ) = eqM = e
qu

i
!
l *

x( )/n
l *

x( )
= !

u
q

i

!
l *

x( )
n

l *
x( )

"

#

$$$$$

%

&

''''''
 (44) 

where )M is the characteristic function with 

respect to the random variable M.  We now 

use the additivity of K to integrate and obtain 

the second characteristic function of the total 

water in the set Bl (=vol(Bl)!d,l): 

    

K
!,l

q( ) = n
l!

x( ) "u

q

vol B
l( )

!
l

*
x( )

n
l

*
x( )

#

$

%%%%%

&

'

((((((
) 1

#

$

%%%%%

&

'

((((((
dx

B
l

*

 (45) 

Applying this to calculate the Poisson 

averaged dressed density 
   
!

p,l
*
,l

: 

    

!
p,l

*
,l

=
!eK

!,l
q( )

!q
q=0

= "K
!,l

0( )

=
1

vol B
l( )

"#
u

0( )nl
*

x( )
!

l
*

x( )
n

l
*

x( )

$

%

&&&&&

'

(

))))))
dx

B
l

*

=
1

vol B
l( )

!
l
*

x( )dx

B
l

* = !
d,l

 (46) 

where we have used the result for the 

exponential characteristic function: 

!
u
q( ) = 1 / 1" q( ) ; hence !’

u
(0)=u=1.  Note 

that the averaging is over the Poisson 

randomness, not the turbulence; and the above 

result establishes that the Poisson process 

when spatially averaged over large enough 

scales will follow the dressed turbulent 

(Corrsin-Obukhov) law. 

Although this establishes that the mean ! 

field will satisfy the Corrsin-Obukov scaling, 

this gives little information about the 

statistical fluctuations which we anticipate 

will be large; indeed, we expect the variability 

of the compound turbulent- Poisson process 

should be larger than for the original turbulent 

cascade process due to the “extra” Poisson 

variability.  To study the variability, it is 

convenient to consider the moments higher 

than order 1 (the mean).  For example, we can 

calculate the variance: 

    

!2 "
p,l

*
,l( ) = "

p,l
*
,l
2 ! "

p,l
*
,l

2

=
"2e

K
",l

q( )

"q2

q=0

!
"eK

",l
q( )

"q
q=0

#

$

%%%%%%

&

'

(((((((

2

= ))K
",l

0( )

=
1

vol B
l( )

2
))*
u

0( )nl
*

x( )
"

l
*

2 x( )

n
l
*

x( )

#

$

%%%%%%

&

'

(((((((

2

dx

B
l

+

=
u2

vol B
l( )

2

"
l
*

2 x( )

n
l
*

x( )
dx

B
l

+

(47) 

where we have used 
   
!!"
u

0( ) = u
2 .  Using the 

Schwartz inequality, we obtain: 

    

!
l

2

n
l

dx

B
l

! n
l
dx

B
l

! " !
l
dx

B
l

!
#

$

%%%%%%

&

'

(((((((

2

 (48) 

or: 

    

1

vol B
l

( )
2

!
l
*

2

n
l
*

dx

B
l

! "
!

d,l
2

n
l
*
dx

B
l

!
 (49) 
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This, combined with 
    
!

p,l
*
,l

= !
d,l

 (eq. 46) 

implies: 

    

!
p,l

*
,l
2 ! !

d,l
2 1 +

u2

n
l
*

x( )dx

B
l

"

#

$

%%%%%%%%%%%

&

'

(((((((((((((

 (50) 

Note that for bare exponential unit drop size 

distributions D(u) we have 
   
!!"
u

0( ) = u
2 = 2 .  

The corresponding formula for the number 

density is: 

   

n
p,l

*
,l
2 = n

d,l
2 1 +

1

n
l
*

x( )dx

B
l

!

"

#

$$$$$$$$$$$

%

&

'''''''''''''

 (51) 

This shows that the effect of the Poisson 

variability on the dressed variance is primarily 

in regions where the number density is low.  

Indeed, there are two different statistical 

ranges depending on whether 

   

n
l
*

x( )dx

B
l

! >>1 

or <<1 (assuming that the bare unit drop size 

variance u2 !O 1( ) ).  In the former, the effect 

of the Poisson randomness is negligible 

(hence we obtain the low wavenumber Corrsin 

– Obukhov statistics while in the latter, (high 

wavenumber regime), we obtain white noise 

statistics.  To see this, recall that at small 

scales, l<l*, nl*(x) is smooth (roughly constant) 

so that for a ball Bl(x) centred at point x, we 

have: 

   

n
l
*

!x( )d !x
B

l
x( )
" # l

3
n

l
*

x( )  (52) 

Also, noting that nd,l*!nl* and using eq. 52, 

we obtain: 

   
n

p,l
2
! n

l
l"3  (53) 

