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Abstract. We consider three developments in high number of degrees of freedom approaches to 
nonlinear geophysics: a) the transition from fractal geometry to multifractal processes, b) the 
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self-organized critical (SOC) generation of extremes via multifractal phase transitions c) the 
generalization from isotropic scale invariance (self-similar fractals, multifractals) to (anisotropic) 
generalized scale invariance. We argue that these innovations are generally necessary for 
geophysical applications. We illustrate these ideas with data analyses from both the atmosphere 
and the earth’s surface, as well as with multifractal simulations. 

1 Introduction: Which Chaos in Geophysics? 

1971] that systems with as few as three degrees of freedom could have random-like 
“chaotic” behaviour. The second, fractal geometry - proposed that many natural systems 
could be modeled as (stochastic, scale invariant) fractal sets [Mandelbrot, 1967]. The 
third, “self-organized criticality” (SOC) [Bak, et al., 1987] proposed that extreme events 
could be the result of seemingly simple generic avalanche-like processes. As discussed 
below SOC turns out to have close relationships with non classical critical phase 
transitions, which help to establish links to the fourth scaling tool, the “renormalization 
group”. The latter has been extremely helpful in clarifying classical phase transitions 
[Wilson, 1971] and in understanding the dynamical nature of scaling. By the early 1980’s 
further developments had made the first two quite practical. In particular, the discovery of 
universality in chaos by [Feigenbaum, 1978] had emphasized the generic features of 
chaotic models rendering them more applicable, and the revolution in computer graphics 
had made fractals – including “strange” chaotic attractors – palpable.  

This short expose gives an overview of certain subsequent developments covering 
roughly the twenty years celebrated by the conference. While deterministic chaos is 

During the 1960’s, 70’s and 80’s theoretical developments in geophysics, physics, 
and mathematics spawned four related non-linear paradigms. The first, deterministic 
chaos, was centred around the discovery [Lorenz, 1963], [Ruelle and Takens,  



2 The Link between Descriptions and Models 

It is an old truism that one cannot make a measurement without first having a theory of 
what is to be measured. This is well illustrated in nonlinear geophysics where 
theoretical developments are not only necessary for making more sophisticated theories 
and better applications: they are necessary simply in order to quantitatively describe 
geofields. We illustrate this statement with two significant examples. The first is the 
long debate starting in the 1980’s about what was the (supposedly unique) fractal 
dimension of the earth’s topography. If the topography could be adequately modeled as 
a geometrical fractal set, then many different techniques (including spectral analysis) 
could be used to estimate its unique dimension D. Unfortunately, different techniques 
applied to different data commonly gave different values of D (see the review in 
[Klinkenberg and Goodchild, 1992]). Consequently by the end of the 1990’s the 
mainstream surface geomorphology community had “moved on”, relegating fractals to 
narrow ranges of scale and to very technical applications. This near abandonment of 
scaling occurred in spite of the fact that entire fields of research such as surface 
hydrology (see e.g. the excellent review [Rodriguez-Iturbe and Rinaldo, 1997]) are 
riddled with scaling laws which virtually require the topography to respect some form 
of scaling. At the same time, due to their random singularities, multifractals have such 
strong variability that they violate many conventional geostatistical assumptions so that 
normal multifractal variability can easily be misinterpreted in terms of spurious scale 
breaks, spurious nonstationarity etc. The loss of interest in scaling was encouraged by 
the extensive use of (low variability) fractional Brownian motion (fBm) models of 
topography. As argued in [Gagnon, et al., 2006], the topography in fact has excellent 
multiscaling (multifractal) properties (see Fig. 18.2, 18.4, 18.7) – but an infinite 
hierarchy of fractal dimensions; this requires new analysis techniques. Consequently 
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essentially a low degrees of freedom paradigm, fractals and SOC are both high 
number of degrees of freedom frameworks and could thus be called “stochastic 
chaos” since they involve infinite dimensional probability spaces [Lovejoy and 
Schertzer, 1998a]. While the question of whether deterministic or stochastic chaos is 
more geophysically relevant continues to be debated, here we focus on the latter (in 
particular Schertzer et al., 2002 who showed that a finite correlation dimension does 
not discriminate between deterministic and stochastic chaos). We outline three key 
developments which allow the fractal and SOC paradigms to be widely applicable in 
geosciences: a) the transition from scale invariant sets (fractals) to scale invariant 
fields (multifractals), b) the recognition of the link between extreme events, heavy 
tailed (algebraic) probabilities (SOC) and space-time scaling, c) the generalization of 
scale invariance from isotropic (self-similar) systems to very general anisotropic 
ones (self-affine and beyond) within the framework of Generalized Scale Invariance 
(GSI). Rather than attempt a systematic survey, we illustrate our discussion using 
results from key fields in solid earth and atmospheric geophysics: the earth’s 
topography and clouds and rain. This choice is motivated by both the fundamental 
significance of the fields and for the availability of relevant high quality data. 
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3 Wide Range Scaling 

Scale invariance – no matter how theoretically appealing – would not be of general 
geophysical interest were it not for the basic empirical fact that geofields display 
wide range scaling. Figs. 18.1, 18.2 show spectral analyses of visible cloud radiances 
covering the range of roughly 1 m to 5000 km, and Fig. 18.2 of topography covering 
the range 1 m to 20,000 km. In both cases, the spectra are “isotropic” i.e. the squared 

the lack of an adequate theoretical framework for scaling has led the baby to be thrown 
out with the bathwater.  

