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Abstract

Advances in remote sensing and in situ measurement techniques
have revealed the full continuum of atmospheric motions and have
underlined the importance of mesoscale processes. This paper ex-
amines the implications of three observed characteristics of meso-
scale circulations: 1) the energy spectrum of the horizontal wind in
the horizontal is of the form k8 with B, ~ 5/3, (k is a wave-
number); 2) the corresponding spectrum in the vertical direction is
of the same scaling form, but with a very different slope (8, ~ 11/5);
and 3) the variability is extreme.

Some recent work in turbulence, physics,and meteorology, thatis
relevant to systems with extreme variability over a wide range of
scales is reviewed. The concepts of scaling, intermittency, and frac-
tals, are briefly introduced to show how they can be used to under-
stand the physics of both homogeneous and intermittent energy cas-
cades in isotropic atmospheres. These concepts may be generalizable
(with a formalism called generalized scale invariance), to account for
atmospheric intermittency and especially for anisotropy.

Finally, it is shown how to construct fractal models.

These models are useful because they produce realizations of ran-
dom fields that are broadly of the same sort as those that may be
allowed by the equations, while at the same time depending on em-
pirically determined parameters. This enables them to retain close
links with both the data and the physics. Finally, possible applica-
tions in mesoscale modeling, sampling problems, remote sensing,
nowcasting, hydrology, and numerical weather prediction (NWP)
systems are briefly discussed.

1. Introduction

Interest in atmospheric dynamics has traditionally been con-
centrated at two poles: the immediately perceived small tur-
bulent scale and the large synoptic scale accessible via con-
ventional observing networks. It wasn’t until the fifties and
sixties, when radar and then satellites opened up the new
realm of the*‘mesoscale,” that meteorologists were directly
confronted with the full continuum of atmospheric phe-
nomena.

Remotely sensed and modern in situ data have now re-
vealed that far from being a dull energy sink (associated with
a hypothetical “gap” in the spectrum—e.g. Van der Hoven,
1957), the mesoscale is both active and interesting. There is
now general agreement about the following basic aspects of
the mesoscale (see Schertzer and Lovejoy [1983, 1985a] and
especially the valuable review by Lilly [1983]):
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1) Scaling. Fluctuations occur over a wide range of time
and space scales: in particular, the energy spectrum of
the wind in the horizontal is of the scaling (power-law)
form k-8where k is a wavenumberand Bxis a (horizon-
tal) exponent of value ~5/3.
Anisotropy. For heights up to at least 5 km, the corre-
sponding (horizontal) wind spectrum is also scaling but
is quite different from the horizontal (8, ~ 11/5).
Over this range, the anisotropy introduced by gravity is
therefore independent of scale.
3) Extreme variability. This is mostly due to sparsely dis-
tributed active regions that account for most of the
energy and moisture flux (see e.g. Wyngaard, 1983).
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In the following, work on scale invariance and inter-
mittency in isotropic systems is first reviewed, and a brief out-
line of a symmetry principle called generalized scale invar-
iance (GSI), which constitutes a systematic extension of these
concepts to anisotropic situations, is given.

Most of the results presented have been published else-
where, hence, this article’s organization is primarily directed
to simply and clearly explaining the main ideas, many of
which are more familiar to physicists than to meteorologists.
The exposition therefore follows a somewhat indirect path,
relying on the extensive use of elementary stochastic models
of cascade processes. While the first few examples are clearly
only for pedagogical purposes, the later ones are already suf-
ficiently realistic so as to deserve study in their own right.
These models are useful because they produce realizations of
random fields that are broadly of the same sort as those that
may be allowed by the equations, while at the same time de-
pending on empirically determined parameters. Thisenables
them to retain a close link with both the data and the basic
physical principles. We briefly discuss how they can be ap-

* A specific type of scaling may be defined for the one-dimensionat
function X(z) as follows: AX(AAr) £ A"AX(Ar), where AX(Ar) =
X(to + At) — X(t0), X(NA1) = X(to + NAr) — X(10).isascale ratio
and the equality is understood in the sense of probability distribu-
tions (i.e., X £ Y if PH(X > q)= Pr(¥Y < q) for all g; Pr means
probability). This equation states that fluctuations at large scale
(NAt, A > 1) are related to those at small scale (A7) by the constant
factor A¥. Note that for finite variance, 8 = 2H + 1. Most experi-
mental tests of scaling have involved statistical averages over large
ensembles. However, if the probability distribution is *fat-tailed”
(intermittent, see Section 2c), then in specific situations (such as
storms) large deviations from the mean (e.g. random spectral peaks)
will occur.

4 11/5is the value obtained from dimensional arguments as well as
from a number of empirical studies (see the discussion in Schertzer
and Lovejoy, 1985a). Although the exact value may be debated,
there is general agreement that 8, > B, which is all that we require
here.
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plied in mesoscale modeling, sampling problems, remote
sensing, nowcasting, hydrology, climatology, and numerical
weather prediction (NWP) systems. Finally, it is suggested
how these simple models can be improved so as to represent
meteorological phenomena more accurately.

