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Is isotropic turbulence relevant in the atmosphere?
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[1] The problem of turbulence is ubiquitous in the Earth
sciences, astrophysics and elsewhere. Virtually the only
theoretical paradigm that has been seriously considered is
strongly isotropic in the sense that scaling exponents are the
same in all directions so that any remaining anisotropy is
“trivial.”” Using 235 state-of-the-art drop sonde data sets of
the horizontal wind at ~5 m resolution in the vertical, we
show that the atmosphere is apparently outside the scope of
these isotropic frameworks. It suggests that anisotropy may
frequently be strong requiring different scaling exponents in
the horizontal and vertical directions. Citation: Lovejoy, S.,
A. F. Tuck, S. J. Hovde, and D. Schertzer (2007), Is isotropic
turbulence relevant in the atmosphere?, Geophys. Res. Lett., 34,
L15802, doi:10.1029/2007GL029359.

1. Introduction

[2] If we include intermittency, Kolmogorov’s [Kolmogorov,
1941] landmark proposal that fully developed turbulence
has an ““inertial subrange” with isotropic energy spectrum
E(k) ~ k" with 8 ~ 5/3 has apparently been spectacu-
larly confirmed in both the horizontal direction and in the
time domain (k is a wavenumber). For gradients over a
horizontal distance Ax this implies (|Av(Ax)|) ~ Ax™
(H, = 1/3 corresponds to = 5/3; “(.)” indicates
ensemble averaging). Remarkably, H, for gradients over
vertical distances Az ((|AW(Az)|) ~ Az™) has not been
seriously investigated (note that ignoring intermittency,
for either 1-D or isotropic spectral exponents we have
G =1 + 2H). Using state-of-the-art drop sonde data of
horizontal wind, we find that from scales of 5 m to >10 km
from the surface layer through to the top of the troposphere,
H, is close to (or larger) than the Bolgiano [Bolgiano, 1959]-
Obukhov [Obukhov, 1959] value 3/5. H, > H,, implies that
(1) the atmosphere becomes progressively less stratified at
smaller scales although in a scaling way [Schertzer and
Lovejoy, 1985a]; and (2) that at most a single (roughly)
isotropic ““sphero-scale” exists (often in the range 1-100 cm
[Lilley et al., 2004; Lovejoy et al., 2004]).

[3] Kolmogorov’s theory is based on two key assump-
tions: (1) that there exists an “inertial” range where the
turbulence is isotropic depending only on the energy flux ¢
and the viscosity, and (2) that within the inertial range,
an inertial subrange exists where only the scale-by-scale
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transport of energy is important; this is the £ regime.
The main reason for supposing the existence of an isotropic
range in the atmosphere is that in turbulence, structures at a
given scale are mostly coupled with structures at neighbouring
scales so that the effects of large scale boundary conditions are
progressively “forgotten” at small scales. Classically this
tendency to “return to isotropy” [Rofta, 1951] has been
modeled using second order closure techniques; however even
within this framework, when buoyancy forces are included,
they are found to be relatively large [Moeng and Wyngaard,
1986], just as in laboratory flows it is found that even small
buoyancy forces readily destroy isotropy [Van Atta, 1991].
Even recent theoretical advances [Arad et al., 1998; Arad et
al., 1999] assume a priori that fluctuation statistics follow
the form (|AWAF)|) = O 5| Ar|” where &; is the direction
vector, | Ar| is the length of the separation vector Ar. They thus
assume that A, = H, and introduce the “trivial anisotropy”
function ©4;); indeed they introduce a hierarchy of such
terms each with different A’s and ©’s. Since the theory
ignores buoyancy, when it was checked in the atmosphere,
the data were restricted to the horizontal [Kurien et al., 2000].
Indeed, virtually all empirical surface layer atmospheric tests
of isotropy (i.e. those with the best quality data) simply
assume that A, = H, = 1/3 and test the anisotropy at unique
scales. It is even common to study the spatial anisotropy of
scalars by using single point time series of gradients, con-
verting time to space with “Taylor’s hypothesis” of frozen
turbulence, and then using the skewness to determine the
forward/backward trivial anisotropy [Sreenivasan, 1991].
Even in the analysis of laboratory (Rayleigh-Bénard) con-
vection where there is a debate about whether = 1/3 or 3/5,
isotropy is still assumed (i.e. H;, = H,) and one still uses data
from time series at single points [Ashkenazi and Steinberg,
1999; Shang and Xia, 2001].

