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A scaling growth model for bubbles in basaltic lava flows
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Abstract

Pahoehoe, aa and massive lavas from Mount Etna show common statistical properties from one sample to another which
are independent of scale/size over certain ranges. The gas vesicle distribution shows two scale-invariant regimes with
number density n(V) o V57! where V is the volume and empirically B = 0 for small bubbles and B = 1 for medium to
large bubbles. We introduce a bubble growth model which explains the B > 1 range by a strongly non-linear cascading
growth regime dominated by a quasi-steady-state coalescence process. The small bubble region is dominated by diffusion; its
role is to supply small bubbles to the coalescence regime. The presence of measured dissolved gas in the matrix glass is
consistent with the notion that bubbles generally grow in quasi-steady-state conditions. The basic model assumptions are
quite robust with respect to the action of a wide variety of processes, since we only require that the dynamics are scaled over
the relevant range of scales, and that during the coalescence process, bubble volumes are (approximately) conserved. The
model also predicts a decaying coalescence regime (with B> 1) associated with a depletion of the gas source or,
alternatively, a loss of large vesicles through the surface of the flow. Our model thus explains the empirical evidence
pointing to the coexistence of two different growth mechanisms in subsurface lava flows, but acting over distinct ranges of
scale, with non-linear coalescence as the primary growth process. The total vesicularity of each sample can then be well
estimated from the partial vesicularity of each growth regime without any outlier problems.
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1. Introduction change the viscosity and yield strength of a lava
from one point to another according to the shape and
size of the vesicles. When submitted to stress, such a
compressible lava flow containing bubbles will flow

less rapidly than an incompressible massive one [1].

1.1. Previous work

The bubble content, shape and size distributions,

as well as their spatial and temporal variations,
strongly affect the rheology of erupted lavas. The
presence or absence of vesicles may dramatically

* Corresponding author. E-mail: gaonach@ere.montreal.ca

This may lead to complex differential strain rates
and, eventually, to fragmentation (or break-up) of the
lava into fractal patterns like the ‘cauliflowers’ ob-
served in aa lava at Mount Etna [2]. Furthermore,
since vesicularity is highly inhomogeneous, the rhe-
ology is affected over a wide range of scales and this
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must be taken into account in explaining a wide
variety of heterogeneous and complex geophysical
structures which have been found over a large range
of scales [3-8]. Lobes, channels and levées are
examples of such strong morphological variability.

In spite of their rheological significance, bubbles
from basaltic lava flows have only been studied
extensively in the last 10 years [9-22] and often their
characterization has been reduced to mean bubble
volumes. However, such averages (as used by, e.g.
[14,16]) give only very partial information concem-
ing the variation of the vesicularity (fraction of gas
vesicles in the lava), the relationship between small
and large bubbles in lava flow fields, or the growth
processes. This is especially true since, as shown in
Gaonac’h et al. [6], and below, the mean bubble
volume of an individual sample is generally strongly
influenced by the single largest vesicle present and,
hence, will exhibit large sample-to-sample variabil-
ity, masking the true volcanological variability.

Various growth mechanisms explaining the ob-
served distributions have been suggested. For exam-
ple, coalescence has been proposed [10] as a major
dynamic growth process, operating by the collection
of bubbles of neighbouring sizes. In contrast, Walker
[14] suggested an essentially static coalescence
mechanism (i.e. with bubble boundaries but not cen-
tres evolving) operating in spongy pahoehoe from
Hawaii, which would be triggered by the appearance
of diktytaxitic voids. Another primary mechanism
was proposed by McMillan [11], Aubele et al. [12]
and Carbone [13], who argued that a model based on
continuous bubble growth by diffusion was adequate
for explaining the vesicle sizes found in lava flows.
In support of this model, Sarda and Graham [17],
Mangan et al. [18], and Cashman et al. [19] analyzed
the full bubble size distribution of non-degassed
mid-ocean ridge basalts and Hawaiian lavas using
thin sections. Based on experimental and theoretical
results of crystal growth, they proposed that expo-
nential vesicle size distributions could arise from
continuous diffusion and expansion growth mecha-
nisms. Because only a few large ‘outlier’ vesicles
were unexplained by their exponential trends (al-
though they contribute a large fraction of the vesicu-
larity) they concluded that coalescence is not impor-
tant compared to diffusion and expansion.

The basic problem of the pure diffusion approach

in subsurface lava flows is that, for larger and larger
bubbles, diffusion becomes rapidly inefficient,
whereas coalescence becomes increasingly more ef-
ficient; hence the dynamic coalescence mechanism is
quite seductive, at least for large enough bubbles.
However, until now, the quantitative treatment of
coalescence has been hampered because of its highly
non-linear nature. In the present paper, we show how
this difficulty can be somewhat overcome; not by
appealing to a hypothetical weak non-linearity but,
rather, by looking at the scaling symmetries of the
dynamic processes. For the purposes of this paper,
structures scale if their characteristic parameters are
described by a power law with a constant exponent
as a function of the scale. For example, areas and
perimeters of flows were found to be scale-invariant
over a range of scale from 10 m to 50 km [S]. A
more precise definition is that their statistical proper-
ties at two different scales are related by the scale
ratio raised to various powers [4].