2. The physics of atmospheric cascades

a. Atmospheric symmetry principles

Modern physics has developed largely through the systematic
use of symmetry principles. A system is symmetric when it is
invariant under a certain group of transformations that may
be much more abstract than simple mirror or rotational
symmetries. The familiar meteorological symmetry principles
are the invariance (or conservation) of energy, momentum,
and matter. Whatis missing,and what an explicit set of equa-
tions such as the Navier-Stokes equations ought to provide,
is an additional symmetry that determines the aspects of at-
mospheric structures that are invariant with respect to
changes in scale. Symmetries of this sort are called scale in-
variance (abbreviated to scaling). It is a telling commentary
on the difficulty of the subject that more than 40 years after
the prediction that the Navier-Stokes equations should lead
to scaling spectra, there is still no solid proof. However, very
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F1G. 1. Schematic representation of how various isotropic-tur-
bulence models treat the breakup of an eddy (represented by the
square) via nonlinear interactions during a single step in the cascade

_process. The various schemes are divided into homogeneous and in-
homogeneous (intermittent). The formula giving the number of ac-
tive eddies at size (L) [=N(L)) is shown. Dy is the dimension charac-
terizing the “‘sparseness” of the support.
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few doubt that the connection is real and many nonrigorous
arguments exist. For some recent numerical results, see
Chorin (1981) and Brachet er al. (1983).

There are now a large number of measurements (mainly of
spectra) which support the idea that over a large fraction of
meteorologically significant scales, the atmosphere is scal-
ing (see the references in Lilly [1983] and Schertzer and
Lovejoy [1985a]). Over their range of validity, power-law
spectra are scaling because they do not involve characteristic
lengths. Strong evidence (complementary to that obtained
from spectra) for the existence of scaling is Lovejoy’s 1982
study of the “complexity” of cloud and rain areas (4) and
perimeters (P). Fromat least 1to 1000 km, the scaling relation
P/P; = (A/A4;)Pr, where P;is the linear and A, the areal reso-
lution of the sensor, was found to hold with D, ~ 1.35. Dpis
the fractal (see below) dimension of the perimeter (=1 for
smooth lines, and =2 for maximally complicated curves that
literally fill the plane). The lower limit has been extended
with Landsat imagery by Cahalan et al. (1984) to 0.16 km.

b. Turbulence in isotropic atmospheres

In the simplest scale invariance of interest, “self-similarity,”
the statistical properties of the large scale are simply magni-
fied carbon copies of those at small scales. Although at first
sight trivial, self-similarity is in fact compatible with a be-
wildering variety of shapes, as graphically illustrated by the
beautiful illustrations of self-similar fractals in Mandelbrot
(1982).° He has also convincingly shown that many physical
systems such as the earth’s topography, coastlines, and rivers
are fractals. It is worth noting that the scale invariance of
these atmospheric boundary conditions—as well as that of
others such as the solar forcing—(insolation; Gauthier, pri-
vate communication, 1983) are important in accounting for
the observed power-law wind spectra.

It is therefore perhaps not very surprising that the earliest
turbulent scheme of atmospheric motions (Richardson,
1922, 1926) was generated by a self-similar series of steps in
which eddies of a given size are broken up by the nonlinear
interactions into smaller sizes. The smaller (sub)eddiesare in
turn broken up and the process is repeated until scales small
enough for viscosity to be important are reached. At each
step in this isotropic, homogeneous cascade,’ the energy is
transferred (without dissipation) from the larger to the
smaller eddies: it is thus an invariant of the cascade. This
process is shown schematically in Fig. 1. The initial eddy,
represented for convenience by a square, is transformed by a
single cascade step. Each of the subeddies are copies of the
original reduced by the linear ratio A (here taken =2) and
each containing a fraction A2 of the original energy. If this
process is continued indefinitely, it is clear that the energy
distribution is statistically homogeneous and isotropic. This

’The expression fractal was originally coined to denote shapes
having the property that a fragment is similar to the whole. We con-
tinue to use this term in the context of anisotropic phenomena (GSI—
see section 3), although it is clear that here the part may require a
deformation and/or rotation in order to resemble the whole (see the
discussion in Schertzer and Lovejoy, 1984b).

¢ The terms homogeneous and isotropic refer respectively to trans-
lational and rotational invariance.
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F1G. 2. The simple cascade scheme on a square grid correspond-
ing to Fig. I B (but with A = 4). For each ““subeddy” thus generated,
choose a random number uniformly distributed over the interval
(0, 1). If it exceeds some pre-assigned value (p = 0.70 in this case),
the eddy is considered “dead’ (shown as white); otherwise it survives
(black), there being N survivors per generation. The average number
of survivors (N)is A’p = 16 X 0.7 = 11.2. When the cascade proc-
essisiterated an infinite number of times (here it is followed for only
four generations on a 256 X 256 point grid). The set of surviving
“active” regions has dimension D, = log (N)/log A = log 11.2/log4
= 1.73.