[4] Perhaps the most serious attempt to develop a specific
theoretical framework for atmospheric turbulence is [Charney,
1971] whose 3D quasi-geostrophic turbulence was con-
structed as a broad 3D generalization of the 2D cascades
pioneered by [Kraichnan, 1967]. Charney demonstrated that
the pseudo-potential vorticity plays basically the same role as
the vorticity, i.e. it is an invariant of the motion and it
prevents the development of an energy cascade towards high
wave-numbers yielding instead a pseudo-potential vorticity
cascade. Without taking into account intermittency effects,
for wave-numbers suitably renormalized along the vertical,
the latter yields a 3D isotropic k> spectrum. This implies
H, = H, = 1 although due to the renormalization, the
vertical structures will be somewhat stratified (i.e. there is a
trivial anisotropy ©x;,). Note that the pure 2D (Kraichnan)
regime corresponds to H,, = co.

[s] Charney admitted that rigorous demonstration of the
invariance of the pseudo-potential vorticity requires rather
particular boundary conditions: the surface must be either
isentropic or isothermal. He was only able to weaken this
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Figure 1. Rms fits to the sonde mean absolute vertical
shears of horizontal wind for layers of thickness increasing
logarithmically. The reference lines have slopes H, = 1/3
(Kolmogorov), H, = 3/5 (Bolgiano-Obukhov), H, = 1
(gravity waves, pseudo potential vorticity). The rms H,
estimates are given next to the lines. The data for each level
are offset by one order of magnitude for clarity, units m/s.

condition by minimizing the role of fronts. This contrasts
with the regular observation of sharp temperature gradients,
in particular in the vicinity of fronts. In any case - as in our
previous studies - we neither observed the two different
cascades predicted for large and small scales, nor a regime
with H, h = Hv-

[6] Gravity is the source of anisotropy which leads to
stratified turbulence and it acts at all scales through buoy-
ancy effects. It is precisely buoyancy effects which lead to
the hypothesis of a central role for the buoyancy variance
flux [Bolgiano, 1959; Obukhov, 1959]. While the original
isotropic Bolgiano-Obukhov regime was never observed,
the buoyancy flux survives in the “hybrid” 23/9D aniso-
tropic scaling model [Schertzer and Lovejoy, 1985a, 1985b]
which postulates that the energy flux dominates in the
horizontal while the buoyancy variance flux dominates in
the vertical so that A}, = 1/3 but H, = 3/5. Whereas classical
approaches to turbulence deduce two distinct isotropic
cascades from the existence of two invariants, the 23/9D
model deduces a single anisotropic cascade from two
invariants.

2. Empirical Analysis

[7] Most of our knowledge of the vertical structure of the
atmosphere comes from radiosonde balloons designed for
synoptic forecasting rather than research; they typically
have vertical resolutions of the order 150 m. In addition to
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their low resolutions, balloons suffer from swaying payloads
and disturbances on ascent caused by the balloon’s wake (see
however Harrison and Hogan [2006]). In spite of these
difficulties, experimentalists largely interpret the vertical
spectrum in terms of quasi-linear gravity waves with expo-
nent H, =1 (but with H,, =~ 1/3) [see e.g., Allen and Vincent,
1995; Dewan, 1997, Fritts et al., 1988; Gardner, 1994]. This
follows from dimensional analysis if the layers are stable and
homogeneous with well-defined Brunt-Viiséla frequencies,
see S. Lovejoy et al., Scaling turbulent atmospheric stratifi-
cation, part I: Turbulence and waves, submitted to Quarterly
Journal of the Royal Meteorological Society, 2007, for a
critique. In comparison, the older Lumley-Shur [Lumley,
1964; Shur, 1962] model predicts an isotropic H, = H,, = 1
regime (as for pseudo potential vorticity). In order to test
the Kolmogorov law in the vertical, we used state-of-the-art
drop sonde data from the NOAA Winter Storms 04 experi-
ment over the Pacific Ocean (ranging over latitudes of about
20-60° north), where 261 sondes were dropped by a
NOAA Gulfstream 4 aircraft from roughly 13 km altitudes.
These GPS sondes had vertical resolutions of ~5 m,
temporal resolutions of 0.5 s, horizontal velocity resolutions
of ~0.1 m/s and temperature resolutions of ~0.1 K [Hock
and Franklin, 1999]. While the full analysis of the 2004
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Figure 2. Histograms of H,. Sonde by sonde, layer by
layer, the figure displays the frequency distribution of H,
values calculated from the modulus of the vector velocity
differences (offset in the wvertical for clarity by 0.1).
Successive histograms are for increasingly high 1 km thick
layers, the histogram baselines are evident from the level of
the far left horizontal lines. There were no values <0.30,
nor >1.07. For each histogram, H is estimated over
all points whose mean altitude is between the indicated
altitude and 1 km below it, the fits are over the scales
5—-1000 m. The vertical reference lines indicate the critical
values 1/3 (Kolmogorov), 3/5 (Bolgiano-Obhukov), and
1 (pseudo-potential vorticity, gravity wave models).
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Figure 3. Scaling exponents as functions of altitude. (top left) The means and standard deviations of the H values
calculated from the moduli of the vector differences in horizontal winds. The blue curve is from the H values in Figure 1,
i.e., over all pairs of points below the altitude indicated, estimated over the entire range of scales available (i.e., up to
12.6 km at the highest altitudes). The points are fits from individual sondes, as indicated in Figure 2. The error bars indicate
the sonde to sonde variability (235 sondes were used). (top right) Same as for Figure 3 (top left) but for the corresponding
spectral exponents 3, (nonintermittent) Kolmogorov theory yields § = 5/3, Bolgiano Obukhov, 5 = 11/5. The blue lines are
a bit to the left since they are weighted to be near the indicated altitude whereas the black points are from data within a
kilometer of the indicated altitude. (bottom left) The C; values corresponding to the north-south components. (bottom right)