For this small scale l-3 regime, we can find 

the corresponding spectrum using Parseval’s 

theorem: 

   

n
p,l

2 ! E k( )dk

1/l

"

#  (54) 

(E(k) is the standard isotropic spectrum) we 

thus obtain (at large k) the white noise 

spectrum: 

E k( ) ! k2  (55) 

4.5 The divergence of the third order 

moment of liquid water density 

The various derivatives of K give the 

cumulants of various orders, and their 

relations with the moments of ! become more 

and more complex for higher and higher 

orders.  It is thus of interest to consider the 

“dressed ' powers” defined by: 

    

!
p,l

"( )
=

1

vol B
l( )

M
j
"

j!B
l

"  (56) 

For example, for *=2, this corresponds to 

the radar reflectivity factor: 
    
!

p,l

2( )
= Z

l
; other 

values of * correspond to number density 

(*=0), the liquid water content (*=1) and the 

nominal rain rate (* =7/6; assuming the 

nominal fall speed is proportional to the drop 

radius). 

The corresponding second characteristic 

function is: 

    

K
!,",l

q( ) = n
l!

x( ) "u

q

vol B
l( )

!
l

*
x( )

n
l

*
x( )

#

$

%%%%%

&

'

((((((

"#

$

%%%%%%%

&

'

((((((((
) 1

#

$

%%%%%%%

&

'

((((((((
dx

B
l

*

 (57) 
Hence: 

    

!
p,l

"( )
= !K

!,",l 0( ) =
1

vol B
l( )

n
l*

!
l*

n
l*

"

#

$$$$$

%

&

''''''

"

dx

B
l

(

=
1

vol B
l( )

M 2v
R( )

l*

")1( )/2

#
l*

1/2
$
l*

)"/6
l*

3)"( )/6
dx

B
l

(

 (58) 

The key here is the exponent of the l* factor. 

This shows that for '>3, in the limit l
*
! 0 ,  

    
!

p,l

"( )
! "; " > 3  (59) 

This implies that: 
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Pr !

p,l

"( )
> s( )! s

"q
D ; q

D
= 3; s >> 1  (60) 

We have already mentionned that cascade 

processes generally display divergence of high 

order statistical moments (eq. 59, 60 assumes 

that this qD associated with the statistics of !, 

(, is >3; otherwise it will dominate that 

introduced by the Poisson process); eq. 58 

shows that compound Poisson process have 

greater variability than the subordinating 

cascade process provides a totally new 

mechanism for the divergence.  Fig. 2a shows 

that this prediction of divergence of moments 

q=3 and higher is well verified numerically on 

simulations (this simply checks that the above 

formulae are properly derived), and fig. 2b 

shows that the prediction is reasonably 

verified on the HYDROP data (see the next 

section), and figs. 2c, d show some rain rate 

probabilities that also display qD!3.  An early 

review of the qD values for rain may be found 

in [Lovejoy and Schertzer, 1995]. 

 
Fig. 2a:  The probability distribution estimated 

from 20 independent realizations of the 

compound-multifractal Poisson process (with 

same parameters as in fig. 3 in next section).  The 

theoretical prediction of eq. 59 is extremely well 

verified by the numerics. 

 
Fig. 2b:  The 19 HYDROP triplets are analyzed 

by calculating the total liquid water mass in cubes 

of size l as indicated.  The graph shows the log 

probability of the liquid water exceeding a 

threshold s=Mp,l for various scales.  The thin lines 

are from the data analysis, the thick dashed lines 

are the results of the multifractal-compound 

Poisson model described in the text.  The straight 

lines have the theoretical slope -3.   

Fig. 2c:  Rain rate data at 3minute resolution from 

9 different French stations on a log log plot 

(lowest probability indicated in 10-5).  The 

reference line with slope qD=3 is shown indicating 

that the rain rate has extremes not far from that 

predicted for the liquid water content.  (From Y. 

Tchigirinskaya, personal communication). 
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Fig. 2d:  Daily rain rate probability distribution 

from one of the longest available series (Padova, 

Italy).  predicted qD=3 behaviour is shown for 

reference and fits the data very well.  Reproduced 

from  [Bendjoudi, 1997]. 

 

5.  Numerical implementation of the model 

5.1  The turbulent cascade: 

The first step in the numerical simulation is 

to simulate the bare multifractal cascade 

quantities n, !.  This requires the two fluxes #, 

"; as mentioned above, these fluxes are 

presumably correlated.  A convenient but by 

no means unique way to account for this is to 

take: 

! = " 2 /3#1/3  (61) 

where +, # are independent multifractal 

cascades; this equation implies correlations 

between " and;  it yields: 

(15)
!
l
= "

l

1/3
l
1/3

n
l
= A

l
"
l

1/3#
l

1/6
l
1/2

 (62) 

where Al is a (dimensional) constant which 

determines the mean interdrop distance (c.f. 

eqs. 25).  The advantage of the choice 61 is 

that no (possibly divergent) negative moments 

of turbulent fluxes needed to determine n, !.  