simple scheme of homogeneous isotropic turbulence leads
directly (via dimensional arguments) to Kolmogorov’s (1941)
k™ energy spectrum. Isotropic-cascade ideas have been so
successful that the idea of self-similarity is now central to vir-
tually all theories of turbulence.

c. The problem of intermittency

Kolmogorov assumed that all regions occupied by the fluid
were equally active. However, it soon became clear that this
was far from true: turbulence was recognized to be ‘““spotty”
or “intermittent” (Batchelor and Townsend, 1949), with ac-
tive regions occupying only a small fraction of the space avail-
able. Attempts to account for this intermittency, via the work
of Novikov and Stewart (1964) and Yaglom (1966), lead toa
more general cascade scheme (Mandelbrot, 1974). The
simplest case, (known as the 8-model; Frisch ez al., 1978) is
illustrated in Fig. 1b. As before, the large eddy is broken up
isotropically. Now however, the subeddies are randomly
chosen to be either “‘dead™ or “alive” (active), with the
energy at each step being divided equally only between the N
active subeddies, with (N) < A’ (in Fig. 1b, N = 3).” When
the process of division into subeddies and redistribution of
energy is iterated indefinitely, the energy is eventually dis-
tributed over a set of points such as that shown in Fig. 2

7 Hereafter, angle brackets denote statistical averages, and over-
bars denote spatial averages.

N

FiG. 3. The a-model with A = 2 and nine cascade steps on a
512 X 512 grid with D; = 1.98 and D = 1.5. The logarithm of the
energy flux e is indicated by the grey shading—weak regions white
(however there are no completely ““dead” regions) and intense re-
gions black. If a threshold is fixed, the set of points exceeding it will
look something like that shown in Fig. 2 (i.e. D, < 2) with the differ-
ence that the actual value of D; is now a function of the threshold.
The modelis therefore “multidimensional.” It is also hyperbolically
intermittent since spatial averages of the invariant measure ¢ have
hyperbolic distributions.

(called the “‘support” of the turbulence) which is a crude rep-
resentation of the active regions of a two-dimensional sec-
tion of an isotropic three-dimensional atmosphere. These re-
gions are so “‘sparse’ that the area occupied by them is zero.
In fact the best way to characterize this “sparseness” is not by
the area covered, but by the mathematical (Hausdorff, frac-
tal) dimension® of the support Ds = log (N)/logA. In Fig. 2,
Ds = 1.73; the set is therefore more than linelike (Ds > 1, so
that its “length” is infinite) but less than arealike (D5 < 2,
therefore, the area = 0).9 If we were to determine the number
of points within a radius L of a randomly chosen point on this
figure, it would vary as Lb.'" Note that by changing (N) we
can obtain a set with any dimension between zero and the
dimension of the underlying space (here =2). In fully devel-
oped three-dimensional isotropic turbulence, there is general
agreement among experimentalists that 2.3 < D, < 2.8 (e.g.
Antonia et al., 1982). Turbulence is therefore difficult to ap-
prehend because the (active) regions of greatest interest oc-
cupy a volume that, strictly speaking, is zero! Note that the

#See Kahane (1976, 1985) for a mathematical introduction and
discussion.

® The use of fractional dimensions is not as strange as it may seem.
Everyone is familiar with the fact that the area of a line is zero and
thata plane is infinitely “long.”” To obtain a positive but finite meas-
ure of a set, the correct dimension—in this case D—must be used.

' Note that D; is not necessarily equal to D, since D, refers to a set
that includes interior points, while D, does not.
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volume’s being zero doesn’t mean that the phenomenon in
question is “small” (e.g. a plane is infinitely large, but of zero
volume): the size must be determined using the correct (Haus-
dorff) dimension.

Having mastered this archetypal fractal construction, we
are now prepared to consider an almost as simple, but much
more instructive, example. Rather than dividing eddies into
categories of dead oralive according to a certain probability,
we characterize them as being either weak or very active. The
energy in each subeddy is determined by multiplying that of
the parent eddy by one of two fixed factors, the first of which
is less than unity, the second greater than unity, the choice
being made according to a predetermined probability level.
The factors are constrained so that on average, the energy in
the subeddies is equal to that in the parent eddies. This in-
sures that the energy remains an invariant of the process. The
result of this process, called the a-model in Schertzer and
Lovejoy (1983, 1984a), is shown in Fig. 3."" In fact, in all
cases except the 8-model, the process has the following main
properties:

1) No regions are completely “dead.”

2) If a set of points exceeds a particular threshold, the di-
mension of this set gradually decreases as the threshold
isincreased. Eventually we obtain a very sparse set with
dimension D«. The model is thus “multidimensional”
(see Hentschel and Procaccia, 1983; Grassberger, 1983;
Schertzerand Lovejoy, 1983; Mandelbrot, 1984a; Parisi
and Frisch, 1984), .