Similarly, in the atmosphere the still dominant model of atmospheric dynamics is 
of a small scale 3D isotropic turbulence [Monin, 1972], [Orlanski, 1975] superposed 
on a large scale 2D isotropic turbulence with the two separated by a “mesoscale gap” 
somewhere near the 10km scale thickness (the “meso-scale gap”, [Van der Hoven, 
1957]). The empirical evidence of this energy gap in the atmospheric spectrum had 
been more and more put into question, in particular by (Gage, 1979; Lilly and 
Paterson, 1983). The drastic consequences of such a “dimensional transition” were 
theoretically put forward by (Schertzer and Lovejoy, 1984; Schertzer and Lovejoy, 
1985), and to rather consider a unique scaling regime corresponding to a model 
which is neither 2D nor 3D, but with an “elliptical dimension” Del = 23/9!"2.55.  The 
2D/3D model is increasingly at odds with modern data – particularly of the vertical 
structure - which fails to find evidence of any isotropic turbulent regime whatsoever 
(see [Lovejoy, et al., 2007])! Indeed, the mainstream experimentalists espouse 
anisotropic but scaling gravity wave models (e.g. [Dewan, 1997] [Gardner, 1994]) 
which are equivalent to “elliptical dimensions” (see below) Del =7/3 (in between 2 and 
3), whereas high resolution vertical cross data (from lidars) favour a value closer to 
23/9 [Lilley, et al., 2004]. Today, probably the key element blocking a consensus is 
the fact that there is still no general agreement about the horizontal structure. This is 
where a marriage between theory and measurements is required: how to interpret the 
aircraft data which are our primary source of dynamical (velocity) data in the 
horizontal? The basic problem is that even aircraft on scientific missions cannot 
maintain perfectly “flat” trajectories. In a 2D turbulence, the vertical would be 
smooth and there would be no biases in estimates of spectral exponents. Similarly, in 
3D isotropic turbulence, even if the trajectories are non-smooth there is a single 
exponent (independent of direction), so again the measured exponent can plausibly 
be taken at face value. However, if the turbulence is anisotropic with different 
vertical and horizontal exponents – then the aircraft can have fractal trajectories 
implying long-range correlations between the aircraft position and atmospheric 
structures, leading to possible biases in the exponents. In addition, even very small 
mean vertical slopes can lead to statistics being dominated by vertical rather than 
horizontal exponents. Both of these effects have been found in stratospheric flights 
which can have both 1.56 dimensional trajectories [Lovejoy, et al., 2004], and then at 
scales > 300km, Bolgiano-Obukhov (k-11/5) rather than Kolmogorov spectra (k-5/3; k is 
a wavenumber). This has made it possible for the first time to explain the major 
aircraft campaigns (GASP [Nastrom and Gage, 1983], MOZAIC [Lindborg and 
Cho, 2001]). This sets the ground for a clear understanding of the horizontal 
structure. 



 
 E k# $" k%&  (1) 

(corresponding in real space to the scale reduction x ' (%1 x  where r is position 
vector); the spectra – which keeps its form but which changes by the factor (%& - is 
called “scaling”. In physics the term “scaling” is generally reserved for invariance 
under space-time scale transformations, although occasionally it is also used to 
describe the tails of algebraic probability distributions, (in this case it refers to 
scaling in a probability space; see the discussion of SOC below). In the geosciences 
there is an unfortunate tendency to use “scaling” to denote the general problem of 
changing from one scale to another even if there are no conserved properties; below 
we reserve the term for the more precise physics sense referring to invariant 
properties under (possibly anisotropic) scale changes. 

Figure 18.3b shows that the spectrum is also scaling; with exponent only a little 
smaller than for turbulent temperatures (&!1.4 compared to 5/3). In fact, it seems that 
the scaling goes back to about 40,000 years [Lovejoy and Schertzer, 1986] after 

(k is the modulus of the wavevector k). The exponents of such power law spectra are 
scale invariant because they are invariant under the scale change k'(k  
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modulus of the 2D fourier transform has been angle integrated (and in the case of the 
cloud data, averaged over the available data). In solid earth geophysics it is more 
usual to angle average the spectrum; in 2D this will reduce the exponent by one. 
Below we use angle integration since for isotropic processes, the resulting exponents 
are independent of the dimension of the analysis space. The use of energy spectra has 
the advantage of relying on familiar data analysis techniques which are quite 
sensitive to breaks in the scaling. The angle integration “washes out” much of the 
anisotropy and explains why – in spite of highly diverse cloud morphologies – the 
isotropic spectra (E(k)) can approximately be of the power law form: 

Geodata are frequently scaling in time as well as space: i.e. in space-time. Indeed, 
geofluids generally have well-defined space-time relations so that structures of a given 
spatial extent live for a statistically well-defined duration. For example in turbulence – 
and in the atmosphere – the lifetime of a structure (“eddy”) is referred to as the “eddy-
turn over time”. The lifetime corresponding to structures of planetary extent (the 
“synoptic maximum”, [Kolesnikov and Monin, 1965]) is about 2 weeks and is thus the 
natural time scale separating the weather from the climate; the latter being the result of 
evolution over many eddy turn over times, the former over a single turn-over time. We 
may therefore expect the long time behaviour of the atmosphere to have different 
scaling properties from the short time behaviour. The scaling in space and time will 
generally be anisotropic (section 9), but will also respect the causality principle 
[Marsan et al., 1996], it allows us to exploit the scaling to study predictability issues 
and to make stochastic forecasts [Schertzer and Lovejoy, 2004].  

In Fig. 18.3a, we demonstrate the climate scaling using a mean temperature 
surrogate (from the Greenland GRIP core), the O18/O16 ratio showing a clear 
turbulent-like signal going back over 100,000 years (including highly intermittent 
“Dansgaard events”, the sharp high frequency spikes).  



 

 
 
 
 
 

 
Fig. 18.1. The average spectra (displaced 
in the vertical for clarity) obtained for 
GMS, NOAA 12, data as well as a SPOT 
image over France. The GMS spectrum 
shows a range of scales of 5120–10 km, 
the NOAA 12 spectrum shows a range 
from 256 to 2 km and the SPOT spectrum 
shows a range from 10 km to 40 m. At the 
far right we also show the average of 38 
ground based pictures (some with 
resolutions of 50 cm, this is the average of 
the data discussed in [Sachs, et al., 2002]). 
Reproduced from [Lovejoy and Schertzer, 
2006]. 

 
 

Fig. 18.2. Log/log plot of the spectral energy for 
four Digital Elevation Maps (DEMs). From 
right to left: Lower Saxony (with trees, top), 
Lower Saxony (without trees, bottom), the 
U.S. at 90 m (in grey), at 30” (about 1km, 
GTOPO30) and the earth (including bathy-
metry) at 5’ (about 10km), ETOPO5. A refer-
ence line of slope "2.10 is on the graph to show 
the overall slope of the spectra. The small 
arrows show the frequency at which the spectra 
are not well estimated due to the inadequate 
dynamical range of the data; see [Gagnon, et al., 
2006] for this theoretical estimate (for ETOPO5, 
it is well estimated over the whole range). The 
“semi error bar” symbols indicate the amount of 
offset due to the resolution dependent factor 
(

K(2)
 (see [Gagnon, et al., 2006] for this neces-

sary resolution dependent correction). Repro-
duced from [Gagnon, et al., 2006]. 

