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Universal Multifractal Scaling of Synthetic 
Aperture Radar Images of Sea-Ice 

Tony Falco, Frkdkric Francis, Sham Lovejoy, Daniel Schertzer, Bryan Kerman, and Mark Drinkwater 

Ahtruct- Multifrequency, multipolarization imaging radar 
scattering coefficient data sets, acquired by synthetic aperture 
radar (SAR) over sea-ice, were studied in order to reveal their 
scale-invariant properties. Two distinct scenes were acquired at 
C-band (5.6 cm) and L-band (25 cm) wavelengths for three 
different linear polarizations (HH, VV, and HV). These sea-ice 
radar scattering coefficient fields were investigated by applying 
both Fourier and multifractal analysis techniques. The (multi) 
scaling of the data is clearly exhibited in both scenes for all 
three polarizations at L-band and for the HV polarization at C- 
band. The fields presenting this symmetry were found to be well 
described by universal multifractals. The corresponding param- 
eters N ,  CI, and H were determined for all these fields and were 
found to vary little with only the parameter H (characterizing the 
degree of nonconservation) displaying some systematic sensitivity 
to polarization. The values found for the universal multifractal 
parameters are N N 1.85 & 0.05, CI N 0.0086 i 0.0041, and 
H N -0.15 i 0.05. 

I. INTRODUCTION 

EA-ICE fields, like the product of many other nonlinear S dynamical geophysical processes, is characterized by ex- 
treme variability over a wide range of scales. Since it is clear 
that the inhomogeneity extends down to millimetric scales, 
remote measurements of its properties (typically performed at 
much larger scales) will depend critically on this variability. 
For synthetic aperture radar sea-ice data, the highly variable 
scattering coefficient fields will depend on the basic dynamical 
and morphological parameters: thickness, density, salinity and 
temperature. While standard modeling and analysis methods 
can at best handle this variability over narrow ranges of scale, 
multifractal theory exploits the scaling symmetries present in 
geophysical fields in order to quantify their variability over 
arbitrarily large ranges. In fact, multifractal analysis has been 
successfully applied to investigate geophysical fields such as 
rainfall and cloud fields [1]-[4], ocean surface [SI-[7], wind 
turbulence [SI, [9], topography [lo], [ll], earthquakes [12], 
and temperature fields 191. An introductory discussion and 
overview of multifractals and the related analysis techniques 
for remote sensing may be found in [13] and [14] (see also 
[51). 
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Research has shown that geometric sets associated with sea- 
ice structures [15] and sea-ice keels [16], [17], are fractal 
and multifractal which suggests that the underlying dynamical 
fields are multifractal. While these studies were concerned 
solely with demonstrating the scaling behavior of geometric 
sets associated with sea-ice, this work will demonstrate and 
quantify the multiscaling symmetries present in the sea-ice 
radar scattering coefficient field. 

11. DATA AND ANALYSIS 

The data studied here consist of two distinct sea-ice SAR 
scattering coefficient scenes each having 512 x 512 pixel 
elements with 12!S m resolution. Both scenes were taken by 
the Jet Propulsioii Laboratory (JPL) airborne SAR (AIRSAR) 
which operates simultaneously at the C-band (5.6 cm) and 
L-band (25 cm) wavelength ranges [18], transmitting and 
receiving from sseparate antennas in three linear polarization 
combinations namely HH, VV, and HV where the sym- 
bols represent hclrizontal (H) and vertical (V) polarization in 
the transmitted and received beams, respectively. The SAR 
backscatter images were taken from an altitude of 9 km over 
a section of the EIeaufort Sea located at 76" north latitude and 
165" west longitude during March 1988 [19]. Two of these 
sea-ice SAR bacliscatter amplitude fields are shown below in 
Fig. 1. 

C-band backscattering relates mostly to the micro-physical 
properties of the medium via the dynamic-thermodynamic 
relations of the sea-ice. For instance, how the distribution of 
brine and gas bubbles in sea-ice drives the dynamic strength 
of the sea-ice also controls the dielectric tensor within the ice, 
and thereby determines the scaling of the scattering amplitude 
fields. The L-banld shows a somewhat different set of relations 
responding to bulk properties of the ice and characteristics of 
the sea-ice determined by ice dynamics; such as morphology, 
the stress-strain field, and the general salinity or roughness 
characteristics. Due to their different thermodynamic histories, 
the characteristics of the amplitude field itself are different for 
old and young ice. Finally, the HH and VV polarizations are 
mostly sensitive to the surface characteristics whereas the HV 
polarizations to those of the internal properties. Further, more 
detailed information on polarimetric scattering signatures of 
sea-ice can be found in [20] and [41]. 