The probability distribution function, Pr, for intense
regions is asymptotically hyperbolic:

3

~—

Pr(e’ >'¢) o e (for large ¢),

for the probability that a random (spatially averaged)
energy flux €’ exceeds a fixed threshold ¢; a. is an ex-
ponent depending on the details of the construction
and on the dimension of the region over which eisaver-
aged. The smaller the value of a., the more intermittent
the resulting field is, and the more extreme the fluctua-
tions. In particular, the moments (¢") — o= if 4 is greater
than or equal to a. (see discussion in Section 3b).

d. The problem of anisotropy

If self-similarity is assumed, and one extrapolates from a
small roundish cloud, the absurd conclusion that clouds
thousands of kilometers long may also be thousands of kil-
ometers thick is quickly reached. Clearly, the vertical stratifi-
cation of the atmosphere precludes the possibility that it is
self-similar throughout. The classical scheme of atmospheric
motions (e.g. Monin, 1972) attempts to avoid this difficulty

F1G. 4. (right) The shapes of the average eddies at different scales
for (top) isotropic (self-similar) turbulence, (middle) anisotropic,
horizontally stratified turbulence (a vertical cross section obtained
after averaging over the different horizontal directions is shown). As
scale size is increased, the horizontal axis of the ellipses (L) increases
as L while the vertical axis increases as LH: = [ 1+H: = [ *% hence
the dimension (D.;) is 1.555 rather than 2. (bottom) An example of
both differential stratification and rotation (modeling the effect of
the Coriolis force). Here, D = 2 in accord with observations in the
horizontal.

'S0 called because of the exponent ¢ that it introduces.
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by postulating a three-dimensional self-similar regime at
small scales and a two-dimensional self-similar regime at
large scales. If they exist, these regimes would be totally dif-
ferent, because of the conservation of vorticity in two but not
three dimensions. Furthermore, the boundary separating the
two regimes would be marked by a sharp ‘“dimensional tran-
sition” (Schertzer and Lovejoy, 1985a).

Following Schertzer and Lovejoy (1983, 1985a,b,c), it is
clearly more natural to directly study anisotropic cascades.
Such a study led to the surprising conclusion that the effec-
tive dimension of the atmosphere is neither two nor three,
but rather the intermediate value Dy = 23/9 = 2.555. . ..
Atlarger and larger scales, the atmosphere becomes progres-
sively “flatter’ but is never two-dimensional. Figures 4a,b, c
compare the shapes of the average eddies in the jsotropic
(self-similar) and some simple anisotropic cases (see the dis-
cussion in the next section). The dimension 2.555is called an
elliptical dimension because of the ellipsoids it introduces.

A schematic illustration of simple anisotropic cascades is
shown in Fig. 5. Rather than producing subeddies by dividing
both axes of the parent eddy by the same factor, we divide
one by A and the other by A4, Figure 5 shows this with A = 4,
H,; = 1/2. The resultingelliptical dimensionis 1 + H. = 1.5;
in the isotropic case it is 2. At each step in the process, the
initial rectangulareddyis reduced in size and elongated. The
transformation from one scale to another now involves a
compression as well as a reduction (this process can ob-
viously reverse itself and go from a small to a large scale, in
which case the eddies ““stretch” more and more and become
more and more flat). Note that as in the atmosphere, the
structures at the largest scales are the most horizontally strat-
ified. In the atmosphere, theoretical and experimental results
show H,; = 5/9, hence Dy = 2 + H, = 23/9 (Schertzer and
Lovejoy, 1983, 1985a).

3. A theoretical framework for anisotropic and
intermittent cascades—GS|

a. The elements of GSI

We have illustrated the nonlinear breakup of eddies using
simple isotropic-and anisotropic-cascade schemes involving
two components: 1) a rule specifying how eddies are trans-
formed from one scale to another (or rather how their statis-
tical properties are transformed), while 2) leaving the total
energy flux invariant. More generally, we require two basic
sets. The first set is a group of scale-changing transformations
that define how the average eddy shapes change with scale.
Attention is restricted here to an important class of scale-
changing transformations that define a distance. By specify-
ing the anisotropy and metric at each scale, the link between
fluctuations of different sizes is provided.'? The second set
consists of elements that are measure invariant under the
scale-changing group. They define the conserved quantities
(e.g. energy flux) and provide the link between fluctuations
of different intensities. In this subsection, it is shown how
GSI gives precise meaning to each component, and general-

'2 Actually, Schertzer and Lovejoy (1985b,c) show that metric
properties are not essential; eddies need only be measurable.
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FiG. 5. Asin Fig. 1 but for anisotropic cascades where the hori-
zontal and vertical axes are divided by different factors (4 and 2
respectively). This defines a new exponent H. = log 2/log 4 = 1/2
and elliptical dimension Da =1+ H. = 3/2.

izes them, allowing development beyond the unrealistic
eddy shapes used so far. Although GSI leads to a number of
consequences that are at first sight surprising, a closer look
shows that they are supported by a wide body of empirical
evidence. Theoretically, GSI is appealing, since it is a sym-
metry likely to be respected by solutions of the Navier-
Stokes equations which govern fluid dynamics. For the full
details of GSI, see Schertzer and Lovejoy (1985c¢). On a first
reading, the rest of this subsection can be skipped without
loss of continuity.