Scale, Scaling and Multifractals in Geophysics 315

which the spectrum flattens out. Note that there is no strong (above background) 
signal from the precession of the earth’s axis so this analysis tends to make the 
Milankovitch theory for the ice ages less convincing. Since temperature is the basic 
climate variable, this suggests that scaling is an appropriate framework for modeling 
and understanding climate. 

 



 

 
Fig. 18.3a. This figure shows O18/O16 in parts 
per thousand for the Greenland GRIP ice core 
at 200 year resolution; this is a standard 
temperature surrogate. The present is at the 
origin, the past is to the right. Note that the 
above corresponds to the initial dating of the 

Fig. 18.3b. The spectrum E(f) of the tempe-
rature surrogate (Fig 18.3a), with reference 
slope f-1.4, this is only a little less steep than 
the f -5/3 spectrum observed in the atmosphere 
at weather scales (f is the frequency). 
Adapted from [Schmitt, et al., 1995]. 

 

4 From Monofractal Sets to Multifractal Fields 
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core; the more modern dating (nonlinearly) 
shortens the time scale by nearly a factor of 2 
(however, it does not much affect the scaling 
exponents, F. Schmitt private communication). 
The “Dansgaard events” are the equivalent of 
going in and out of an ice age in perhaps as 
little as 100 years. Adapted from [Schmitt, et al., 
1995].  

Using fourier spectra, we have seen that the basic atmospheric and earth surface fields 
display wide range scaling in space and time. Spectra were first widely used to 
characterize turbulence, and in the early 1970’s in conjunction with the development of 
quasi-gaussian statistical closure models, the theoretical or empirical determination of 
the spectral exponent became a key task. In quasi-gaussian processes (essentially the 
“fractional Brownian motions” generalizations of Brownian motion), there is a single 
basic exponent hence the spectral exponent is simply related to the (unique) fractal 
dimension of exceedence sets (the set of points exceeding a fixed threshold). However, 
by the early 1980’s, the development of cascade models to study turbulent 
intermittency lead to the realization that in general the different moments have different 
scaling behaviors, they are “multiscaling”. In fact, the generic result of a cascade 
process is that the cascade quantity at resolution )( has the statistics: 



 

 
 
 
 
 

 
)(

q * (K q# $
 (2) 

 NT (L)+ %D(T )L ; PT (L) " NT (L) / %dL " c(T )L ; c T# $* d % D T# $ (3) 

where NT(L) is the number of LXL sized boxes needed to cover the set of points 
satisfying )(x)>T. Since L-d is the total number of boxes in the space at resolution L, 
PT is the probability that a box (size L) placed at random on the set will cover part of 
the set. D(T) is the dimension and c(T) is the codimension function which is thus a 
probability exponent. Since probability exponents can be defined without reference 
to the embedding space of the process (i.e. whether it occurs in a 1-D, 2-D… or for 
stochastic processes, in infinite D probability spaces), codimensions are generally 
needed for stochastic fractals and multifractals. 

When this “functional” box-counting was done for the topography (Fig. 18.4) or 
radar reflectivities of rain (Fig. 18.5), it was found that the scaling was excellent: the 
power law eq. 3 was accurately obeyed for all T, L. However D(T) systematically 
decreases with threshold, it is not constant as assumed in the monofractal models. 
Indeed, from the point of view of multifractals, it would have been a miracle if for 
each threshold T, each (different) set had exactly the same fractal dimension. 

It is worth mentioning that the functional box-counting results have important 
consequences for classical geostatistics (e.g. [Matheron, 1970]) which assume 
(explicitly or implicitly) that geomeasures such as the areas of the topography 
exceeding a threshold are regular with respect to Lebesgue measures. If this 
assumption were true, then the areas above a given threshold T would be well-
defined independently of the resolution L, i.e. the expression L2NT(L) would be 
independent of L; however since D(T)<2 we see that generally it vanishes as L->0. 
Ultimately at millimetric or smaller scales, the scaling will break down yielding a 
finite limit of L2NT(L). However this value will depend on the very small scale 
details; at any larger resolutions the result will be subjective depending on the 
observing resolution L. 
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where K(q) is nonlinear and convex the moment scaling function and ( = Louter /L is 
the ratio of the largest (outer) cascade scale (Louter) and the scale of observation (L) . 
The symbol “)” is used for the turbulent (scale by scale) energy flux. 

Viewed from the point of multiscaling, spectra are second order statistics (for 
statistically stationary processes, they are the fourier transforms of the 
autocorrelation functions; the Wiener-Khintchin theorem), so that the spectrum is 
only a very partial description of its properties. A rather intuitive and still geometric, 
but not yet consistent understanding of multifractals can be achieved with the help of 
thresholds (T) to convert fields )(x) into exceedence sets (x is a position vector), and 
then the use of box-counting to systematically degrade the resolution of the sets, 
determining the fractal dimension using the formula: 

To go beyond geometry and obtain a consistent formalism, one has to consider 
scaling fields and thresholds [Schertzer and Lovejoy, 1987], i.e. T +(,  where the 
“singularity” , is arbitrary then we obtain: 

Pr )( - T# $ * Pr )( - (
,# $ + (%c ,# $

 (4) 



  

 
Fig. 18.4. Functional box-counting on French 
topography data at 1km resolution. For each 
threshold, the scaling is quite accurate, but as 
the threshold increases, the slope syste-
matically decreases so that the topography is 
apparently not monofractal. The line with 
slope -2 is shown since this is the theoretical 
assumption of classical geostatistics. Adapted 
from [Lovejoy and Schertzer, 1990].  