111. FOURIER POWER SPECTRA AND SCALING 

If the dynamical processes which give rise to the ice fields 
are scaling, then surface topography, salinity, and temperature 
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(a) (b) 

Fig. 1. Two distinct SAR sea-ice scattering coefficient fields taken over the Beaufort Sea at HV polarization. (a) C-band (Scene 1). (b) L-band (Scene 2). 

fields will also be scaling; so will the resulting dielectric tensor 
at microwave frequencies. Its variability will have no charac- 
teristic length except that associated with the wavelength under 
consideration. When such a surface is observed by radar, the 
scattered intensity is a spatial average (over the pulse volume) 
of the reflected wave weighted by a phase term which depends 
on the position of the scattering element and the wavevector of 
the radar. Mathematically, the observed signal will be a Fourier 
component of the radar cross-section field. When the latter is 
scaling, we seek the Fourier component of the corresponding 
multifractal field. A very similar problem has recently been 
studied by [21]; that of radar measurements of rain. Each drop 
is nearly spherical, and a scalar wave approximation is quite 
accurate. With the help of Lie cascades [39] (which allow 
for a vector or tensor multifractal representation), Duncan 
was able to find a general solution to the scalar multifractal 
radar observer’s problem. In particular, he argued that there 
were only two fundamental differences between the statistical 
properties of the radar reflectivities and the (scalar) radar 
cross section. The first is the introduction of a fundamental 
scale corresponding to the pulse volume, and the second, the 
existence of a systematic scaling bias in the statistics. Note that 
these results concern the statistics and do not imply that the 
“speckle” effect discussed here can be removed on an echo 
by echo basis. In terms of the basic (universal) multifractal 
exponents discussed below (a ,  Cl), Duncan’s results imply 
that they will be unaffected (i.e., we will obtain the same 
a, C1 for the radar cross-section and for the radar scattering 
amplitude fields). Recently [42] more precise results have been 
obtained (including a multifractal explanation for “speckle”). 

While the generalization of Duncan’s results to the full 
multifractal tensor problem necessary for studying sea-ice 
is a subject for future study, we anticipate that the various 
polarized returns of such a surface will also be multifractal 
down to the footprint (pulse volume) scale. However, before 
proceeding with a multifractal analysis of the reflectivities, we 
must verify the basic scaling symmetry in this radar scattering 

coefficient field. For fields which are roughly statistically 
isotropic, a sensitive and straightforward means to do this is 
to estimate the standard (isotropic) power spectrum of the data 
[ E ( k )  at wavenumber k ] ,  defined by the ensemble average of 
the squared modulus of Fourier transform of the data followed 
by an angular integration which yields the standard spectral 
energy E ( k ) .  For an isotropic scale invariant field &e., it is 
self-similar), E ( k )  will be a power law 

E ( k )  cx k-P 

where the spectral exponent p is estimated from the slope of a 
double logarithm plot of E ( k ) ;  recall that k = 1 corresponds 
to 512 x 12.5 m = 6.4 km. 

While the energy spectrum is defined as an ensemble 
average, the estimates presented here are from single sam- 
ples-which we treat as single realizations of a stochastic 
multifractal process. In order to reduce spectral leakage, a Han- 
ning window was used, and since single samples were used, 
we in fact calculated the corresponding modified periodogram. 
Since the scaling itself is a statistical symmetry (necessarily 
broken on every single realization; it only holds exactly 
on ensemble averages), we therefore expect nonnegligible 
random deviations around the power law due to the chance 
presence (or absence) of high-order singularities. In addition, 
in multifractals, the variance (as well as the other moments) 
varies as a systematic power law function of resolution [with 
exponent K(2);  (4), studied below], hence we are interested 
instead in the spectral exponent /?, rather than the spectrum 
itself. Therefore no special variance reduction techniques were 
used [22], [27]. 