1.2. Our study

Our work on basaltic lava flows [3,6] has con-
cerned near-surface conditions where (compared to
magmatic chamber conditions) decompression is not
important. We have studied lavas which were sys-
teratically sampled from the source to the front of
flows from the 1985 and 1991-93 eruptions of Mount
Etna (Italy). The large size of our samples allows us
to analyze a wide range of bubble scales observed in
the field. Bubbles with volume ratios (large /small)
of 107 are commonly observed in lava samples,
including the all important large bubbles which con-
tribute most of the vesicularity but which are treated
as statistical ‘outliers’ in the usual approaches. The
largest bubbles studied were 2400 mm>, which are
too large to be studied in thin sections. Without
modifying the bubble boundaries (or in any way
attempting to ‘decoalesce’ bubbles, see [19]), we
have demonstrated that two power law functions
accurately describe the entire number—size distribu-
tion of bubble populations from Mount Etna lava
flows [3,6]. The two regimes intersect in a transition
zone defined by a characteristic volume V *. One
important point of our study was that the analyses
covered the inner and outer scales of the critical
large bubble scaling regime, which is characterized
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by a number density with an exponent B =1 (the
other power law is defined with B = 0):

n(V)av 2! (1.1)

When considering the vesicularity and number
distribution (the integral of the number density),
different power law regimes can be defined, depend-
ing on B values. For B< 1, the vesicularity is
dominated by contributions from the large bubbles.
For B <0, the number distribution itself is domi-
nated by the large bubbles. The regime 0 < B < 1 (of
interest here) thus has the apparently contradictory
properties of having numerous small bubbles that
dominate the number distribution, while simultane-
ously having large bubbles which contribute a domi-
nant proportion of the total vesicularity. The special
case B =1 involves both a significant contribution
of small and large vesicles to the vesicularity. In this
case, we also obtain a scale-invariant property of the
spatial vesicle patterns; that is, they have fractal
structures over the corresponding range of scales.
Hence, for B < 1, the variability in the vesicularity
is significantly affected by the presence or absence
of a few, rare, large vesicles (bubbles) in the sample
(even with B > 1 the variability can be large).

In contrast, a Hawaiian spongy pahoehoe demon-
strated a unique power law, with an exponent B =
+0.2 for all bubble sizes [3,6]. This is not surprising
since Walker [14] has suggested a different cooling
history for the Hawaiian lava than for samples from
Mount Etna; the growth mechanism of Hawaiian
lavas probably did not include many bubble colli-
sions.

We suggest here that the power law function
(empirically with exponent B =0) acting in the
small-bubble range of sizes may be explained by
diffusion growth, while the power law function with
the exponent B = 1, existing for the medium to large
vesicles, may be associated with a coalescence
regime. Using scaling symmetries, we define the
different regimes where diffusion or coalescence
dominate and estimate their respective contributions
to the overall vesicularity. In quasi-steady-state con-
ditions, the coalescence may be explained by a cas-
cading series of collisions, each involving an approx-
imate volume conservation. This model yields B = 1
and may apply not only to a cascading series of
coalescence of bubbles, but possibly also to the

breakup bubbles (an inverse cascade), or both simul-
taneously. When the quasi-steady-state conditions do
not prevail any longer, the scaling model predicts the
existence of a new bubble growth regime with B > 1.
The quasi-steady-state may be highly intermittent; it
need only be statistically steady, with large fluctua-
tions occurring at any moment.

2. A scaling cascade model
2.1. The coalescence equation

Bubble dynamics are highly non-linear, depend-
ing on the multiple interaction of bubbles (either
directly or via the flow field). The simplest models
reduce the problem to binary interactions ' in an
otherwise stationary flow field, and exploit the coa-
lescence (Smoluchowski) equation to model the
number density n(V,?) (e.g., [10]). Due to the non-
linear nature of these models, they are prone to
numerical instabilities and will be highly dependent
on boundary conditions, such as the initial distribu-
tion of bubbles, which are never known with preci-
sion. Furthermore, the exact solutions of the equa-
tions will depend strongly on the existence and type
of bubble heterogeneity. One may also criticize the
appropriateness of the coalescence because: (1) di-
rect observations of bubble growth in dynamically
evolving lava flows or magma chambers are not
available; and (2) alternative mechanisms such as
that postulated for bubble distributions in the ocean
may be more relevant (i.e. break-up or ‘inverse
coalescence’). However, since the non-linear growth
equations generally obey scaling symmetries (as may
the flow itself), the solutions may be expected, at
least statistically, to respect the same symmetries;
hence, many of these problems can be partially
overcome. It is, therefore, important to stress at the
outset that our model depends essentially only on a
cascade of interactions respecting scaling and vol-
ume conservation; it is more general than the coales-
cence equation. The latter is employed primarily as a

: Manga and Stone [22], underline that the characterization of
two-particle interaction provides a useful model for understanding
the behaviour of systems with many bubbles.
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convenient concrete framework for illustrating our
ideas.

Ignoring bubble sources and sinks other than those
provided by the coalescence process itself, the coa-
lescence equation may be written as:

an(V,1)
at

1
- _[VH(V— V'V a(V =V, (V' 0)dV!
27

—n(V,t)me(V,V’)n(V’,t)dV’ (2.1)
0

where H, the ‘coagulation coefficient’, is the proba-
bility of two bubbles with size V and V' coalescing
per unit time. This coagulation coefficient is given
by:

. 2

H(VV') = E(v,v')(v3 + v%) (V) — u(V")|
(22)

where u is the bubble velocity, and E is the collision
efficiency, which determines the fraction of colli-
sions resulting in coalescence. The middle term is
purely geometric and takes into account the bubble
cross-sections. Although this term is usually derived
for spherical particles or bubbles, the assumption of
statistical isotropy which is effective for Mount Etna
bubbles (see [3]) is here probably sufficient, but then
H must be considered as an average or ‘effective’
coefficient. The first term on the right-hand side of
Egq. (2.1) is the rate of production of bubbles of size
V via collisions of two bubbles of volumes (V — V')
and V' (the factor 1/2 is to avoid double counting).
The second term is the rate of loss of bubbles of size
V due to collisions of bubbles of size V. If sources or
sinks of bubbles arising from processes other than
coalescence are considered for bubble growth, we
may add other terms to the right side of Eq. (2.1).
With some rather mild assumptions about the
collision efficiency E and velocity u, we can readily
determine the scaling symmetries and estimate the
scaling exponents. In a different context, this has
recently been done by Meunier and Peschanski [23],
who have shown how this equation can lead to
multifractal statistics in high energy particles. This
connection with multifractals is an important step

forward in understanding coalescence processes and
underlines the fact that enormous fluctuations are
expected in coalescence processes. This is certainly
compatible with the results found in lava flows,
where both the distribution of bubbles and the over-
all porosity vary considerably from place to place,
even for samples located very near to each other [3].