Fig. 18.5. Functional box-counting on radar 
reflectivity data of rain; the data taken from a 
weather radar in Montreal, Canada. Each line 
corresponds to a reflectivity factor increasing 
by a factor of about 2.5 (starting at the top 
which is the lowest detectable signal). 
Although all the different levels are 
accurately power laws (scaling), the more 
and more intense rain regions (lower curves) 
have lower and lower slopes, again we 
conclude that rain is multifractal. Again, the 
geostatics theory slope 2 is shown for 
reference. Adapted from [Lovejoy, et al., 
1987]. 

 c ,# $* max
q

q, % K q# $# $; K q# $* max
,

q, % c ,# $# $. / (5) 

showing that there is a one-to-one relation between the orders of moments q, and 
orders of singularity , and between c(,), K(q) [Parisi and Frisch, 1985]. 
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where “Pr” indicates “probability”. Since the moments (eq. 2) are integrals over the 
probability density (dPr), c(,) determines K(q); indeed, the relationship can generally be 
inverted; with help of the (inverse) Mellin transform (Schertzer, Lovejoy et al. 2002). For 
large (0 the Mellin transform reduces to the (involutive) Legendre transform: 



 

 
 
 
 
 

5 Cascades and Data Analyses 

In order to empirically test this cascade prediction we may attempt to “invert” the 
cascade by successively degrading the resolution of the cascade quantities. The only 
complication is that observable quantities such as the turbulent velocity or the 
topographic altitude are generally not conserved scale by scale. For example in 
Kolmogorov turbulence, the velocity gradient 1v is related to the conserved energy 
flux ()1x$ at resolution 1x by: 

 1v * )1x
a 1xH ; a * 1 / 3; H * 1 / 3 (6) 

dimensional analysis), is that it expresses the equality of the scaling of the left and 
right hand sides of the equations, hence, averaging the qth power of eq. 6.: 

 1v q * )1x
qa

1xqH * 1x2 q# $; 2(q) * qH % K qa# $ (7) 

where “<.>” means statistical averaging, and 2(q) is the (generalized) “qth order 
structure function exponent”. We see that to determine the K(q) exponent 
characterizing the flux, we must either remove the 1xH term in eq. 6 to estimate )a, or 
we may use the structure function to directly determine 2(q) from eq. 7 and then 
remove the linear contribution qH. Since power law filtering of )a by k-H in fourier 
space has the effect of introducing the linear scaling term 1xH (see section 8), this 
suggests that to obtain )a from 1v, that we invert the integration by fractionally 
differentiating by an order H. It turns out that it suffices to fractionally differentiate 
with order > H so that for H<1 (the usual case), a standard finite difference 
approximation (such as in 1-D taking the absolute differences at the finest resolution, 
or in 2-D taking the modulus of the finite difference gradient vector), is adequate 
[Lavallée, et al., 1993]. Figs. 18.6, 18.7, show the results on global atmospheric and 
topographic data. We see clearly that eq. 2 is accurately obeyed over the entire 
available ranges of scale, and that the effective outer scale (i.e. the scale where the 
cascade must have started if it is the only source of variability), is of the order of 
planetary scale (and in Fig. 18.6 slightly larger indicating that there are other sources of 

The usual interpretation of this formula (which is essentially the result of 
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The nonlinear terms in the Navier-Stokes equations ruling 3D turbulence conserve 
the scale by scale (fourier space) flux of energy from large to small scales. In  
addition, structures interact most strongly with other structures of nearly similar size. 
Finally, over a wide range, there is no characteristic scale in the nonlinear 
mechanism. This fourier conservation, fourier “locality” and scale invariance imply a 
cascade phenomenology, the basis for phenomenological cascades models. Starting 
with [Novikov and Stewart, 1964], [Yaglom, 1966, Mandelbrot, 1974] these models 
were developped to study the effects of intermittency. They start with an initially 
uniform large scale which is successively subdivided into smaller and smaller sub-
structures, each multiplicatively modulating the energy flux from the larger scales, 
with the process repeating scale after scale until in turbulence, viscosity eventually 
cuts off the cascade (for the atmosphere, at millimeters or less). The resulting cascades 
have fluxes which respect eq. 2. 



 
variability at this scale). The figures show that the variability of both the weak (low q) 
and strong (high q) fluctuations at all the observed scales can be accurately accounted 
for by multiplicative cascade processes. 

6 Multifractal Universality 

We have already mentioned that the generic result of cascade processes is that the 
conserved flux obeys eq. 2; i.e. it involves the convex function K(q). At this level the 
theory effectively involves an infinite number of parameters (K(q)). If no 
simplifications were to occur, this would be unmanageable. However, as is usually the 
case in physics when processes are sufficiently iterated or when interactions are 
sufficiently numerous, we expect that only some of the details will be important.  
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Fig. 18.6. The statistical moments (M) of order q of the gradients of satellite radar reflecti-
vities (Z) from the Tropical Rainfall Monitoring Mission (TRMM) covering the full planetary 
scale down to 4.3 km, normalized so that the mean = 1.  With the exception of very low order 
moment dominated by (nominally) zero rain reflectivity, the multiscaling holds remarkably 
well.  The data is from 1166 consecutive orbits (70 days) at 4.3km resolution, swath width 
220km; the curves from bottom to top are for moments of order q =0, 0.2, 0.4, 0.6… 2.0.  
Analysis shows that K(q) satisfies the universal form (eq. 8) with !=0.5, C1=0.63.  Multifractal 
modelling shows that the slight curvature in the above for low q is well explained by this 
simple threshold detection model: the moments of order <2 are determined within 7% over the 
entire range 20,000 - 4.3km by the two parameters !, C1, a threshold equal to one half the 
mean reflectivity, and an “effective external scale” " 30,000km. 



 

 
  
 
 

This is the general problem of “universality”; for cascades the issue is complicated 
because of the highly singular small scale limit (see section 7). It is therefore important 
to consider the issue of universality over a fixed, (finite) range of scales, and only then 
take the small scale limit (see the debate [Schertzer and Lovejoy, 1997], and [She and 
Levesque, 1994] for a weaker “Log-Poisson” universality). The result is a kind of 
“multiplicative central limit theorem” leading to: 

 K q# $* C1

3 %1
q3 % q# $ (8) 

 

 
Fig. 18.7. Log/log plot of the normalized trace moments versus the scale ratio ( = Louter/l 
(with Louter = 20 000 km) for the three DEMs used in Fig. 18.2 (circles correspond to 
ETOPO5, X’s to U.S. and squares to Lower Saxony). The solid lines are there to distinguish 
between each value of q (from top to bottom, q=2.18, 1.77, 1.44, 1.17, 0.04, 0.12 and 0.51). 
The moments of the Lower Saxony DEM with trees for q=1.77 and q=2.18 are on the graph 
(indicated by arrows). The theoretical lines are computed with the global K(q) function i.e. 
with 3=1.79, C1=0.12, for the parameter estimation and figure, reproduced from [Gagnon, 
et al., 2006]. 
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where 0<3#2 is the multifractal index, (it is the Levy exponent of the generator) and 
0<C1<d is the codimension of the mean [Schertzer and Lovejoy, 1987]. When 3 = 1 we 
have K(q) = C1q log q1 when 3<2 the above is valid only for q40. This can be roughly 
understood by taking the logs of the cascade which is the sum of a large number of 
logarithmic contributions and therefore (if appropriately centred, normalized) is subject 
to the additive central limit theorem (which is in fact one of the original applications of 
“universality” well before the idea became a generally recognized physics principle). 
 