In addition to (occasionally large) random deviations from 
power law form due to inadequate sample size, we antici- 
pate some systematic deviation from power laws due to the 
anisotropy of the field.’ Although a thorough discussion of 

We discuss the anisotropy of the spatial field at fixed look angle and fixed 
polarization, not the anisotropy at a given location as a function of look-angle 
or polarization, [41]. 
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TABLE I 
COMPILATION OF RESULTS. THE VALUES OF Cy AND ci ARE AVERAGES 

OVER THE ESTIMATES OBTAINED WITH q = 0.5, 1.5, AND 2.0 

00072 I 1) 63 
scene 2 

anisotropy is outside of our present scope (it is the subject 
of a paper in preparation) we give a quick summary here. 
Geophysical fields such as sea-ice are rarely if ever isotropic, 
however their anisotropy by no means implies breaks in their 
scaling. The framework for treating scaling anisotropy is “Gen- 
eralized Scale Invariance” [I], [23], [24] and involves a group 
of scale changing operators which define an exponent called 
the generator. Isotropic scaling corresponding to self-similar 
fractals and multifractals have generators which are identity 
operators; in the anisotropic case, the generator will generally 
be a nonlinear (even random) function. Work in progress 
approximates the generator by a matrix (“linear GSI”) and 
thus confirms and quantifies the anisotropic scaling displayed 
in sea-ice, particularly the strong anisotropy associated with 
fractures, shears and ridges. 

Thus in principle, anisotropic generalizations of the power 
spectrum are necessary (see [25]); without these, one might 
for example expect oscillations periodic in log wavenumber. 
However, since the angle integration is quite effective at 
averaging out spectral anisotropy, only very severe anisotropy 
will lead to a significant effect in the usual angle averaged 
(isotropic) spectrum. We directly verified from the full 2- 
D spectrum that this was indeed the case (we estimated 
the linear approximation to the generators using the scale 
invariant generator technique of [26]: results will be reported 
elsewhere). Note that following this, in the rest of this paper, 
only isotropic analysis techniques (such as square averaging 
boxes at all scales) are used. 

With these caveats about possible deviations from pure 
power law behavior-even with perfectly scaling ice 
dynamics-Fig. 2(a) shows that, over the entire accessible 
range, the scaling is reasonably well respected for all 
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Fig. 2. (a) Power spectra showing the well-respected scaling, especially 
linear in the HV polarization for both scenes in their L-band data (from top 
to bottom, the curves are HH, V V ,  and HV for scene 1 followed by HH, 
VV, and HV for scene 2). The curves were offset by 0.5 in the vertical so 
as to avoid overlap. (b) Power spectra showing the well-respected scaling, 
especially linear in the HV polarization for both scenes in their C-band data 
(from top to bottom, the curves are HH, VV, and HV for scene 1 followed by 
HH, VV, and HV for scene 2). The curves were offset by 0.5 in the vertical 
so as to avoid overlap. 

polarizations of the L-band data from both scenes with 
the spectral exponent showing some variation. Estimates 
of /? are given in Table I. The corresponding analysis for 
the C-band data yields somewhat less satisfying results 
[Fig. 2(b)]. Once again, the scaling relation holds for the HV 
polarization as seen in Fig. 2(a). It would be nice to be able 
to use rigorous statistical goodness of fit testing procedures 
to quantify the statement that the scaling is “reasonably 
well respected.” However, even for the theoretically simpler 
monofractal processes (such as fractional Brownian motion 
where p can be related to a fractal dimension), such tests do 
not exist (see however [27] for some numerics). Here, the 
statement is based on comparing spectra from multifractal 
simulations with measured parameters with the data, and 
noting that deviations of similar magnitude are typically 
obtained. 
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However, if we now consider the high wavenumbers corre- 
sponding to distances less than approximately 50 m, the spectra 
of both scenes at the HH and VV polarization scattering 
coefficient fields deviate slightly from the expected straight 
line behavior. Since there are no known physical properties 
of sea-ice that correspond to a phenomena occurring at a 
fundamental length scale of around 50 m and the L-band 
spectrum indicates that scaling is apparently respected at that 
scale, we suspect that this deviation for the C-band HH and 
VV polarization scattering coefficient data results from an 
artifact introduced during the complex data acquisition and 
preprocessing analysis stages in the C-band data. 