1) SCALE-CHANGE OPERATORS

Consider the operator 7} that increases scales by a (positive)
factor (forexample,in Fig. 1, 4, or Sit might transform eddies
into subeddies). Obviously, the T\ must satisfy certain
properties:

1) Theyforma group: T\ T, = T. Tx = T forall positive
TR
2) They define balls B, = T\ (B:) (c.f. Fig. 4) increasing
with A such that there exists a distance d satisfying:
d(x,x") < 2\, where x, and x’ are vector elements of B,.
In the case of isotropic scaling, T reduces to A (a pure
dilation). The simplest anisotropic cases (called linear
GSI, Fig. 4), are obtained by considering T\ = exp(GlnA)
= A% where G is a matrix called the generator of the
group.
Although the derivation is technically quite involved,
Schertzer and Lovejoy (1985b,c,d) show that when the
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Fi1G. 6. The probability, Pr(AT’ > AT), of a random tempera-
ture difference, A7, exceeding a fixed threshold, A7. The squares
are the daily differences of daily average temperatures at Macon
(France) for the period 1951-81. The circles are for the correspond-
ing temperatures averaged over 53 stations distributed all over
France. This spatial averaging smooths out the fluctuations, hence
the amplitudes are decreased. Note that because of scaling, the only
difference is a constant factor (linear shift on this log-log plot). See
Lovejoy and Schertzer (1985a) for a discussion.
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FiG. 7. The probability, Pr(A¥? > Av?), of a random vertical
wind shear squared, A V? exceeding a fixed threshold, AV, for layers
of thickness AZ. Symbols from left to right are for layers 50, 100,
200, 400, 800, 1600, and 3200 m thick. Data were obtained from 80
consecutive three-hourly high-resolution radiosondes in Landes,
France, in 1975, The straight lines have slopes (=a./2) = 5/2
(2 o = S)mand the regular spacing indicates scaling with H ~ 3/5
(B = 2H + 1 ~ 11/5). For details, see Schertzer and Lovejoy
(1985a).
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unit ball is a sphere, and when the symmetric part of G
has eigenvalues greater than one, then T satisfies these
criteria. Thus a precise meaning is given to the expres-
sion “‘anisotropic scale invariance.” Nonlinear trans-
formations are necessary to deal with anisotropy thatis
position-dependent and involves the use of differential
manifolds.

2) INVARIANT MEASURES

In GSI, the quantities of interest (e.g. €) are mathematically
measure invariant under the action of Tj:

Ti(e) = A,

where D is the dimension of the support of ¢.'* When e is an
energy flux, this expression can be read: *‘the energy flux
through a region enlarged by the factor A is \” times greater.”
If we consider the usual volume measure (e.g. dxdydz), it is
scale invariant with D = D,;(in general, #3), where D.is the
anisotropic elliptical dimension introduced in Schertzer and
Lovejoy (1983, 1984a):

D, = Trace G = log det (T)).

b. Some physical consequences

Schertzer and Lovejoy (1985b, ¢) show that in general, meas-
ures invariant under GSI have the two closely related prop-
erties noted in Section 2c. First, they are multidimensional,
and second, fluctuations of spatial averages of € are hyper-
bolically distributed (as defined in Section 2c). This leads
to a specific type of strong intermittency, called hyperbolic
intermittency, characterized by the exponent « of the
corresponding probability distribution. Note that o is
conceptually quite different from 8 or D, which are defined
irrespective of the probability distribution.

There is now much evidence (see, e.g., Figs. 6,7, 8) support-
ing this kind of hyperbolic intermittency in the atmosphere.
Some empirical values of the exponent a are: 5/3 for the rain-
field (Lovejoy, 1981); 5, 10/3, 5/3, 1, and 1 for the velocity,
buoyancy force, energy flux, Richardson number and buoy-
ancy force-variance flux respectively (Schertzer and Love-
joy, 1985a); Sfor temperature (see Fig. 6; Ladoy ez al., 1985);
and 1 for the radar reflectivity (Lovejoy and Schertzer, 1985c).

Whereas scale-invariant fluctuations have no characteris-
tic length, hyperbolically intermittent fluctuations have no
chartacterisic amplitude. In the extreme case where a < 2,
large fluctuations occur so frequently that the largest member
of a sample of such fluctuations is always of the same order of
magnitude as the sum of all the othersin the sample.'* Unlike
the familiar case of quasi-Gaussian fluctuations, where the
fluctuations rarely exceed two or three standard deviations
and are thus all of the same order of magnitude, here the
largest dominates the others no matter what the sample size.
This phenomenon was first noted by Mandelbrot and Wallis

'3 The equality sign may be understood in different ways, e.g. de-
terministically, “almost surely,” or as signifying equality of proba-
bility distributions, the latter being one of the most useful in
meteorology.

“In general, if & ~ a, this statement is true of the largest Ath
power of a sample as compared to the sum of all the other 4th powers.
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(1968), who named it the Noah effect after the extreme fluc-
tuation responsible for the biblical flood. We shall see below
that in accord with the richness of actual meteorological
phenomena, fluctuations of this type are compatible with a
wide diversity of structures. Figure 9 graphically shows how
this effect can lead to the erroneous suggestion that a rain-
rate time series is separated by a few sharp changes into dif-
ferent regimes.