We have mentioned the huge impact of [Bak, et al., 1987]’s paper linking apparently 
simple avalanche like “sandpile” models to extreme events with algebraic probability 
distributions. This “classical SOC” has spawned a large number of variants which 
exploit a cellular-automaton framework with a simple threshold rule applied at a 
small scale (grid) which leads to both fractal structures and algebraically distributed 
extremes. What is still under appreciated is the fact that multifractal cascade 
processes also generate fractal structures with algebraic probabilities: “nonclassical 
SOC”. This effect - as in the usual (chaotic) butterfly effect - is the result of small 
scale disturbances dominating the large scale and has therefore been called the 
“multifractal butterfly effect” [Lovejoy and Schertzer, 1998b]. It’s origin lies in the 
highly singular small scale cascade limit. This singular behaviour is particularly wild 
in the general case where the cascade only respects “canonical” (scale by scale) 
conservation in which it is only the ensemble average energy flux which is conserved 
scale by scale [Mandelbrot, 1974]. In order to avoid the attendant technical 
difficulties, the simpler but much more restrictive “microcanonical conservation” is 
all too often considered but it does not have these strong extremes (e.g. the “p 
model”, [Meneveau and Sreenivasan, 1987]). In the general canonical cascades, the 
small scale limit is only well-defined for integrals over finite sets; this leads to the 
distinction between “bare” cascades quantities (which are the result of the cascade 
developed over a given range of scales), and the “dressed” properties which are the 
result of the cascade developed down to infinitely small scales and then averaged up 
to the same scale. Below a critical order of moment qD (which depends on the 
dimension of the averaging space, D), both the bare and dressed properties respect 
eq. 2; however, for q>qD, the dressed moments (and hence K(q)) diverge whereas the 
“bare” moments converge (for all q$0). This implies: 

 )(
q '5; q - qD. /6 Pr )( - s# $" s%qD ; s -- 1. / (9) 

so that the dressed fluxes display the key feature of SOC: algebraic probabilities. This 
“nonclassical SOC” [Schertzer and Lovejoy, 1994] may often be physically more 
realistic than classical SOC since whereas the latter is only valid in the “zero-flux 
limit” (e.g. each sand grain must be added one by one only after the avalanches 
provoked by the preceding have ended), the multifractal SOC is a generic SOC 
mechanism valid in systems with quasi-constant fluxes. Note that moments are only 
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The special case 3=2 corresponds to the (misnamed) “log-normal” cascades [Kolmogorov, 
1962], the special case 3=0 to the monofractal “& model” [Frisch, et al., 1978]. Many 
atmospheric and terrestrial surface fields have now been shown to be compatible with 
eq. 8, and the universality parameters H, C1, 3 have been estimated for several dozen 
geofields (for a review, see [Lovejoy and Schertzer, 1995]). 

 

7 Multifractals, Extremes and SOC; the Multifractal Butterfly Effect 
and Multifractal Phase Transitions 

infinite in the limit of infinite sample sizes. In fact, both infinite and finite sample size 
behaviors can be recast in the framework of first and second order multifractal phase 



  
 
 
 

 

To model scaling processes, it is natural to use combinations of scale invariant basis 
functions, i.e. mathematical singularities. Let’s first consider the basic additive scaling 
process, fractional Brownian motion (fBm) and it’s generalization, fractional Levy 
motion (fLm). These can be written as convolutions of noises with power laws i.e. 
fractional integrations: 
 v x# $* 73 8x# $d 8x

x % 8x D% 8H9 ; 8H * H : D /3  (10)

8 The Fractionally Integrated Flux Model  
and Multifractal Simulations 
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transitions [Schertzer and Lovejoy, 1992, Schertzer et al., 1993], which clarify the 
different notions of criticality. Fig. 18.8 shows that atmospheric turbulence is indeed 
apparently a SOC phenomenon (see also [Chigirinskaya, et al., 1994; Schmitt, et al., 
1994] for other atmospheric applications). The extreme nature of multifractals is due to 
the fact that they can be viewed as random hierarchies of singularities (eq. 4); the 
structure of the extreme singularities can thus readily stand out. To study this it is 
helpful to make numerical simulations. Fig. 18.9 shows an example with a log-spiral 
singularity showing how cyclones can be modeled without needing special “cyclone” 
models, their “order” apparently emerging from chaos; in the next section we discuss 
simulations further. 

Fig. 18.8. This shows the probability distribution (cumulated from the largest to smallest; Pr 
(1v1>1v) for horizontal velocity differences (1v1) from the stratospheric ER2 aircraft. The 
horizontal difference are given for distances of 40m, 80m (left, right), the reference slopes 
corresponds to eq. 9 with qD=5.7. This value is in between the value 5 found in the vertical 
[Schertzer and Lovejoy, 1985a] and the temporal value qD=7 (a surrogate for the horizontal, 
[Schmitt, et al., 1994]), the in between value may be a consequence of the vertical 
displacements of the aircraft. See also [Tchiguirinskaia, et al., 2006], [Tuck, et al., 2004]. The 
data are from 18 aircraft flights, each over paths 1000 -2000 km in length. 



 

 1v 1x# $q
" 1x 2 q# $; 2 q# $* qH  (11)

when 3<2, 2(q) diverges for q>3;!!!These models are monofractal because the fractal 
codimension of any level set v(x)=T has a codimension c(T)=H (i.e. independent of T).  

 

 
Fig. 18.9. A cyclone emerging from chaos. This multifractal simulation has roughly the 
observed universal multifractal parameters (3=1.8, C1=0.1, H=0.33), but is symmetric with 
respect to a G with complex eigenvalues (hence structures rotate with scale). From time to 
time, the process produces particularly strong singularities which can dominate the simulation. 
Here, the event was sufficiently rare that it was “helped” by artificially increasing a single 
value of the 224 elements of the subgenerator.  