IV. MULTIFRACTAL ANALYSIS: 
THEORY AND SAMPLE RESULTS 

The above analysis demonstrates that the radar backscatter 
amplitude of these sea-ice SAR images is scaling over the 
observed range 12.5 m to 6.4 km. We will now show that 
the field in fact exhibits multiple scaling; p being only a 
single member of an infinite hierarchy of exponents. As 
already mentioned, whereas scale invariant geometric sets 
are fractals, scale invariant fields (and dynamical processes) 
will be multifractals. This implies that each element in a 
multifractal is assigned not only a set of coordinates but 
also an intensity. The focus is thus shifted from examining 
how sea-ice geometries vary with scale to determining the 
functional relationship between the SAR sea-ice scattered 
intensity distribution and the scale at which the field is 
observed. 

Let us first define what is meant by the scattering coefficient 
at a given scale. For roughly isotropic fields, this is achieved 
most easily by superimposing an 1 x 1 pixel size square grid 
onto this field. Denoting the scale of the entire scene by 
L (= 512 pixels = 6.4 km), we thus define the scale ratio, 
X = L/l  > 1. The maximum available scale ratio is written 
as A and indicates the field’s finest resolution. A scattering 
coefficient at scale ratio A, denoted by Zx, can be calculated 
by taking the average of all the intensities of the pixels which 
fall inside a box (Bx)  of size 1 = L/X (= 1 pixel = 12.5 m): 

J, zAdD: 
zx = (2a) LAdD: . 

We can define the order of singularity y for a multifractal 
field 2, (here representing the radar scattering coefficient) by 

zx c( X Y  (2b) 

and a “codimension function” c(y) by [23] 

Pr(zX _> AT) cc x-‘(Y) ( 3 )  

where Pr indicates “probability.” Equation (3) defines the 
codimension function e( y) which characterizes the fraction 
of the probability space filled by singularities of order y. 
When c(y) is less than the dimension of the embedding 
space (D),  a geometric interpretation is possible: D ( y )  = 
D - is the fractal dimension of the regions where the 

scattering coefficient exceeds XY. Since c(y) describes how the 
probability distribution varies with resolution, an equivalent 
picture can be obtained by considering how the qth statistical 
moments of a field vary with resolution A: 

(4) 

where “( )” indicates statistical (ensemble) averaging. Equation 
(4) defines another scaling exponent K(q)  called the moment 
scaling function which is related to c(y) through a Legendre 
transformation [28]. K(q)  determines how the qth statistical 
moment of the field varies as a function of resolution whereas 
c(y) determines how the histogram varies with resolution. In 
order to apply (4) to the data sets to show that the data is multi- 
scaling, we use a generalization of partition function methods 
to stochastic processes called “Trace Moments” [23]. These 
arise from averaging moments over all disjoint resolution X 
boxes (windows), and then over all the available realizations. 
The slopes of the log of (2:) estimated this way versus log [A] 
(Fig. 3 )  provides an estimate of K(q).  Not only are the points 
in Fig. 3 quite linear (showing the scaling; compare with the 
straight regression lines) but their slope systematically varies 
with the order of the moment q.  Fig. 4 shows K(q)  indicating 
that this variation is nonlinear, hence the field is multiscaling, 
multiffractal. In comparison, monofractal processes such as 
Brownian motion and its generalizations would lead to a linear 

Many of the multifractal analysis techniques such as the 
trace moment only give good estimates of the scaling expo- 
nents when they are applied to conservative fields (Le., they 
are the direct outcome of multiplicative processes). Actually, 
(fractional) derivatives (but not integrals) with respect to a 
conserved field will also yield the same results. Although 
fractional differentiation (i.e., a Fourier power law filter) is 
preferable (see e.g., [9]), the (finite) gradient and the (finite 
difference) Laplacian of the field are usually sufficient [ 1 I]. We 
confirm here that the exponents K(q) are indeed insensitive 
to varying orders of differentiation. In Section VI, we directly 
estimate the order of (fractional) integration2 ( H )  needed 
to yield the observed field from a conservative field finding 
H < 0 corresponding to differentiation. 

K(q) .  