2.2. Scaling properties of the coalescence equation

In fluid problems, the velocity is usually assumed
to be a power law of the radius or volume; from
dimensional analysis it can often be shown that:

w(V) av? (23)

For example, for Newtonian fluids in the high
Reynolds number (Re) limit (large velocity, low
viscosity), the drag coefficient becomes constant,
implying that y = ¢ [24]. At low Re, the drag coeffi-
cient becomes inversely proportional to the Reynolds
number leading to y= 3. The latter case is more
relevant to bubbles in lava since > Re << 1, although
both results are only strictly valid for single bubbles
acting under the influence of gravity in an otherwise
static fluid.

For a Bingham fluid, it is possible that the y
value is not affected. In the more general case new
dimensional quantities will be introduced and y will,
presumably, be affected. We show below that the
exact value of vy is not important as long as it is
larger than 1/3. In any case, if the bubbles are in a
complex flow field, statistical exponents may be
required.

2 When regarding the viscosity, the critical value Re =1 leads
to the dissipation length scale of dy, =75 where 7 is the lava
viscosity, p its density and « the average velocity of the bubble
moving in the flow; the ratio will actwally be highly variable,
since, for a fixed bubble size, ¥ and 1 will not be constant, due to
the complex velocity and temperature fields respectively. Al-
though clearly use of ‘typical values’ to estimate dg; is a great
simplification, it here demonstrates that the viscous length need
not worry us. Using typical values n=10%-10* Pas [9], u=
107°~10"" ms™' (these are the velocities of the bubble with
respect to the mean flow), p = 3X 10* k gm®, we obtain dyis =30
cm-3 km, i.e. much larger that our range of interest. This result is
in agreement with Re << |, where the relevant dynamics are
dominated by the viscosity. A priori, as far as the direct effects of
viscosity is concemned, they will be scaling.
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In many applications (e.g. drop collision in mete-
orology), it is usually assumed that the mechanism
determining collision efficiency is only a function of
the ratio of the sizes [10]:

%
E(VV') =E(7) (2.4)

Under these conditions, the dynamics are scaling
because no characteristic volume appears in Eq.
(2.1)°. Under appropriate boundary conditions (i.e.
which do not impose a characteristic size /volume in
the size range of interest), the equation will allow
scaling solutions for the number density of the form
(where we use the subscript ¢ to indicate ‘coales-
cence’):

n(V,r) a v=B-1¢ (2.5)

To determine the values of the exponents B, and
£, we substitute Eq. (2.5) into Eq. (2.1). The differ-
entiation of the left-hand side of Eq. (2.1) leads to:

an(V,1)

at

Note that it is the integral of n(V) (the number
distribution) which is most conveniently empirically
estimated (see [6]). Next, we evaluate the corre-
sponding right-hand side of Eq. (2.1) by simply
changing the variables in the above integrals, obtain-
ing (see details in Appendix A:

an(V.,1)

a VBTl (2.6)

Pl yr-3 2626 (2.7)
Comparing Eq. (2.6) and Eq. (2.7), we obtain:
2
B=3+v
E=1 (2.8)

* In this model the complex non-linear effects associated no-
tably with viscosity and surface tension will be implicitly ac-
counted for by their effect on E. All we require is that these
effects lead to a scaling function: E(AV,AV’)= AE(V,V') where
s is a new scaling exponent and A is the zooming /magnification
ratio. As illustrated in Eq. (2), E is commonly taken to be a
function of the ratio of the sizes; thus s=0, a simplification
which (in the absence of more information) we adopt here.

Solutions with this time dependence (i.e., n(V,t)
at~') will be relevant when no new sources of
bubbles are present, and the overall number de-
creases (2572 < 0) only via the coalescence mecha-
nism. Such solutions are likely to be relevant when
diffusive degassing of the lava is nearly finished.
Using y=2 for lavas will lead to B, > 1 for such
pure coalescence.

2.3. Competition between diffusion and coalescence

We now consider scaling solutions in quasi-
steady-state situations (22§72 = 0), where the overall
number does not change. This may be the case when
diffusive growth of small bubbles provides a near-
constant source of gas to the coalescence regime.
Under these conditions, we can still have scaling
solutions, but with £€=0; B, will no longer be
determined by the balance of the two right-hand side
terms of Eq. (2.1). In this situation, we argue that B,
will be determined by the quasi-steady flux originat-
ing at diffusive scales and the non-linear bubble
coalescence interactions which conserve the volume
of gas.

In order for there to exist a quasi-steady-state
coalescence regime (‘MavjiZ = (), we must first estab-
lish that a diffusive regime capable of providing the
small bubble source can, in fact, exist. Due to com-
plex nucleation processes, some initial distribution of
small bubbles arises. We may then use the standard
analysis of diffusive growth [16], which relates the
rate of increase in volume to the volume itself:

dv j
T 12 (2.9)
The standard ‘parabolic’ growth law corresponds
to growth of isolated bubbles and yields €= 1/3.
This law is valid for a single bubble or for the
approximate case where neighbouring bubbles are
not interacting [16). Alternatively, if diffusion in-
volves the non-linear interaction of neighbouring
bubbles (Ostwald ripening) we obtain € = 0.
Using dimensional analysis, this equation gives
the following diffusive time scale:

dvy™!
,=V|—]| =V'i-e

o (2.10)
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Once again, we have ignored dimensional propor-
tionality constants, concentrating instead on the scal-
ing exponents.

Similarly, the coalescence time scale may be esti-

mated as:
on(V,t

T, = n(V,t)(¥

at

where, since we are only interested in the scaling, we
have estimated 7, by using the second term of Eq.
(2.1). The two right-hand terms of Eq. (2.1) are of
identical order, since their sum gives the steady-state
condition G372 = 0.