The corresponding « values.

experiment is described by S. J. Hovde et al. (Vertical
scaling of the atmosphere: 1. Dropsondes from 13 km to
the surface, submitted to Quarterly Journal of the Royal
Meteorological Society, 2007, hereinafter referred to as
Hovde et al., submitted manuscript, 2007), we concentrate
here on analysis of the horizontal velocities; see also Tuck et
al. [2004] for the relation between H, and jet streams.
Our experiment is in many ways an update of one of the
largest vertical scaling study to date: [Lazarev et al., 1994]
which used 287 radiosondes (at 50 m resolution) over the
tropical Pacific; and came to conclusions similar to those
below but without being able to analyze the fairly thin
layers considered here (c.f. also the Landes (France) exper-
iment using 80 sondes at about 40° north [Schertzer and
Lovejoy, 1985a]).

[8] Figure 1 shows the composite analysis of the most
complete 235 sondes; of these near complete data sets,
outages were most frequent at the higher altitudes. For each
sonde, the mean absolute shears AV(Az) = |v(z)) — ¥(z))]
(v is the horizontal velocity vector) were calculated using all
pairs of points with Az = |z; — z,| in logarithmically spaced
intervals, and for all z,, z,, < z, where z, is the indicated
altitude threshold. This method is particularly effective
since while there are ~1400 data points per sonde (at
2 Hz), there are many more pairs of points (roughly 10°);
the method also overcomes the irregular vertical spacing of
the data without requiring potentially problematic interpo-
lations. Note that for each layer the logarithmic spacing of
layers gives predominant weight to the upper part of the
range; for layers with constant thicknesses, see Figures 2
and 3.

[o] Four features of Figure 1 are particularly striking:
(1) the overall scaling — even for the thickest layers
spanning the entire troposphere — is excellent; the standard
errors in the slope (H) estimates are <+1%; (2) the slopes at

the lower levels (which are not too affected by the
ever present strong jet streams) are very close to the BO
value 3/5, but increase at higher altitudes; (3) there is no
evidence for H, = 1/3 (Kolmogorov) behaviour, even at the
smallest scales (5 m) and in the lowest layer (<158 m)
which for technical reasons are inaccessible to radio-
sondes; this is especially significant; and (4) there is no
evidence for H, = 1 (gravity wave, pseudo potential
vorticity) even at the largest vertical scales. However, since
Figure 1 pools the data from all the sondes, the result
might be an artifact of mixing data from profiles some of
which might have H, = 1/3 or H, = 1 scalings. Figure 2
shows histograms, altitude by altitude giving the distribu-
tion of H, values. In this case, the layers are spaced linearly,
and regressions are made over layers 1 km thick with z, —
1 km < (zy + 2,)/2 <z km, for 5 m < Az < 1 km. With the
exception of the top (12—12.6 km) histogram (which due to
missing data is based on only 29 sondes whereas all the
others are based on >200 sondes), the distributions are
generally unimodal. Of the total 2727 H, values estimated,
only a single one at the lowest 1 km level has H, ~ 1/3,
only 9 have H, > 1, and only 1 has H, > 1.05. In order to
quantitatively characterize the mean and spread of these
values, we refer to Figure 3 (top left) which gives the
one standard deviation spread of values around the mean.
One can see that the Kolmogorov H, = 1/3 value is
systematically 2—4 standard deviations below the mean,
while H, =~ 1 is about 2 standard deviations above it.
Analysis of the near simultaneous aircraft statistics in the
(roughly) horizontal direction confirm that H), ~ 1/3 (and
hence H;, < H,) although the large distance behaviour
requires careful analysis due to the effect of the small
vertical aircraft displacements even on “horizontal” legs
(see the discussion in Lovejoy et al. [2004]).
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[10] We now examine several factors that may affect the
result. First, the structure function - although simple to
apply - is limited to series with 0 < H,, < 1; we therefore also
applied a version of the Detrended Fluctuation Analysis
[Kantlelhart et al., 2002] (adapted to irregular data spacing)
which systematically removes linear trends, effectively
redefining the fluctuation Av as the difference between v
and a linear estimate; this change only made a small change
in the H, estimates (it increased them slightly). Second, we
may wonder how much the estimates are affected by
intermittency; although a priori this effect will be small
for the first order moments (indeed, this is the advantage of
choosing moments of order ¢ = 1 compared to the more
standard ¢ = 2 value). To quantitatively characterize it, we
calculated the gth order structure function exponent £(g):
(|Av|?) ~ Az8@. Increasing ¢ yields statistics more and
more sensitive to (rare) large fluctuations; Figure 3 (top)
shows the H values cited above (= £(1)) and the spectral
exponent 5 =1+ £(2). To characterize £(q), we fit it to the
following ‘““universal multifractal” [Schertzer and Lovejoy,
1987] parametric form: £(q) = Hq — K(q), K(q) = % q*—q)
where C; is the codimension of the mean fluctuation and
« is the Levy index characterizing the degree of multi-
fractality. C; quantifies the effect of intermittency on the
mean; if this was large enough it could perhaps explain the
large H, values. Figure 3 (bottom left) shows that C; is
quite small (much less than H), so that we cannot explain
the deviations from Kolmogorov’s law due to intermitten-
cy effects. The « values (Figure 3, bottom right) show that
the effects of intermittency increase rapidly with ¢ (1.6 <
a <20 ie. « is large).