V. MULTIFRACTAL UNIVERSALITY CLASSES 

Since the multiscaling relations in (2)-(4) are general, they 
do not provide a very satisfactory characterization of Zx 
as it involves an entire (unknown) function e(?), or K(q) ,  
which is equivalent to having to determine and represent an 
infinite number of parameters. However, by considering how 
a conserved dynamical flux is nonlinearly multiplicatively 
modulated scale by scale, it has been shown [23], [24], 
[29] that multifractal processes possess stable and attractive 
generators. This result is the multiplicative analog of the usual 
central limit theorem for the addition of random variables. This 
means that independent of many of the dynamical details of 

’Because fractional integration corresponds to a power law filter, noncon- 
servative multifractal fields with H > 0 will display features of nonstation- 
arity (such as low frequency excess, tendencies toward ultraviolent violent 
catastrophes, etc.) in spite of the fact that within the scaling range they are 
oerfectlv stationary (i.e., statisticallv, translationallv invariant). 
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Fig. 3. 
from scene 1 [(a) HH, (b) HV, and (c) VV polarizations], and of L-band from scene 2 [(d) HH, (e) HV, and (f) VV polarizations]. 

Scaling curves from the Trace Moment function with q values 2.0, 1.7, 1.4, 1.0, 0.7, and 0.4 from top to bottom for all polarizations of the C-band 

the process under study, that an overall universal multifractal 
behavior may be recovered with a dependence upon only three 
parameters (see however the recent debate about weak versus 
strong multifractal universality in [30]). Such a representation 
in terms of universality classes of the conserved process is 
described by the fundamental parameters o and C1 

for 0 5 a 5 2. The LCvy index a is a direct measure of 
the degree of multifractality ([23], [29], [31], [32]). Equation 
(5) is only valid for q 2 0 when a < 2. The case a = 
0 corresponds to the monofractal extreme, while a = 2 is 
associated with the lognormal multifractal. 0 5 C1 5 D is the 

codimension of the mean singularity and D is the dimension 
of the embedding space (equal to D = 2 here). If C1 > D ,  the 
process will be degenerate on that space [23];  each realization 
will almost surely be zero everywhere. Since the a = 2 case 
has (nearly) lognormal probability  distribution^,^ universal 
multifractals are compatible with the widespread geophysical 
phenomenology of lognormal distributions. Note that we have 
already mentioned the third parameter H ;  the degree of 
fractional integration ( H  > 0) (differentiation, H < 0) with 
respect to the conserved multifractal process. 

In order to test the universality hypothesis, we use gen- 
eralization of the trace moments based on 22 fields rather 

3The “bare” Zx field [which obeys ( 5 )  exactly for all 41 will be exactly 
lognormal, but the observed “dressed” Zx field will only obey ( 5 )  for q < 4 0 ,  
and when cy = 2 ,  hence be only approximately log-normal, see below. 
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than 2,. This “double trace moment” (DTM) technique [l I], 
[33] yields the exponent function K(q,  7 )  based on a similar 
relationship to (4), i.e., 

the new field q 5 ~  is the obtained by degrading the resolution 
of the Vth power of the finest resolution scattering coefficient 
22 by spatially averaging it over boxes of scale A: 

This new exponent K(q, q )  is related to the previous moment 
scaling moment function by K(q, 1) = K(q)  and 

The term K(qq, 1) arises because we take the q then q 
power, whereas the qK(q, 1) term is a consequence of the 
normalization imposed by the spatial averaging over scale A. 
For universal multifractals (7) reduces to 

[as can be seen by plugging ( 5 )  into (7)].  Therefore, we can 
readily test the hypothesis that the scattering coefficient fields 
belong to multifractal universality classes by testing for a 
linear region of a plot between log [K(q,  q)] versus log [q] for 
a fixed q; the slope is a!. Since the value of a! is independent 
of the initial value of q, the analysis is repeated for various 
q-values in order to insure that universality is respected and 
to obtain more reliable estimates of a. This procedure is 
illustrated in Fig. 5 for two values of q: 0.5 and 1.5. It can 
be seen that a wide linear region exists which suggests the 
existence of multifractal universality classes. Both plots have 
nearly the same slope, a! M 1.85. From the intercepts, together 
with a and q, we find C1 M 0.0086. 