Comparison of Eq. (2.10) and Eq. (2.11) shows
that, for B, < y+ 3 — €, the diffusive time scale for
small enough bubbles will be much shorter than the
coalescence time scale and will dominate. By con-
trast, for larger and larger bubbles, diffusion quickly
becomes inefficient. Furthermore, if B, <2+ 7y
(e.g., y=2/3 and B, = 1), then 7, decreases with
increasing V, and coalescence becomes more rapid
for larger bubbles. These conditions may well be
appropriate for medium to large bubbles in our sam-
ples from Mount Etna [3]. If a quasi-steady-state
regime with B,.<%+y and £=0 is interrupted
(e.g. the source of bubbles becomes exhausted) and
only pure coalescence operates (called a decaying
regime), then a regime with B,.=2 +y and £=1
will establish itself first at large V, since the large
bubble part of the coalescence regime evolves the
fastest (7, is smallest).

=1
2
) =VyE-377 (2.11)

2.4. The role of surface tension

Before proceeding, we also have to consider the
possible role of another characteristic time which
may be important; the coagulation time scale, 7.,,, =
V73 [20]. This is the time scale for the liquid film
between colliding bubbles to be ruptured, and de-
pends on the viscosity of the lava and surface tension
of the bubble. Because the coagulation exponent
1/3>B.—2/3—v (see Eq. (2.11)), for large
enough bubbles, the coagulation process will be
slower than the collision process, and could poten-
tially disrupt it.

However, this complication is not necessarily too
significant for our model. All that the latter requires
is that bubbles which have experienced a collision
(and are thus in close contact) have effectively coa-

lesced. All that the model requires is that, as far as
future coalescence events are concerned, they may
henceforth be considered as a single bubble — even
if the viscous film between them has not completely
retracted. Such partially coalesced bubbles are in-
deed observed in natural samples. Bubbles with such
internal films will be able to participate further on in
the cascade growth coalescence without greatly
changing the model assumptions. Hence, the coagu-
lation process does not necessarily qualitatively af-
fect the model presented here or change the exponent
determined from conservation laws as described be-
low.

We have already argued that, because scaling is a
dynamic symmetry principle, it will be respected in
the absence of a specific scale breaking mechanism.
In principle, both viscosity and surface tension can
introduce characteristic lengths to specifically char-
acteristic bubble sizes when respectively the
Reynolds (Re, see [9]) and Capillary numbers (Ca,
see [19,20]) approach unity. We have already seen
that the viscous dissipation scale (where Re = 1) is
much larger than our scales of interest, it need not
concern us further. Turning our attention to the
surface tension, it will act to inhibit the deformation
of bubbles. Bubbles whose capillary number (Ca) > 1
are deformable whereas those with Ca < 1 are rela-
tively non-deformable and thus more spherical. A
basic problem is that meaningful estimates of Ca in
real lava flows are difficult if not impossible; it is
usually assumed that deformation does not play a
significant role (by implication, Ca < 1). Indeed, in
real lava, Ca is likely to vary widely as a function of
location. For example, in a laboratory setting, Manga
and Stone [22] have estimated that deformation only
occurs for bubbles with a radius larger than 5 mm,
and that deformation of isolated bubbles will in-
crease the rate of coalescence. In contrast, Gaonac’h
et al. [6] observed that, except for very small vesi-
cles, bubbles typically have complex forms, either
due to deformation or coagulation effects; indeed,
the two effects are not obviously separable in solid
lava samples *. The effect of possible deformability

4 Indeed, we have already noted that, when B =1, the spatial
vesicle patterns will be fractal, a result which, in principle, could
have involved only purely spherical bubble collisions.
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is not clear. In any case, this issue has little direct
impact on the quasi-steady-state model, since the
collision time scale is set by the small bubble source
and any growth mechanism which preferentially tends
to increase the rate of large bubble collisions will not
affect the cascade process described below.

2.5. The quasi-steady-state regime and the cascade
model

In a quasi-steady-state (2542 =0), B, is not
determined by the coalescence equation itself; it will
depend on boundary conditions, especially the
sources of the small bubbles. In order to analyse this
situation, we first note that the coalescence equation
has a quadratic non-linearity, which is analogous in
many ways to the non-linearity in the fluid (Navier—
Stokes) equations. In particular, the bubble analogue
of a ‘direct’ turbulent cascade of energy flux from
large to small scales is the ‘inverse’ cascade involv-
ing the growth of large bubbles by coalescence. Such
a cascade will occur when the most efficient growth
mechanism of a large bubble is via a succession of
collisions of not too dissimilar sized bubbles, rather
than via a single medium-sized drop sweeping up
large numbers of much smaller drops. A precise
formulation of this dichotomy is the notion of
local /non-local bubble interactions. This jargon in-
dicates whether or not the strongly interacting struc-
tures have neighbouring wavenumbers in Fourier
space; it refers to Fourier space locality, not physical
space locality. In the case where the interaction is
local (as we will argue here), then the dynamics need
only be studied over a limited range of scales (de-
noted )\0), since, due to the scaling, the same mecha-
nism then repeats iteratively to produce larger and
larger bubbles. Although over this range, only ‘di-
rect’ interactions within a size range A, are explicitly
taken into account (Fig. 1a), due to the iteration,
indirect interactions (over ranges A3, A3, etc.) are
implicitly accounted for (Fig. 1b). Empirically, many
authors (notably Sahagian [10] and Manga and Stone
[22]) have noted the extreme inefficiency of bubble
coalescence for collisions involving bubbles of very
different sizes. The small bubble is simply entrained
around the larger one without coalescence occurring.
This makes it likely that the interactions are indeed
local. In the next section we quantify this.

Fig. 1. (a) Scheme of direct interactions (DI} between pairs of
bubbles. (b) Scheme of direct (DI) and indirect interactions (II)
between three bubbles leading to the same final size of bubble as
in (a).