In order to simulate cascades with the 

statistics eq. 27, we use the Fractionally 

Integrated Flux (FIF) model ([Schertzer and 

Lovejoy, 1987], [Schertzer, et al., 1997]) 

which essentially interprets the linear scaling 

factors l1/3, l1/2 as fractional integrals of order 

1/3, #.  This is performed with convolutions 

between the multifractal fluxes +, # and 

singularities.  For simplicity, we choose +, # to 

be identical, independent multifractal process.  

In addition, we use the two-parameter 

universal multifractal processes (with Levy 

generators) with the following statistics: 

!l
q

= "l
q

= l
#K q( )

K q( ) =
C
1

$ #1
q
$
# q( )

 (63) 

Where 0$C1<d, is the codimension of the 

mean and characterizes the sparseness of the 

mean process (d is the dimension of the 

embedding space, d=1 in fig. 3b, d=3 in fig. 

5a, b), and 0$,$2 is the Levy index 

characterizing the degree of mulitfractality (0 

is the monofractal minimum, ,=2 is the “log-

normal” maximum).  More details may be 

found in the above cited references, see fig. 

3a, b for examples in 1-D.   

 
Fig. 3a:  This figure shows the three turbulent 

fluxes (#, ", +), offset in the vertical for clarity.  

The +, # fluxes are statistically independent 

realizations of a universal multifractal processes 

characterized by C1=0.1, )=1.8 (close to those 

estimated for HYDROP, see [Lilley, et al., 2005]).  

This is already a low resolution (degraded by a 

fctor of 128) version of the full simulation which 

had resolution of 2cm over a total distance of 5km. 
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Fig. 3b: This shows the turbulent fields derived 

by fractional integration from the fluxes in fig. 3a.   

 

Once the ! ,  !
l

1/3"
l

1/6
l
1/2   fields have been 

calculated down to scale l*, the value of the 

normalization constant A of n is chosen so that 

the desired mean interparticle distance is 

obtained.  To be meaningful, we must choose 

A such that Lint>l* i.e. so that there are 

generally fewer drops than grid points/boxes.  

This is necessary since with a gridded model 

there cannot meaningfully be more than one 

particle per grid box, hence we simulate in a 

regime where the probability of more than one 

particle being in a grid box is low.  We then 

attribute the particles to the grid boxes with a 

Poisson process controlled by n.  The masses 

are then attributed to each particle by using a 

unit exponential distribution for D(u) (c.f. eq. 

37) so that at the bare level, the drop size 

distribution is the Marshall-Palmer 

(exponential) with amplitude given by the 

ratio !/n. 

5.2  Results of the simulation 

Fig. 4 shows results of the numerical 

implementation of the process.  The constant 

A was chosen so that the spatial mean of the 

number density for the realization of n=0.1, 

with 1 grid box =2cm (so as to be close to the 

HYDROP results).  The turbulent cascades 

were produced using the universal multifractal 

model ([Schertzer and Lovejoy, 1987], 

[Schertzer, et al., 1997], [Schertzer and 

Lovejoy, 1997]) with using typical measured 

turbulent parameters. 

 
Fig. 4a:  This figure shows the full (2cm) 

resolution of the 1-D simulation in fig. 3b with the 

dots indicating the positions and masses (on log 

scale) of the drops.  The green field is the bare 

turbulent mass density, the purple is the bare 

number density.  

 
Fig. 4b:  This figure shows the dressed 

(degraded by factor 128) 2.56m resolution 

comparison of number density fields: 

nd ,l , np,l with l=2.56m.  As expected the two are 

the same except for high frequency noise due to 

the Poisson process. 
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 Fig. 4c:  This figure shows the dressed (degraded 

by factor 128) 2.56m resolution comparison of 

mass density fields: !d ,l , !p,l with l=2.56m.  As 

expected the two are the same except for high 

frequency noise due to the Poisson process. 
 

In fig. 5a, we show a cross-section through 

a corresponding 3D model (also with 2cm 

resolution with 1283 pixels so that the result is 

quite close to the observed HYDROP domain 

size.  In fig. 5b, we show a perspective plot 

comparing the simulation and the one of the 

HYDROP reconstructed 3D distributions.  
 

 
Fig. 5a: 2D cross-sections through a 3D model 

(same parameters as the 1D model in fig. 4, also 

with 2cm resolution) with 1283 pixels so that the 

result is quite close to the observed HYDROP 

domain size.   

 
Fig. 5b:  The simulation is the full 3D 

simulation from fig. 5a.  The data is from 

HYDROP triplet (day 295, 2nd triplet).  The drop 

diameters are proportional to the true diameters, 

the colours also are size determined. 
 