 

v( x# $* )( 8x# $d 8x
x % 8x D%H9 ; )( 8x# $* e<( 8x# $; <( x# $+ 73 8x# $d 8x

x % 8x D% 8H
1= 8x =(
9

 
(12)

Figure 18.10 shows a comparison of fBm, fLm and a universal multifractal 
process with the same H value. The multifractal process can also be modeled as a 
fractional integration of a noise, although this time, the noise is a conservative 
(cascade) multifractal (a “flux”, hence the name Fractionally Integrated Flux, FIF 
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With 3>2.  7  is a gaussian white noise, for 3<2, 73 is a Levy noise made of 
uncorrelated Levy random variables and H’ is the order of fractional integration. 
Introducing the fluctuation 1v(1x)=v(x+1x)-v(x), the resulting v field has statistics 
obeying: 

model (see [Schertzer, Lovejoy et al., 1997] for its relationships with the renormali-
zation group approach)): 

C
1/

2

1



 

 
 

 
 

Considering the “universal multifractals” v(, defined by eq. 12 we see that they 
are isotropic (the singularities have no preferred directions, they depend only on the 
vector norm), they are therefore “self-similar”; “zoomed” structures will (on 
average) resemble the unzoomed ones. In addition, they depend on three parameters: 
the H in eq. 12, and the 3, C1 which define the statistics of the generator <(. While 
the parameter H is the order of fractional integration and quantifies the degree of 
scale invariant smoothing, the qualitative effects of the codimension of the mean (C1) 

Fig. 18.10. The upper left simulation shows fBm, with H=0.7, lower left fLm with H=0.7, 
3 =1.8, and the right the Multifractal FIF with H=0.7, 3 =1.8, C1=0.12 (close to observations 
for topography, see [Gagnon, et al., 2006]). For more examples of multifractal simulations, 
see the multifractal explorer site: http://www.physics.mcgill.ca/~gang/multifrac/index.htm. 
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3<2, 73  is a maximally skewed Levy noise process and H’=D(1"1/3). The 
resulting )( is multiplicative because it is an exponentiation of the additive generator 
<(. From Fig. 18.10 we can see that the fBm gives a relatively uninteresting texture. 
fBm is fairly limited in its possibilities since due to the central limit theorem (the 

where for 

 
gaussian special case), a process with the same statistical properties can be produced 
by using singularities of quite different shapes; it is insensitive to the shape. The fLm 
on the contrary has extremes which are too strong; as one can see, several strong 
mountain peaks stand out; in fact, the strong peaks are too strong. Although far from 
Gaussian, real topography empirically seems to have finite variance (i.e. the probability 
density tail falls off faster than x"3), so fLm is not a good model. Finally, the 
multifractal simulation has much more interesting structures, however we are missing 
the interesting ridges, valleys and other anisotropic features of real geomorphologies. 

 

and the multifractal index (3) are less easy to see. We therefore performed 



 

 
Fig. 18.11. This shows the effect of varying 3, C1, H values on multifractal simulations. The 
upper figures show the effect of increasing 3 (left to right, 0.4, 0.8, …2.) and H (top to bottom 
0.05, 0.2, …0.8) with C1 fixed (=0.05 left, 0.35 right). The lower figures show the effect of 
varying 3 (left to right, 0.4, 0.8, …2.) and C1 (top to bottom 0.05, 0.2, …0.8) with H fixed 
(=0.05 left, 0.35 right). 
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multifractal simulations (Fig. 18.11) which systematically show the morphologies of 
the structures obtained by varying these three parameters. The simulations use false 
colors and each has the same initial random “seed” so that the basic structures are 
the same. For reference, note that the empirically most common values of 3 are in the  
range 1.5-1.8 (the latter being appropriate for topography and cloud radiances, the 



 

 
 
 
 
 

former, for rain and atmospheric turbulence). The parameter C1 is often fairly low 
(e.g. in the range 0.05-0.15 for the wind, cloud radiances, topography), although it 
can be large (0.25-0.7) for rain and turbulent fluxes. While the basic Kolmogorov 
value of H is 1/3, many fields (such as cloud radiances) are near this, while rain is 
nearly zero, topography is in the range 0.45-0.7. From Fig. 18.11 we can see that 
high values of C1 lead to fields totally dominated by one or two strong structures, 
while low 3 values lead to fields dominated by “Levy holes”: large regions with 
extremely low values. 

 

  
Fig. 18.12a. This self-affine simulation
illustrates the “phenomenological fallacy”
since both the top and bottom look quite
different while having the same generators (G
is diagonal with elements 0.8, 1.2), same
(anisotropic) statistics at scales differing by a
factor of 64 (top and bottom blow-up). The
figure shows the proverbial geologists’ lens
cap at two resolutions differing by a factor of
64. Seen from afar (top), the structures seem
to be composed of left to right ridges,
however closer inspection (bottom) shows
that in fact this is not the case at the smaller
scales. 

 Fig. 18.12b. This shows a multifractal 
simulation looking horizontally through a 
horizontally stratified cloud layer with 3=1.8, 
C1=0.1, H=0.333 of a stratified 3D cloud with 
G diagonal with elements 1, 5/9.  This 
corresponds to a Kolmogorov scaling in the 

 

horizontal (k-5/3) but a Bolgiano-Obukhov 
(k 11/5) scaling in the vertical. Single scatter 
radiative transfer was used for the rendering. 
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Fig. 18.13. A multifractal simulation of a 3D stratified cloud (with the same G as Fig. 18.12b) 
with single scattered radiative transfer. Henyey-Greenstein phase functions were used with 
asymmetry factor g=0.85. 

9 The Phenenological Fallacy and Generalized Scale Invariance 

Geophysicists commonly derive their models from phenomenological classifications 
based largely on classical (scale bound) notions of scale and shape. Once a 
phenomenon has been defined - often involving somewhat subjective criterion – 
models are constructed to explain them. However in this section we shall see that 

In order to change the shape of the singularities while conserving the basic 
statistical properties of the process, it turns out to be sufficient to make the 
replacement everywhere eqs. 10-12: 

 1x ' 1x ; D' Del  (13) 

i.e. to replace the usual distance (“ ”) by a “scale function” (“ ”) and usual 
dimension of space by an “elliptical dimension” Del which satisfies the following 
basic equation scaling: 

 T( x * (%1 x ; T( * (
%G; Del * TraceG  (14) 

328 Lovejoy and Schertzer 

scaling processes – if based on sufficiently strong anisotropic singularities can lead to 
quite different looking structures at different scales even though the basic mechanism 
is scale invariant; see Fig. 18.12a for an example and below for a more systematic 
survey. This possibility demonstrates what we call the “phenomological fallacy” i.e. 
the danger of inferring process from appearance.  