2.6. The locality / non-locality of bubble interactions

In considering the issue of locality /non-locality
in the quasi-steady cascade model (dropping the time
dependence), it is sufficient to consider the produc-
tion term of Eq. (2.1):

|
Q=Ej;H(V—V’),V')n(V—V')n(V’)dV’
(2.12)

Since we are considering the scaling functions
indicated in the previous sections, we will consider
the case V=1 (the scaling relations detailed in
Appendix A can then be used to determine the
production for any other V). The volume ratio of the
two coalescing drops is expressed as A=V’/(1 —
V’). Since the two drops are physically equivalent,
the above must be symmetric under exchange of the
volumes (ie. V> 1—-V', 1 -V’ >V’ and hence
symmetric under A = 1/X). We consider the special
case Eq. (2.4) and note that by this symmetry E(A)
= E(A™"). Hence, we need only consider the range
A > 1. We therefore obtain:

0= me(A)ll AT+ A3

2B-y-2/3

X(1+A7h) ATEdA (2.13)

The question of ‘locality’ of the interactions can
now be addressed precisely. The cascade can be
considered ‘local’ if a finite scale ratio A, exists
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w= 1/6 2

o 32

!

01 T

0 1 21 3 4

Fig. 2. Diagram of the production term, log Q,, due to contribu-
tions of all the bubbles with size ratios within an octave. The
ordinate is log, A, where A is the bubble size ratio; Q; is the
production (see Eq. (2)) numerically integrated over the range
A=2'to A=2'"1 The value of B=1 was used; according to
the analysis in the text, the critical value of w therefore equals 1.
For w <1, Q; diverges with i and the cascade is non-local; for
w > 1, it is local. Even using the modest value @ =3 /2, we see
that most of the production occurs due to interactions in the first
band. Note also that the straight line asymptotes are expected; on
this log—log plot, they have slopes @ — B.

such that most of the production of bubbles (i.e.
most of the contribution to the above integral) occurs
for ratios A < A,. This will be the case for some A,
as long as the integrand above falls off quickly
enough as A — . If the large A behaviour of the
collision efficiency is bounded above by E(A) = A™¢
then  characterizes the collision efficiency for
greatly differing bubble volumes. As w gets larger,
the efficiency becomes lower and lower; larger and
larger @ 1is, therefore, associated with more and
more local interactions. We now find by inspection
of Eq. (2.13) (recalling vy > 0) that the cascade will
be local (i.e. the contribution to Q for large enough
A will be arbitrarily small) as long as:

w>B (2.14)

Empirically, we found B =1 [6]. In comparison,
the only relevant data on efficiencies of which we
are aware [22] concern deformable bubbles. On
semi-empirical grounds (involving only a dozen or
so data points), [22] suggest a formula involving two
exponents, B=1/6, B=2 (i.e. corresponding to
non-local and local behaviour respectively. Fig. 2
shows, for various values of w, the contribution to
the total production, Q, due to collisions within a
single octave of volume ratios, showing that even for
a relatively slow fall-off in efficiency (e.g., w=
3/2), that most of the contribution occurs within the
first octave. The only other available information

comes from the theoretical analysis of two isolated
bubbles under the influence of gravity in an other-
wise static fluid. For example, Zhang and Davis [25]
(who give extensive numerics), comment on the
rapid fall-off of E for large A (due to the entrain-
ment of small bubbles), providing general formulae
of an exponential form — implying w = o (their A
is our A~'/3). However, the validity of their results
for A>1 is not clear. For the moment, we must
therefore consider that the locality /non-locality of
the cascade is an unsolved problem, although the
locality hypothesis seems to be quite consistent with
the available theoretical and empirical data. Future
experiments should be able to estimate w and settle
this issue.

2.7. Conservation and exponents in bubble cascades

If the cascade is local, we have argued that it is
sufficient to consider a finite band with scale ratio
Ao- To make these ideas concrete, consider dividing
the coalescence regime into bands increasing by
factor of A, =2 in volume where bubbles may coa-
lesce (the following argument is analogous to stan-
dard arguments used in studying turbulent cascades
[26]). Under these circumstances, growth primarily
occurs via a series of successive binary collisions or
‘triangular’ interactions between the two colliding
bubbles and the newly coalesced bubble. Scale by
scale iteration of this mechanism yields a ‘cascading’
hierarchy in which not very different sized bubbles
collide to form larger ones, the new bubbles repeat-
ing the process to larger and larger sizes (Fig. 1).
Other mechanisms (such as diffusion) will tend to
make the interactions more non-local, but will not
necessarily alter this picture. The final ingredient
which is necessary to obtain the resulting scaling
exponent is a conservation principle; in turbulence it
is the energy flux to smaller scales which is con-
served. In the bubble model, the corresponding prin-
ciple is that of conservation of gas volume during
each collision. Just as in turbulence, we must distin-
guish two different types of conservation. The first,
‘microcanonical’ conservation, involves strict con-
servation at each step of the cascade, on each indi-
vidual realization of the process. This is not strictly
realistic; just as in turbulence where there is a certain
forcing /dissipation of structure at different scales,
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here, bubbles/structures are exchanging gas fluxes
with a kind of reservoir at all scales; not only
directly with other structures/bubbles. A priori, just
as in turbulence, it is therefore more appropriate to
consider the less restrictive ‘canonical conservation’,
which applies only on average over a statistical
ensemble of identical cascading systems. The differ-
ence between the two types of conservation is that
fluctuations about the mean behaviour are much
larger in the case of canonical conservation.

Starting at the smallest volume V * (Fig. 3), the
ith band with bubbles of volume V,= 2V * is de-
fined by:

| I
TRV V<2tV
i

1
N=N(27"3V<V<2TIV ) a VB (2.16)

(2.15)

Bubbles with a typical band volume V,=2'V *
will be the result of n successive collisions; the rate
of the overall ‘cascading’ process will, therefore, be
determined by the band with the lowest collision
rates. Since for B, < 2 + vy, 7. decreases with in-
creasing size, the limiting rate will be that of the
smallest band, which is also equal to the diffusion
rate for the largest bubbles in the diffusion regime.
In these scaling cascade regimes, assuming statistical
isotropy, we do not expect the bubble shapes to
affect our exponents; this is a consequence of our
assumption of scale invariance (it will, of course,
affect the rates but, if the regime is scale invariant,
each band will be affected in the same way). If
anisotropic scale invariance holds, as it might do if
the system has differential stratification or rotation,
the model can readily be appropriately generalized.