Above, we noted that the moments (e.g. (¢")) diverge for
h = a." Empirical moments, which are averages of empirical
values, are of course finite: divergence of moments simply
means that the former increase without limit with increasing
sample size. The bothersome *‘outliers” familiar to experi-
mentalists are replaced by even larger outliers as the data
base increases—no matter how large the sample size, we are
plagued by a small number of extreme values contributing a
large fraction of the moments. Ascribing the outliers to non-
stationarity in the statistics and then eliminating them from
the sample is both arbitrary and unwarranted. An important
specific example is the ubiquity of outlier problems in cloud-
seeding experiments which is probably linked to the low
value of « in the rain field. Another experimental situation
where we may expect hyperbolic intermittency to generate
outliers is the boundary layer. There, experimentalists often
calculate high-order moments in order to calibrate statistical
closure models, and they are known to have problems getting
their empirical averages to converge (Wyngaard, personal
communication, 1984). The divergence of moments may also
have simple consequences for empirical measurements of
high-order structure functions (c.f. Schertzer and Lovejoy,
1983, 1984a) associated with the breakdown of the law of
large numbers.

4. The role of stochastic models

a. The fractal-sums-of-pulses process

Although primarily instructive in purpose, the preceding cas-
cade schemes capture many of the salient features of the at-
mosphere: extreme variability, anisotropy, and scale invar-
iance. To be of direct use, more-realistic models are clearly
necessary. Researchers, motivated by empirical studies of the
rain field (Lovejoy, 1981, 1982, 1983; Lovejoy and Schertzer,
1985d), developed the fractal-sums-of-pulses (FSP) process
(Mandelbrot, 1984b; see Lovejoy and Mandelbrot, 1985, for
the implementation in one, two and three dimensions), which
is visually more realistic (see Figs. 10, 11, 12). In the FSP proc-
ess, rain and cloud fields are simulated by adding many ele-
mentary shapes (“pulses”) in a scale-invariant manner. The
actual shapes used in the self-similar model discussed in Love-
joy and Mandelbrot (1985) were circles and annuli for hori-
zontal cross sections, and spheres and spherical shells for the
temporal evolution respectively (see Fig. 10b, ¢). Due to the
Noabh effect the strongest of these pulses dominates the others

" The divergence is a simple consequence of the hyperbolic tail of
the distribution:

@ =[edpr=[ec*'de -~ forh=a.
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Fi1G. 8. Asin Fig. 7, butfor the probability Pr(Aln® > InAf) of a
random vertical (log) potential temperature difference Aln® exceed-
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FI1G. 9. Nlustration of the Noah effect. A discrete rain-rate time
series, R(¢),is modeled by the expression R(t;) = }_j-1A R; where the
A R;are independent, identically distributed random variables of the
form Pr({ AR| > Ar) < Ar"® (with @ = 5/3 as determined from
radar observations), which is the probability of a random change,
AR, exceeding a fixed threshold, Ar. The signs of the AR were chosen
randomly. The index i runs from 1 to 1300. The resulting R(¢) occa-
sionally has such large “jumps” that over any interval, most of the
total change in R{#)is due to only one or two extreme changes, which
thereby dominate the others. Here, the largest jump (indicated by the
arrow) yields roughly two-thirds of the total change ARy (indicated
to the right).
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and thus subtly imposes its geometry. The shapes used in
these figures are only the simplest possible.

The temporal evolution may be modeled by assuming Tay-
lor’s hypothesis of frozen turbulence, which states that tem-
poral statistics are simply spatial statistics dimensionalized
by an appropriate velocity factor; Brown and Robinson,
1979, empirically verify this hypothesis for distances up to
1000 km. Lovejoy and Schertzer (1985b) show how FSP models
can be used to model both vertical stratification and the effect
of the Coriolis force (see Figs. 3, 4). Although these models
depend on only two basic radar-determined parameters (the
scaling parameter H, which is related to the spectral exponent
B, and the intermittency parameter «), they possess a number
of realistic features including:

1) extreme variability over a wide range of scales;

2) realistic “complexity” of shapes (as measured by the
fractal dimension of the perimeters);

3) the clustering of cells at all scales, including realistic
distributions of rain and cloud areas;

4) the occasional appearance of bands and frontlike struc-
tures. For a discussion of the limitations of FSP models,
as well as for several methods of overcoming them, see
Lovejoy and Schertzer (1985b). V

b. Some immediate applications

Models of this broad type are likely to be indispensible in
many fields where extreme variability occurs over a wide
range of scales. Stochastic fractal models provide a frame-
work based on clear physical principles from which many of
the problems in meteorology and of data anlaysis can be sys-
tematically studied. In stochastic modeling, the phenomenon
of interest is assumed to be intrinsically extremely variable
overa wide range of scales, and specific phenomena and proc-
esses are studied either directly or as perturbations to such a
state. Mathematically, such models produce functions quite
different from those accessible with the usual analytic tech-
niques. Physically, phenomena are no longer smoothed out:
discontinuities (e.g. fronts) are no longer treated as per-
turbations around a smooth basic state, nor are small-scale
processes dealt with indirectly via parameterization schemes.