As can be seen in Fig. 5 ,  the DTM graphs deviate from the 
expected straight line behavior at the low and high ends of the 
log[q] range. Only the linear section of these log[K(q, q)]  
versus log[q] plots was used to estimate a and C1. These 
qualitative changes in the curve are theoretically expected. At 
the low q end (corresponding to exponents smaller than the 
very low value the behavior, is dominated by the 
weakest values in the field and the break from linearity is 
likely caused by a low level of space filling noise. 

The high q break is more interesting and corresponds 
to qualitative change for the violent (extreme) fluctuations. 
Since there is a formal analogy between thermodynamics 
and multifractals, with K(q) playing the role of a “Massieu” 
potential, this qualitative change in the behavior is called a 
“multifractal phase transition” [34]-[36], [40]. What we are 

o.19/ 

0 1 2 3 4 
9 

Fig. 4. Empirically determined Moment Scaling functions (using cv = 1.85, 
C1 = 0.01), for the HV polarization (from top to bottom) of C-band and 
scene 1, C-hand and scene 2, L-band and scene 1, and L-band and scene 2. 
Each line is the best fit using the cy and C1 parameters obtained from the 
DTM. Each curve is offset by 0.01 for clarity of presentation. 

examining is a single realization of the sea-ice process, while 
(6) involves an expectation over the entire infinite ensemble 
of realizations. Intensities with extremely high values are only 
rarely encountered in a single sample. This leads to an un- 
derestimation of the higher moments of the field. Specifically, 
for single realizations, discontinuities in the second derivative 
(second order phase transitions) of K(q,  7 )  will occur for [36]: 

(9) 

For example, using the values, D = 2 ,  C1 z 0.01, 
a! z 1.85, q = 1.5 (corresponding to one of the values used 
in Fig. 5) ,  we find qs z 8-11, which is roughly the value 
corresponding to the departure from linearity in Fig. 5. An 
additional verification of the universal multifractal parameters 
can be made using the definition of the moment scaling 
function, (4), and its universal form, (5). The moment scaling 
function is computed from the first of these two relations 
over a given range of q-values then it is compared to its 
theoretical form ( 5 )  using estimated values for a! and C1 from 
Table I. The comparison shown in Fig. 4 indicates generally 
good agreement; at least up to the fourth moment or so. 

As of yet, no mention has been made on how to determine 
the errors on the a! and C1 parameters. Both the moment 
scaling and DTM algorithms used here give estimates of the 
errors using the standard least squares fit technique when 
they calculate the slopes of their respective scaling graphs. 
However, given the excellent multiscaling observed here [and 
power law K(q,  q )  versus 71 curves], it is plausible that larger 
errors perhaps as large as ( f O . l  in a!, f0.005 in Cl) are likely 
to arise purely because of realization to realization variations 
(see [33] for Monte Carlo studies of this problem). Improved 
estimates should be obtained using a large number of scenes. 
At this stage however, the focus is put on i) establishing that 
sea-ice SAR scattering amplitude fields possess an underly- 
ing scaling symmetry which is well described by universal 
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Fig. 5. 
L-band data from (c) scene 1. (d) Scene 2 (HH, HV, VV from top to bottom in each figure). 

Results from the DTM technique with q = 0.5 and 1.5 (in pairs) for all the polarizations of the C-band data from (a) scene 1 . (b) Scene 2, and 

multifractals; and ii) on investigating the possible dependence 
of their multifractal parameters of the underlying process on 
wavelength and polarization used to acquire the data. 

VI. NONCONSERVED PROCESS AND THE 
THIRD UNIVERSALITY PARAMETER H 

We have mentioned that the multifractality arises because 
the nonlinear dynamics are scaling but nevertheless conserve 
the flux of some basic physical quantity from scale to scale. 
Since we lack a proper theory of all the dynamics present in 
sea-ice scattering coefficient (see [37]), we do not know what 
the proper conserved quantity is. However a priori, there is no 
reason to suppose that it coincides exactly with the observed 
scattering amplitude field. Until now, this point was not crucial 
since the trace moment techniques used to estimate K(q)  and 
K(q,  7 )  are unaffected by this conservation property (as long 
as the process is conservative or a derivative of a conserved 
process-see [ 111 for discussion). In order to fully describe the 
sea-ice SAR scattering amplitude using universal multifractal 
fields, we therefore require the third universal multifractal 
parameter which determines the degree of nonconservation of 
the process H .  This parameter quantifies how much the ob- 
served field differs from the corresponding conserved process; 
specifically, the order of fractional integration ( H  > 0) or 
differentiation ( H  < 0) that is needed to obtain a conservative 
field from a nonconservative one. Since a spectral exponent 

is a second-order moment [43], the spectral exponent of the 
conservative process can be related to K(2)  through 