 

 

 
 
 
 

where T!(  is a scale changing operator which reduces the scale of a vector by a factor 
(. In order for the scale function to be scaling (i.e. have no characteristic scale), it 
must satisfy group properties, hence it must admit a generator G as indicated.  

Once all the unit vectors x1 are specified the nonunit vectors ( x( * (; ( ? 1) are 

 8x * 8x , 8y# $* sgn x# $ x 1/ Hx ,sgn y# $ y 1/Hy# $ (15) 

It is then easy to verify that (% I 8x * (%1 8x  i.e. x’ satisfies the scale eq. 14 
but with G=I=the identity corresponding to the generator of an isotropic scale 

 
8x * @ 8A# $ 8r  (16) 

where (r’,A’) are polar coordinates: 
 8r * 8x * x2 / Hx : y2 / Hy# $1/2

; tan 8A *
y '
x '
*

sgn y# $ y 1/ H y

sgn x# $ x 1/ Hx
 (17) 

and @ is an arbitrary positive function which specifies the shape of the unit ball (i.e. 
those vectors with 8x * 1; their polar equation is r’=1/@#A’$) it determines the 
“trivial” anisotropy (the nonscaling part).  

When scale functions are used as the basic singularities, the shapes can be 
extremely varied, hence demonstrating the possibility of modeling geomorphologies 
in this way. First consider G = I: the resulting models will be “self-similar” in the 
sense that their statistics will vary in power law ways under isotropic “zooming” 
(blow-ups). If G is a diagonal matrix, then the singularities x %,

 (where , is the order 

then generated by the action of T!( : x( * T( x1 ; see [Schertzer and Lovejoy, 1985b] for 
technical details on this Generalized Scale Invariance, GSI. The set of all vectors x > (  
is called a “ball”, denoted B(; for physical scale functions B( must be strictly decre-
asing (i.e. B 8( B B( ; 8( = ( ). We can see that if the replacements x % x8 ' x % x8 ; D' Del  
are made in the denominators of eqs. 10, 12, with scale functions satisfying eq. 14 
then the convolutions will have power law dependencies under “zooming”, i.e. the 
models will be scaling as long as the noises are also scaling (hence the special 
choices of Gaussian or Levy noise, or in the multifractal case, of multifractal noises).  
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This generalization of scale, and hence the consequent Generalized Scale 
Invariance (GSI, [Schertzer and Lovejoy, 1985; Schertzer and Lovejoy, 1986]) was 
motivated by the need to deal with the “dimensional transition” that we discussed in 
the introduction. The main conceptual difficulty was to abandon the classical scheme 
(which first posits isotropy and then considers scaling). The solution was bold: to 
first posit scaling, then study the remaining symmetries. To understand the relation 
between usual distances and generalized scales it is instructive to consider a simple 
scale function. Consider a (real) 2-D G matrix which we diagonalize to yield 
G=diag(Hx, Hy) (note that what follows can be generalized to complex eigenvalues 
or nondiagonalizable matrices). We may now make the following nonlinear 
transformation: 

transformation (sgn (x) is the sign of x). When G=I it is easy to verify that a family 
of solutions of the scale function eq. 14 is: 



 
of singularity, see eq. 4) are quite different in different directions and the resulting 
fractals/multifractals are “self-affine” (Fig. 18.12 and 18.14a bottom row). The case 
where G is nondiagonal and the eigenvalues are real is a generalization in which the 

In order to systematically see the effect of varying G, we can parametrize it as 
follows: 

 G *
d % c f % e
f : e d : c

C
DE

F
GH

 (18) 

Defining a2 * c2 : f 2 % e2  we see that G has eigenvalues d+a, d-a, As indicated 
above, real a is “stratification dominant” (structures rotate no more than once with 
scale) whereas imaginary a is “rotation dominant” structures rotate an infinite 
number of times with scale. In order to explore the parameter space, we note that 
there are 3 rotational invariants: d, a, (f2+c2)1/2. Hence for example, taking f=0, and 
varying c loses no generality (other f values are obtained by rotation). Also, we can 
fix d=1 since it turns out that we can always replace G by G/d as long as we 
compensate by simultaneously taking the d power of the scale function) i.e we lose 
no generality with d=1. The two G parameters we explore are thus c, e. The use of a 
final parameter k allows us to examine the effect of possibly very nonroundish unit 
scales (see eq. 16). We define it as: 

 @ 8A# $* 1: 1% 2%k

1: 2%k cos 8A  (19) 

With this definition, we see that k= log2 (r’max/r’min) where r’max, r’min are the maximum 
and minimum radii of the sphero-scale (in the r’ space, but this will be close to the ratio 
in the r space). k=10 thus corresponds to a unit scale which "mixes" conventional 
scales over a factor of more than 1000 (210).  

The effect of varying the parameters c, e, k is shown in the multifractal 
simulations shown in Fig. 18.14. All the simulations have 3=1.8, C1=0.1, H=0.33 
(the empirical parameters for clouds), and are simulated on 256X256 grids with the 
same starting seed so that the differences are only due to the anisotropy (the colours 
go from blue to white indicating values low to high). For isotropic unit scales (k=0, 
top row Fig. 18.14a) we see the effect of varying c. On the right we display the 
contours of the corresponding scale functions. 

main stretching/shrinking occurs along fixed nonorthogonal eigendirections (see 
Fig. 18.12, 18.14). When the eigenvalues are complex, the eigenvectors rotate 
continuously as functions of scale, giving rise to spiral type singularities, see 
Fig. 18.9.  
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Fig. 18.14a.  Top row  k=0, we vary c (denoted i) from  -0.3, -0.15, …0.45 left to right and e 
(denoted j ) from -0.5, -0.25, …0.75 top to bottom.  On the right we show the contours of the 
corresponding scale functions.  Middle row  Same except that k=10.  Bottom row e=0 the c is 
increased from -0.3, -0.15, …0.45 left to right, from top to bottom, k is increased from 
0,2,4,..10.  See text for more details. 
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c=0 and e left to right is: -0.5, -0.25, …0.75. Bottom row Same as the middle row except that 
c=0.15.  In all rows, from top to bottom, k is increased (0,2,4,..10), the right hand shows the 
corresponding scale functions. 