Obvious applications of these models include:

Mesoscale modeling. The standard deterministic-type meso-
scale models can directly resolve only a small fraction of the
range of the relevant scales (typically a factor of only 50).
Fractal models deal with this problem in a simple way based
on clear principles. Of course, the derivation of these prin-
ciples from the equations (when they are known!) is a fun-
damental (and difficult) field of research. Stochastic models
are useful not only in choosing between different theoretical
possibilities, but also in evaluating their implications for the
dynamics (particularly its intermittency and anisotropy).

The sampling problem. How are measurement errors af-
fected by the density and frequency of measurements? The

F1G. 10. (left) Model of the temporal evolution of an isotropic
rain field on an 800 X 800 point grid. The images are separated by a
time equivalent to 80 pixels. The log rain intensity is shown by the
shades in the figure—a black background (=no rain), with white
being the most intense.
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sampling and averaging properties of various combinations
and arrangements of sensors can be studied directly by using
stochastic simulations. The problem is compounded by the
fact thatin general all the statistical properties (including av-
erages) of atmospheric fields depend on both the scale and
the dimension over which they are averaged. Using radar
data, Lovejoyand Schertzer (1985¢c)and Lovejoy ez al. (1985)
empirically show the strong scale and dimensional depend-
ence of the rain field. They also analyze the 9563-station
world meteorological surface network,'® and find them to
be clustered down to scales of ~1 km with dimension
D ~ 1.75 instead of D = 2, which would correspond to a
uniform network over the two-dimensional surface of the
earth.'” One consequence of this reduced dimension is the
inability of the network to detect very sparse phenomena
(perhaps tornadoes) having a dimension smaller than ~0.25
(=2 — D); this minimum dimension is called the dimen-
sional resolution of the network. A related problem is that
of interpolating network measurements on to a regular grid—
this may be likened to deducing the structure on a plane
(D = 2) from knowledge only along a line (D = 1).

Remote sensing. Remote-sensing devices generally integrate
nonlinearly the fields of interest. This problem is quite signifi-
cant—for example Lovejoy and Austin (1980)showed thatin
the estimation of rain from passive microwave sensors a bias
of at least 30% and errors of at least =160% result from this
effectalone. Projectsare already under way to use stochastic
models of this type to solve remote-sensing problems (see e.g.
Cahalan et al., 1984). Calibration of remotely sensed data
must take into account the different averaging and sampling
scales and dimensions (see the preceding paragraph).

Nowcasting. Various short-term automatic forecasting pro-
cedures (e.g. Rainsat—Bellon et al., 1981) already capitalize
on the “stochastic memory” of the atmosphere by basing pre-
dictions on the assumption of continued uniform advection
of raining areas. Stochastic fractal models provide an ideal
context for systematically studying the relationship between
temporal and spatial statistics, as well as the limits of predict-
ability. For example, we expect that due to hyperbolic inter-
mittency, forecast errors can be occasionally very large. It is
therefore of interest to compare various forecast procedures
on both data and the model, where their accuracy is more
easily understood.

Hpydrology. Stochastic models of rain involving various
time and space characteristics have long been used in hydrol-

F1G. 11. (right) Model of a rain cross section on a 400 X 400
grid. Going from top to bottom we “zoom” in by factors of 100
(top to middie) and 10 (middle to bottom) on random sections. At
one extreme (top), only the overall horizontal stratification is vis-
ible, while at the other (magnified 1000 times), only the intense rain
“shafts’ can be seen. The cover illustration corresponds to a ran-
dom section selection falling between the top and middle parts of
the figure (a 10-times “zoom™ on the top rain cross section).

' These are stations that the World Meteorological Organization
lists as recording at least one meteorological observation every 12
hours. For further information see Lovejoy ez al., 1985.

' Other analyses by the authors and P. Ladoy also find D ~ 1.8
for the 3943 climatological stations in France, down to about 10 km
and D ~ 1.5 for the 414 meteorological stations in Canada down to
~30 km.
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ogy (see e.g. the review by Waymire and Gupta, 1981). Frac-
tal models should greatly extend the range of scales over
which such models may be useful (Waymire, 1984).

Climatology. Climatological time scales are best defined as
limits of scaling regimes. For example, Lovejoyand Schertzer
(1985a) use hemispherically averaged temperatures and paleo-
temperatures to show that, at least for scales between five
and 40 000 years, these temperatures are scaling, with the ex-
ponent B fully compatible with the amplitude and frequency
of the interglacials. However, the behavior of local tempera-
tures is different, and stochastic models may prove useful in
understanding this difference.