3. Conclusions

[11] Using 235 state-of-the-art drop sondes over the
northern Pacific Ocean, we have shown that there is no
evidence that the Kolmogorov law (H, = 1/3) — or its
intermittent generalizations — holds; this includes tropo-
spheric scales from 5 m and up, for over all layers, even
those within 158 m of the surface. Similarly, the gravity
wave and Charney exponent H, = 1 (corresponding to k>
vertical spectra) occurred in only 0.3% of the layers. Note
that since H, > H,, structures will be at least approximately
isotropic at a unique ‘‘sphero-scale”. However this has
nothing to do with a “return to isotropy” or independence
of the turbulence with the large scale forcing; rather it is a
“cross-over” phenomenon, i.e. a consequence of two power
laws “crossing” at a unique scale. We emphasized that this
is quite different from the classical return to isotropy for
fully developed turbulence, which - in the absence of
gravity - is expected at high turbulent energy rates, but
which may be prevented by the action of gravity at all
scales. This is clearly the case in the 23/9 D model since it is
built on a balance between the (horizontal) turbulent energy
flux and the (vertical) buoyancy force flux, which maintains
on the contrary a scaling anisotropy.

[12] While it is true that absence of empirical evidence
for isotropic turbulence is not the same as empirical evi-
dence for its absence, the number of concordant studies is
growing and includes notably those in the tropics [Lazarev
et al., 1994] and temperate latitudes [Schertzer and Lovejoy,
1985a] over land and over the oceans (for a review see
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M. Lilley et al., Scaling turbulent atmospheric stratification,
part II: Spatial stratification and intermittency from lidar
data, submitted to Quarterly Journal of the Royal Meteo-
rological Society, 2006, and for new results Hovde et al.,
submitted manuscript, 2007). Let us emphasize that all these
data analyses also showed that atmospheric turbulence is
strongly intermittent, i.e. regions with very high turbulent
energy inside of regions of with not so high turbulent
energy: they did not display an effective return to isotropy.
Although we cannot empirically rule out the possibility that
in specific regions with very intense turbulence, the expo-
nents converge - becoming isotropic - it is not easy to see
how this could happen.

[13] Our results are precise enough to be more conclusive
than before. Indeed, their high precision has brought to the
fore a systematic tendency for the H, values to increase
from the near surface Bolgiano-Obukhov value 3/5 to
values closer to 0.77 in higher layers subject to large (jet)
shears. While the exact explanation for this increase is
unclear at present, it should be recalled that like the usual
turbulence laws, the 23/9D model presupposes spatial
statistical homogeneity, which is violated by the strongly
altitude dependent jets. In this respect it is significant that an
analysis of data over land and in the lower 4 km (without
strong shears) using aerosols as passive tracers [Lilley
et al, 2004] (detected by high resolution lidars), found
H,~0.60=+0.03 (compared to H,, =~ 0.33 +0.02, close to the
standard Corrsin-Obukhov value 1/3).

[14] Acknowledgments. We are grateful to the staff, aircrew, and
ground crew from the NOAA Air Operations Center, who operated the
Gulfstream 4. We also thank Manu Nunes-Carrier for help with the data
analysis.
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