 
Moving down to the middle row we take k=10 so that the unit ball has a range of 

scales of 210; the structures are more filamentary.  In the bottom row we take e=0 
displaying the effect of varying c: G is thus diagonal, the structures are “self-affine” 
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Fig. 18.14b.  Top row The same as the bottom row of 18.14a except that e =0.75.  Middle row 



 
(no rotation).   Fig. 18.14b (top row) is the same as the bottom row of Fig. 18.14a 
except that e =0.75 showing the effect of rotation.  Since a2=c2-e2<0 here (f=0), the 
eigenvectors of (-G rotate continuously with scale.  In the middle row we fix c=0 and 
vary e, the bottom row is the same except that c=0.15 so that there is both the effect 
of stratification (c), and rotation (e).  Here the eigenvalues are again complex except 
in the third column with e=0. Finally, outside our present scope but presumably 
important for realistic geophysical modeling, we can consider G as a nonlinear 
operator (rather than a matrix).  In this case, the anisotropy depends not only on scale 
but also on the location. This allows for spatially varying morphologies.  In this case, 
the linear GSI discussed above is simply a locally valid approximation.  In this case, 
the anisotropy depends not only on scale but also on the location.  This allows for 
spatially varying morphologies.  In this case, the linear GSI discussed above is 
simply a locally valid approximation. 

10 Conclusions 

We are all aware of the extreme variability of geophysical fields over huge ranges of 
scales: the atmosphere has structures as small as millimeters, and as large as the 
planet; a ratio of 1010; the surface topography apparently has an even larger ratio.  
The mathematical modelling of this variability has long stimulated mathematicians 
and physicists.  For example [Perrin, 1913] considered the problem of 
differentiability: “Consider the difficulty in finding the tangent to a point of the coast 
of Brittany... depending on the resolution of the map the tangent would change.  The 
point is that a map is simply a conventional drawing in which each line has a tangent.  
On the contrary, an essential feature of the coast is that ... without making them out, 
at each scale we guess the details which prohibit us from drawing a tangent...”. The 
converse problem -  integrability (“rectifiability”) was considered by [Steinhaus, 
1954] “... The left bank of the Vistula when measured with increased precision 
would furnish lengths ten, hundred, and even a thousand times as great as the length 
read off a school map.  A statement nearly adequate to reality would be to call most 
arcs encountered in nature as not rectifiable.  This statement is contrary to the belief 
that not rectifiable arcs are an invention of mathematicians and that natural arcs are 
rectifiable: it is the opposite which is true...”.  [Richardson, 1961] quantified 
integrability by considering the empirical scaling of the coast of Britain and of 
several frontiers using the “Richardson dividers” method.  In his paper [Mandelbrot, 
1967] “How long is the coast of Britain?” Richardson’s scaling exponent was 
interpreted in terms of a fractal dimension.  Later, in his seminal “Fractals: form, 
chance and dimension” [Mandelbrot, 1977] proposed that fractals are ubiquitous in 
nature.  However, when it came to geophysical applications although stimulating, 
this audacious idea was disappointing: most geofields of interest were mathematical 
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fields (i.e. with a value at (almost) each space-time point such as the atmospheric 
temperature), and cannot be reduced to geometric sets of points.  Furthermore, at that 
time, the proposed fractal sets were only scale invariant under isotropic scale changes 
(or occasionally under the only slightly more general self-affine scale changes in 



 

 
 
 
 
 

However, cascades have nontrivial, nonclassical properties, one of them being 
their highly singular small scale limit which leads to the distinction between “bare” 
and “dressed” cascade quantities.  While the former is the result of the cascade 
developed from a large scale down to a given (finite) scale, and involves only the 
larger scale interactions – the latter is the result of integrating (“dressing”) a fully 
developed cascade to the same scale.  While the former has long-tailed statistics (e.g. 
log-Levy, log normal), the latter has fat, “algebraic” tails.  If we adopt an operational 
definition of Self-Organized Criticality as a system with fractal structures and with 
strong algebraic distributions of extremes, then multifractals generically provide a 
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which different exponents act in different orthogonal directions).  In a number of 
fields, by the early 1990’s this restrictive isotropic monofractal framework was 
found to be quite inadequate leading in at least one instance - earth surface 
morphology – to the virtual abandonment of scaling approaches.   

In this paper we have argued that the key to understanding systems with large 
numbers of degrees of freedom with nonlinear dynamics acting over wide scale ranges 
was to generalize the notion of scale invariance (and indeed, of scale) in the framework 
of Generalized Scale Invariance and the basic mathematical object from fractal sets to 
multifractal functions (or more precisely, densities of measures). While the motivation 
of the former was to allow the nonlinear dynamics of the system to define the 
appropriate notion of scale (rather than to impose a priori isotropic, Euclidean notions), 
the motivation for the latter was to handle nonlinear processes which repeat scale after 
scale, the generic multifractal process being the cascade.   

nonclassical (phase transition) route to SOC. 
As seductive as they are, multifractals involve an infinite hierarchy of exponents, 

and hence would be useless without some robustness principle to eliminate unsteady 
artifacts.  Fortunately, stable, attractive universality classes exist with only three 
parameters, this enables both compact parametrisations of the exponent functions 
(and hence the empirical characterization of scaling geofields), it also allows for 
numerical simulations.  In the last part of this paper we show how to make numerical 
simulations of clouds and topography which are quite realistic both statistically and 
visually. 

During the last twenty years, we have seen the transition from fractal geometry to 
multifractal processes; we have seen how extremes can be tamed with the help of 
Self-Organized Criticality, we have witnessed the opening of new areas of 
applications by generalizing scale invariance from isotropic to anisotropic systems.  
These developments have in turn paved the way for systematic empirical 
characterizations of both solid earth and atmospheric geofields, they help overcome 
longstanding measurement problems (such as the interpretation of aircraft data).  
They have created the framework needed for realistic modeling of geofields over 
potentially huge ranges of scale. 
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