7 PP

V*

z

2v+

SERP

n=2

gV*

n=3

Fig. 3. Schematic view of a colliding cascade, starting with 2° bubbles of volume V *, of variable shape, and ending with one bubble of

volume 2%V *.
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During one collision time, we therefore see that
the total number of bubbles is halved while their
volumes are on average doubled. Hence, this overall
scale by scale volume conservation leads to the basic
cascade relation:

Ny Vor = V,N,

n+1"n+1

(2.17)

From (2.16) and (2.17), we thus obtain B, =1 as
a basic equation for cascading bubble growth.

For large bubbles, the equation could be equally
applicable to a local cascade in which large bubbles
break up into progressively smaller bubbles. Further-
more, there is no reason why break-up and its re-
verse (coalescence) could not co-exist to varying
degrees in both systems, as it does in 3-D hydrody-
namic cascades, where the direction of energy flux is
only on average from large to small (the ‘direct
cascade’). Due to backscatter mechanisms, energy
flux can fluctuate, occasionally going in the opposite
direction from small to large (the ‘inverse cascade’).
Several relevant mechanisms have been suggested.
For example, Wilmoth and Walker [15] suggested
growth of bubbles in lavas by shearing, leading
eventually to strong deformation and bubble loss at
the surface; Stein and Spera [27] mentioned two
different types of bubble break-up when stress is
applied to an emulsion. Since the present (inverse,
coalescence) bubble cascade will obey the same
conservation laws as the direct (break-up) cascade,
the resulting distributions may be the same; cer-
tainly, the two possibilities will be very difficult to
distinguish empirically. In this way — although
apparently sharing few features with lava bubbles —
ocean bubble dynamics may provide an example of
such an inverse cascade [28,29], B = 1 is also found.
As long as the growth of large bubbles depends on a
cascade of collisions /break-up between bubbles with
not too dissimilar sizes, the resulting VN(V)=
constant is likely to hold, even if collisions are not
completely restricted to the same size band.

We now generalize the model somewhat to allow
for exponents different than unity (c.f. the more
accurate empirical estimate B, = 0.85 [6]). This could
reflect the action of other (non-local) scaling pro-
cesses such as diffusion (including Ostwald ripening),
which will simultaneously occur between bubble col-
lisions. Assuming that the overall net effect of non-
coalescence (and non-local) processes is to increase

the bubble sizes by the factor 1 +f during each
collision, as long as |f] is not too big, coalescence
(i.e. local interactions) may still be considered as the
dominant growth process. Repeating the above argu-
ments but with V, , =2(1 +f)V, (instead of V,
=2V,), we obtain B, = iy = 1 — 1k for
f<< 1. We see that the result B, = 0.85 corresponds
to a fractional intercollision growth (f) of = 10%.
This may explain the small variation we encounter in
estimating the B, values [6]. Furthermore, unlike the
coalescence equation, which considers only pairs of
bubbles, there is no reason to expect this cascade
result to change due to the existence of higher order
bubble—bubble interactions, which may affect the
flow field in a non-linear fashion.

2.8. Diffusion as a source of coalescence

To make the picture entirely plausible, we need
only to show that the diffusive regime can indeed
supply sufficient gas to the small bubbles to maintain
the overall process in a quasi-steady-state. In order
for the cascading idea to be valid, the large bubble
end of the diffusion regime V *, which in this picture
coincides with the small bubble end of the coales-
cence regime, should have the greatest diffusive flux
into it; if not, the steady-state conditions would be
stopped or ‘choked’ due to lack of gas from the
diffusive regime. Once again, we can investigate the
effect of diffusion on a scaling size distribution (the

subscript d is for diffusion):
n(V)av gt (2.18)

The total volume of gas available to fuel a quasi-
steady state coalescence regime is therefore:

. dv .
1% 1
V)—dVa V-Bamlyeqy
j;/ mn( ) dt j;/min

‘mi

(2.19)

Hence, as long as B, < € the integrals are domi-
nated by V ™ and diffusive growth is dominated by
the largest bubbles in the regime, supplying gas to
the coalescence regime. A B,=¢€ will supply a
constant source of bubbles from the smallest sizes to
V *. As the bubble population evolves, V = will be
constantly changing, reflecting the relative efficien-
cies of the diffusion and coalescence dominated
regimes. Since empirically, B, = 0, even a diffusion
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regime dominated by Ostwald ripening (e =0) is
adequate. Indeed, ultimately the result B, = 0, may
be explained as a quasi-steady-state Ostwald ripen-
ing regime.

3. Implications for number-size distributions

Fig. 4 gives a schematic diagram of various dy-
namic possibilities and their implications for the
evolution of the number—size distribution with time,
summarizing the different regimes. If the lava tem-
perature drops before the degassing is finished, we
expect B, = 0 for the small bubbles and B, = 1 for
the medium to large bubbles. At steps 1-1" and 2-2',
diffusion prevails. At step 3-3’, bubble growth
reaches the coalescence regime; steps 4-4'-4", 5-
5'--5", are steps of the coalescence regime associated
with steady-state conditions ( £ =0). When the gas
source is depleted, the large bubble slope will in-
crease, tending to an exponent B, =% + y (a pure
decaying coalescence regime) and with temporal
scaling (£ = 1). Step 66" shows the development of
the decaying coalescence regime. In most of the Etna

logN(V'>V)

small bubbles log V Jarge bubbles
Fig. 4. Schematic diagram of log N(V’' > V) vs. log V. The initial
diffusion-dominated regime (B, =0, hence N=log V) is indi-
cated by the line terminating in the number 1'. A little later on, the
bubbles have grown by diffusion (line terminating in 2'). Still
later (3'), the largest bubbles have a coalescence time scale equal
to the diffusive time scale. The steady-state coalescence regime
begins between 4’ and 4” and grows between 5’ and 5”. Finally,
the diffusive gas source is depleted, and the decaying coalescence
regime begins (6).