 
Fig. 5c:  These show simulations at much 

larger scales using the threshold approximation 

(see text), with simulated radiative transfer (single 

scattering only, isotropic phase functions).  The 

basic fields here are 3D with stratification in the 

vertical according to lidar measured stratification 

exponents ([Lilley, et al., 2004]). 

5.3 Some statistical properties of the 

compound Poisson-Multifractal process: 

We have already theoretically derived some 

of the statistical properties of the model.  A 

fuller understanding of model the will be the 

subject of future work.  However, the low n 

behaviour is important in verifying the model 
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against the HYDROP data, especially the 

transition near the mean interdrop scales.  We 

therefore display fig. 6 which shows that both 

the liquid water density and number densities 

do indeed follow the theoretical turbulent field 

behaviours at low wavenumbers, but at high 

wavenumbers undergo a transition to white 

noise behaviour (quite close to the HYDROP 

behaviour, see fig. 6, see eq. 56).  

 
Fig. 6:  These show the 3D spectra of the 

HYDROP LWC data and simulation (left), and 

simulation number density (right), the model using 

the simulation shown in fig. 5.  The low and high 

frequency behaviour is as described by the theory 

lines, see text.  
 

 
Fig. 7:  This shows how the model can be used 

to study issues of radar calibration; here we show 

the effect of coherent scattering can bias the 

estimates of Z from the measured Zeff.  The red is 

the raw Zeff  the blue is the same but normalized by 

the corresponding Z (i.e. it is the bias).  This 1D 

simulates a rain field with 2cm resolution, with 

mean interdrop distance 20cm, and pulse length 

320m.  The bias (Zeff/Z) due to the coherency 

effects (blue) is negligible until wavelengths of 

50-60cm are reached, and can become very large 

for long wavelengths.   

6.  Conclusions: 

On the basis of both turbulence, drop 

coalesence theory and state-of-the-art drop 

size/position stereophotographic data, we have 

argued that the rain liquid water density at 

large enough scales follows Corrsin-Obukhov 

passive scalar statistics (k-5/3 spectrum) and 

that also at low wavenumbers, the particle 

number density they follows a new k-2 law 

which we derive by combining turbulence and 

drop coalesence theory.  At smaller scales, due 

to the decoupling of the wind and the drops, 

we observe white noise k+2 spectra (in 3D).  

The key point is that since coalescence 

processes conserve mass, but not number 

density, the ! statistics are entirely due to the 

concentration of mass from large scale to 

small via turbulent cascade processes.  

However, for the number density, the situation 

is different because both the large and small 

(drop) scale processes determine the number 

density.  This allows for the different scaling 

laws (in real space l1/3 for &, l1/2 for n). 

We can use the turbulent number density 

(n) field, to subordinate a compound 

multifractal-Poisson process whose mean 

(over the Poisson but not turbulent statistics) 

is the turbulent number density.  In addition, if 

we use both ! and n, then we can attribute 

masses to the Poisson distributed particles in 

such a way as to recover the large scale LWC 

statistics; we show how this may be done 

using a marginal exponential (Marshall-

Palmer) distribution for the drops.  Although 

the drop size distribution is thin-tailed (here 

we used an exponential “Marshall-Palmer” 

type) as concerns the distribution of liquid 

water within a region size l, the generic result 
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is a “fat-tailed” algebraic distribution.  We 

showed this theoretically, numerically and 

also empirically on the HYDROP data, 

indicating that this could be the explanation of 

several empirical observations of qD=3 

rainrate statistics.  We did not discuss the 

considerably more involved issue of drop size 

distributions.  However, it is clear that the 

latter will be a systematic function of 

resolution, and this in itself will already help 

explain the apparent lack of “universality” of 

empirical drop-size distributions. 

An important limitation of the model 

presented in this paper we do not calculate 

rain rate statistics.  While this is easy enough 

to do by attributing a nonturbulent velocity to 

each drop, there is no unique way to assign the 

velocities and the extension of the model will 

thus be the subject of future work. 

One of the main applications of the model 

will be to study issues of rainfall measurement 

from either rain gages, or radar.  In fig. 7 we 

give an example of how the model can be used 

to calculate both the radar reflectivity factor 

(Z) and the effective reflectivity factor Zeff 

(which is what the radar actually measures, it 

takes into account the wave coherency 

effects).  More applications of this sort will be 

discussed in future publications. 

Finally, we indicated briefly how the model 

can be used at very large scales for cloud and 

radiative transfer calculations.  The key is to 

make an approximation for the low n part of 

the process; here only the simplest (threshold) 

approximation was used.  More sophisticated 

treatment of the low n properties of the model 

may help answer basic questions about low 

rain rate, low radar reflectivity statistics, 

measurements. 
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