The study of NWP systems. Schertzer et al. (1983) proposed
that the “‘stochastic coherence” of NWP systems be studied
by comparing the measured values of 8 and « against those
generated by NWP systems. In this way it is possible to sys-
tematically determine whether or not the complex set of op-
erations they involve have a tendency to artificially create or
destroy disturbances of a given size or to artificially suppress
disturbances of large intensity (e.g., fronts).

5. Conclusions

Supported by simple stochastic fractal models, we have
argued that the scaling, anisotropy, and extreme intermit-
tency of the mesoscale may be understood in terms of a sym-
metry principle called generalized scale invariance. Although
the work described here is only a modest beginning and
leaves many important questions unanswered, we believe
that there are at least three compelling reasons to believe that
GSl is relevant to atmospheric dynamics. First, a vast body
of data, especially from spectra and probability distributions,
gives very solid support to both scaling and hyperbolic inter-
mittency. Second, a growing body of theory suggests, but not
yet proves, that many nonlinear systems (of which the Navier-
Stokes equations are the prototypical example) can be scale
invariant over wide ranges, and thereby respect GSI. The
third reason is the surprising success of simple fractal models
such as the FSP process in simulating, not only statistically
but also visually, both rain and cloud fields. Apparently,
fields with extreme intermittency over a wide range of scales
are by nature rife with meteorological-like features, including -
lines, bands and clusters, texture, and complexity. Although
still at a primitive stage, these models can already be used in
mesoscale modeling, sampling problems, remote sensing,
nowcasting, hydrology, climatology, and in the study of
NWP systems.

In our opinion, the fact that the notions of scaling, fractals,
and intermittency, which were primarily developed in the
context of nonlinear dynamics, can—after necessary elabo-
ration—be profitably used in concrete meteorological prob-
lems, is a witness to the enormous potential for common ad-
vances (e.g. Hentschel and Procaccia [1984] or Levitch et al.
[1984]).

FiG. 12. (left) Model of a horizontal rain cross section with var-
ying degrees of differential rotation. In one case (bottom), the rota-
tion was chosen so that the largest and the smallest scales are nearly
perpendicular, yielding (to use the official nomenclature) the ap-
pearance of cirrus fibratus vertibratus clouds.
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announcements (continued from page 15)

30 April-2 May 1986. An anticipated 500 members of the
marine community are expected to attend the international
marine symposiums to be held from 30 April to 2 May 1986
in New Orleans, Louisiana. The symposium is sponsored by
the Marine Technology Society with participation from a num-
ber of cooperating organizations. The objective of the sym-
posium will be to provide a mechanism for the exchange of
ideas and information relating to all aspects of marine data.
Jerry C. McCall, director of the National Data Buoy Center,
and Capt. James E. Kochr, commander of the Naval Oceano-
graphic Command, will cochair the event at the Hyatt Regency
Hotel, the symposium site. For further information contact
the University of Southern Mississippi, Gulf Park, Long Beach,
MS 39560; telephone {601) 865-4508.

17-24 May 1986. The Royal Meteorological Society is spon-
soring a field-study weather course entitled Weather Under
Sail on 17-24 May 1986. The course includes sailing in the
English Channel. Participants will learn how to sail, how to
measure weather elements, and how to use weather forecasts
in plotting the boat’s course.

June 1986. The Geophysical Institute of the Faculty of Natural
Sciences and Mathematics at the University of Zagreb, Yu-
goslavia, is celebrating its 125th anniversary with a sympo-
sium in June 1986. The Symposium On Observations and
Modelling in Geophysics will be conducted in English and in
the languages of Yugoslav nations. For additional information,
contact the Geophysical Institute, Faculty of Natural Sciences
and Mathematics, University of Zagreb, P.O. Box 224, 41000
Zagreb, Yugoslavia; telephone 41-42022.

5-6 June 1986. The 43rd annual meeting of the Eastern Snow
Conference will be held in Hanover, New Jersey, on 5-6 June
1986. Papers can be sent to Jean-Louise Bisson, Hydro Quebec,
9th Floor, 2 Compexe Des Jardins, Montreal, P.Q. H2Z 1A4,
Canada.

22-27 June 1986. The 79th Air Pollution Control Association
Annual Meeting & Exhibition will be held in Minneapolis,
Minnesota on 22—27 June 1986. The technical sessions {23~
27 June) and the exhibition (24-26 June} will cover the full

spectrum of air-pollution control and hazardous-waste man-
agement technology. One- and two-day continuing-education
courses are scheduled for 21-22 June, and two-hour refresher
courses will be given on the evening of 24 June. For more
information contact the Air Pollution Control Association,
P.O.Box 2861, Pittsburgh, PA 15230; telephone (412} 232-3444.

8-15 August 1986. The Royal Meteorological Society is spon-
soring a course on understanding weather that will take place
in Yorkshire, England, from 8-15 August 1986. A full week’s
program of talks, outdoor work, and films will include wind
and temperature measurements from sailboats, a forecasting
competition, and the launching and tracking of hydrogen-filled
balloons. For further details on the course, write to the Ex-
ecutive Secretary, Royal Meteorological Society, James Glaisher
House, Grenville Place, Bracknell, Berkshire, UK RG12 1BX.
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