Table 1
Gas contents from the matrix glass

Samples [ F (ppm) S (ppm) | CI (ppm)
33a 2130t 170 404 20 21504 20
34a 2520+ 180 50+ 30 2550+ 130

samples, we have observed both the diffusion (Bd =
0) and coalescence regimes (B, = 1) associated with
the quasi-steady-state conditions in most samples.
We only found 2 of 24 samples with a clear lack of
large bubbles and with B> 1. The lack of large
vesicles in these samples may have several origins:
(1) due to low gas content at the lava source, the
decaying regime was reached quickly; (2) the large
bubbles may have been lost preferentially to the
atmosphere due to their higher velocity. However,
this trend primarily affected only a few large vesi-
cles, although more data are needed in the large size
range. In the apparently typical case where B, = 1
was observed for the largest bubbles, measurements
of volatile concentrations in matrix glasses of the
lavas suggest that gas was still diffusing as the lava
cooled (Table 1). The sulphur contents for a pahoe-
hoe sample at the source of a 1985 lava overflow
and an aa sample at the front of the same overflow
are low, indicating that the lavas had been previously
degassed in the magma chamber and/or conduit.
However, F and Cl contents both increase in the
matrix glasses from the overflow source to the front
(Table 1), probably as a result of microlite crystal-
lization of anhydrous minerals (olivine, pyroxene,
plagioclase and Fe-Ti oxide minerals). Microlite
crystallization also may have increased the H,O
content of the lava. These data suggest that the
glassy matrix was being resupplied with volatiles as
the lava cooled. These volatiles could then supply
gas to vesicles that were being formed.

4. Contribution of partial porosities to the total
porosity

Using the model to interpret the small and large
bubble regimes, we can now express the sample
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vesicularity P, as a function of the diffusion and
coalescence contributions, respectively P, and P_:

P,=P,+P, (4.1)

Using our data, P. and P, are determined from
the bubble areas. In [3] and [6], we found a simple
law to transform the 2-D B exponents, found from
available areas of vesicles, to 3-D B exponents
valuable for volumes of vesicles. In the diffusive
regime, the value B; = 0 in 3-D space corresponds to

Table 2
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B,= — 1 in 2-D sections, the vesicularity is ex-

pressed as (see A.4.a in [3]):

P,=P(A<A")=N"A" (4.2)

B,—1
where A" is the largest bubble area in the diffusion
regime (corresponding to V *) and is roughly the

boundary between the diffusion zone and the coales-
cence zone.

Characteristic values, A®, A" N*, largest area, A, in each sample, estimated total porosity, P;, of lava samples from Mount Ema [6};
partial porosities, P,, P,, calculated total porosity, P,, partial distribution numbers, Ny, N_, of the diffusion and coalescence regimes (see

text)

Sample A* A*N* As Pi%) Po(%) PJPd NNy Ps(%) PA%) PP
numbers | (mm?) (mm?)
Olc 0.16 0.040 15.0 1.34 18.26 13.6 0.5 19.60 13.7 1.4
07a 0.25 0.031 58.5 1.05 17.18 16.4 0.6 18.23 19.3 0.9
0lb 0.40 0.032 64.0 1.06 16.13 15.2 0.5 17.19 15.7 11
02b 0.25 0.031 455 1.05 16.37 15.6 0.6 17.42 17.1 1.0
spongy 6.31 47.5
23i 0.50 0.040 205 1.32 14.78 11.2 0.6 16.11 16.3 1.0
22a 0.25 0.040 220 1.32 17.79 13.5 0.6 19.11 19.7 1.0
22c 0.40/ 7.04 0.8 52
3.16
32a 0.25 0.040 470 1.32 20.76 157 0.6 22.09 299 0.7
32b 0.25 0.040 255 1.32 18.31 139 0.6 19.63 16.2 12
33 0.10/ 35 1.0 38
0.63
33a 0.16 0.032 180.5 1.06 2244 21.1 0.6 23.50 27.5 0.9
33b 0.40 0.040 17.5 133 15.18 114 0.8 16.51 17.2 1.0
34a 0.32 0.040 305 1.34 18.39 13.7 0.6 19.74 19.1 1.0
34b 0.25 0.025 56.5 0.83 13.54 16.3 0.6 14.38 17.5 0.8
46b 1.26/ 285 0.5 24.8 1.4
7.94
46c 1.58 0.079 160.0 2.63 36.48 13.9 0.5 39.12 35.0 1.1
46a 2.00 0.063 100.5 2.11 24.77 11.8 0.6 26.87 334 0.8
45 1.58 0.100 60.5 332 36.32 109 0.6 39.64 41.5 1.0
58 0.50 0.025 185.5 0.83 14.79 17.7 0.4 15.62 12.6 1.2
58b 0.13 0.016 30.0 0.53 8.69 164 0.4 9.22 6.3 1.5
58a 0.40 0.032 245 1.06 13.08 124 0.8 14.14 16.9 0.8
58d 0.79 0.063 26.5 2.09 22.04 10.5 0.6 24.13 22.8 1.1




H. Gaonac’h et al. / Earth and Planetary Science Letters 139 (1996) 395409 407

The coalescence regime where B, = 1 (same ex-
ponent in 2-D and 3-D spaces, see [3,6)) yields:

A
PC=P(A’>A*)=N*A‘1nA—f (4.3)

where A, is the maximum bubble size observed in
the sample. With B, = — 1, Eq. (4.1) becomes:

N

P A(l 1 A)
=N"A"|—=+ 4.4
s 3 nA (4.4)

*

The relative contribution of P, to P, is:

A

&

P 31 45
Pd~ nA* (')

Since empirically we find that 2= = 102-10°, P,
is 13-20 times larger than P, (Table 2). P, is indeed
close to the 2-D porosity P, estimated from sawn
surfaces [6]. Hence, as expected, Eq. (4.4) gives a
good approximation of the total porosity (i.e. there is
no problem with ‘outliers”).