H can then be estimated simply given the field's spectral 
exponent combined with 01 and C1 [using (5 ) ]  with K(2):  

P - P o n s  

2 
H =  

Table I shows that the estimated values of H are slightly 
negative (z-0.15 depending somewhat on the wavelength 
and polarization) indicating that a small amount of fractional 
differentiation is required to recover the observed from the 
corresponding conserved field. 

VII. CONCLUSION 

Due to nonlinear ice dynamics, sea-ice has complex, highly 
variable structures spanning wide ranges of scale. Since there 
is no characteristic length in these processes, we expect the 
dynamically significant ice fields to be universal multifractals 
over wide ranges of scale. Using several new data analysis 
techniques-notably the Double Trace Moment technique de- 
signed especially for this purpose-we estimate the universal 



FALCO et al.: SCALING OF SYNTHETIC APERTURE RADAR IMAGES OF SEA-ICE 913 

pXameterS a Z 1.85 & 0.05, Z 0.0086 f 0.0041, H 161 B. R. Kerman, “A multifractal equivalent of the Beaufort scale for 
~~ 

sea-state,” Geophy. Res. Lett., vol. 20, pp. 297-300, 1993. 
[7] B. R. Kerman and L. Bernier, “A multifractal representation of break- 

ing waves on the ocean surface,” J. Geophys. Res., vol. 99, pp. 
16179-1 61 96, 1994. 

[8] C. K. Meneveau and R. Sreenivasan, “Simple multifractal cascade model 
for fully developed turbulence,” Phys. Rev. Lett., vol. 59, pp. 1424-1427, 
1987. 

* 0’05’ On SAR data at and frequencies for 
three polarizations and for two scenes. The scene by scene 
comparison indicates that the estimates are (within statistical 
accuracy) independent of the scene. The wavelength and 
polarization comparison indicates no significant wavelength 
variations, with only small polarization variations; the HV 
polarization seems to have a value of H systematically greater 
than the other polarizations and, the values of C1 for HH 
and VV are similar but differ to the values for the HV 
polarization, for both scenes, although the effect is barely 
detectable with just two scenes. The scaling in the HV channel 
is also systematically better; the other polarizations exhibit a 
slight dip in the spectrum at wavenumbers corresponding to 
around 50 m. 

The physics of the different polarizations explains why 
the HV is somewhat different. Whereas the HH and VV 
polarizations represent more the surface characteristics, the 
HV polarization is a second-order scattered field representing a 
volumetric response to dielectric fluctuations of similar scales. 
This is a direct response to the fluctuation of the dielectric 
tensor, and represents some anisotropy in the sea-ice relating 
back to the predominant crystallography and brine-inclusion 
structure (within the crystal lattice of the sea-ice). 

The analysis reported here concerns the scattering amplitude 
field; perhaps the most significant direct inference about the 
dynamics is that they are likely to be scaling over the corre- 
sponding range of sizes since-due to the nonlinear relations 
between the different fields-a break in the scaling of the 
dynamics will be reflected in the scaling of the amplitude 
fields. It is possible however that more quantitative inferences 
about the ice field can be made, since recent results from 
the simpler scalar radar multifractal observer’s problem [21], 
[42] indicate that the radar scattering coefficient is likely to 
have the same basic multifractal parameters as the underlying 
cross-section field (i.e., the “speckle” doesn’t change the basic 
multifractal indices a, C1, only H) .  These results already per- 
mit multifractal simulations of ice scattering amplitudes using 
techniques used by [38] (although the anisotropy generator 
must be estimated in order to obtain realistic texture) and 
will provide statistical constraints on dynamical models of ice. 
The relations between the results at different wavelengths and 
polarizations will next be investigated in more detail with the 
help of Lie cascades [36]. 
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