P, is thus mainly determined by the P, contribu-
tion and will fluctuate according to the presence or
absence of large bubbles [6]. In contrast, we now
show that it is, instead, diffusion which provides the
largest number of vesicles to the total population.
The ratio of the number of bubbles due to coales-
cence N, (=N(A>A")) to the number of bubbles
due to diffusion N, (=N(A<A")) is less than
unity, varying from 0.4 to 1 with an average value of
0.6 (Table 2). The model therefore predicts — in
agreement with the data — two apparently contra-
dictory characteristics: on the one hand, the total
number of bubbles is dominated by the diffusion
regime, whereas, on the other hand, the vesicularity
is almost completely determined by the large bubble
coalescence regime. The coalescence growth process
is also much more rapid than other processes and
may continue to larger and larger bubbles until it
finally disrupts the lava, resulting in an eruption of
Hawaiian or Strombolian type. Indeed, bubbles with
diameters of several meters have been observed at
these types of vents when the eruption rate is suffi-
ciently high [30,31].

5. Conclusions

Previous studies on bubbles growing in near-
surface lava flows involved homogeneous models
(e.g., of diffusion or growth by collisions) and the
characterization of the entire vesicle distributions by
a single scale (e.g., by median or mean volumes).
However, even at a purely empirical level, the ex-
traordinary range of vesicle volumes — readily ex-
ceeding ratios of 10’ — indicates that such descrip-
tions and models can at best only very partially
correspond to reality. Indeed, in a companion paper
[6], which provides the direct empirical motivation
for the model described here, we consider that het-
erogeneity occurring over wide ranges of scale is a
fundamental problem and, consequently, develop ap-
propriate statistical methods for analyzing it. Analy-
sis of bubble sizes and vesicularity of lavas from
Mount Etna over wide ranges of scale was found to
show two distinct scaling regimes which form the
basis of our model.

These findings lead us to propose a cascading,
scaling bubble growth model based on a diffusive
source, and a simple conservation law leading to the
prediction that the coalescence exponent B = 1. Al-
though this model is in fact more general, it was
illustrated with the aid of the coalescence
(Smoluchowski) equation. At small sizes, diffusion
prevails (whether or not involving Ostwald ripening)
and supplies a bubble and gas source for cascading
growth by successive local collisions (coalescence)
which dominates at large bubble sizes. In most cases,
gas 1s exsolving continuously to provide a small
bubble source for the large bubble indirect coales-
cence cascade. Exsolution can occur even with ex-
tremely small quantities of dissolved gas [19]. When
the gas source is no longer effective and the dis-
solved gas in the matrix is depleted, a pure coales-
cence (decaying) regime leads to larger exponents
and faster large bubble volume decay on number
distribution plots. Using this model — and our
analysis method — which allows us to determine the
limits of the two scaling regimes, we have empiri-
cally found that coalescence contributes typically
more then 90% of the total porosity, even though
typically only a third of the bubbles are in the
coalescence regime. These scaling distributions have
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the important property of being invariant under tem-
perature and pressure changes, leading to expansion;
such expansion will simply increase or decrease all
the volumes by the same factor but will not affect
the exponents. This makes it possible to observe the
same scaling behaviour in samples with very differ-
ent pressure—temperature histories and allows scal-
ing models to be valid under quite general condi-
tions. indeed, an attractive feature of the predicted
power law distribution is that, unlike other statistical
distributions such as exponentials, their form is con-
served when samples with non-identical histories
(and hence parameters) are pooled together. This,
together with the fact that it naturally and simply
avoids the outliers that plague other approaches,
allows it also to provide very good empirical esti-
mates of the vesicularity of each sample after identi-
fying the characteristic V* and N* values of the
intersection of the two power laws and the determi-
nation of the largest bubble size observed in the
sample.

Our strongly non-linear model predicts the final
trend of the bubble number distribution versus the
volume and is expected to be very robust to chang-
ing conditions, since it requires only a few ingredi-
ents: essentially, scaling and conservation property.
The bubble growth model can aid in understanding
the complex physical behaviour of bubbles in basaltic
lava flows. The scaling symmetries and conservation
properties used in the cascade model may also apply
to other quite different physical mechanisms, such as
breakup of bubbles in the ocean (i.e. direct cascades),
where similar exponents have been reported. Our
model may also help resolve the debate on the
different mechanisms suggested for bubble growth in
near-surface basaltic lava flows; in particular, the
degree of local versus non-local interactions between
bubbles, which may be empirically and theoretically
quantified by the exponant  (Section 2.6.
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Appendix A

We will demonstrate the scaling relationship that
gives Eq. (2.7). Let Eq. (2.1) be written as:

an(V,r)

S (V) = (V) (V1) (A.1)

where:
L(V.1) =f H(V.V)n(V' 5)dV’
0
and:
1 .o
L(V.1) = 5[ H(V-V)n(V=V' 0)n(V' 1)dV'
0
We are only interested in the scaling properties,
so we will consider L,(AV,b).

Even if the integral is not explicitly known, we
can write:

12(Av,:)=/ H(AV.V')n(V',1)dV’ (A.2)
0

Introducing V" =% and using Eq. (2.2) with
assumptions given in Eq. (2.3) and Eq. (2.4):

2
H(AV,AV") a AP SH(V V") (A.3)
with the fact that:
n(AV,t)  A™5 (V1) (A.4)
Eg. (A.2) becomes:
2
L(AV,1) a 7B S L(V,1)
This implies:
2
L(V,t)aVy Br3 ¢ (AS5)

In the same way, we may find that:

1
L(AV,t) a A" 287 51(V 1) (A.6)
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leading to:

1
L(V,t) a VY 2B 328 (A7)

The exponent of the ¢ factor comes from the integral
which involves the n? terms.Eq. (A.1) then becomes:

an(V,1)

1
pram ASEL Ao
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