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Abstract The end users of hydrological models may be justified for being tired of the excessive uncertainty of these
models, not to mention their simplistic approximations and crude modelling. The ever-increasing sophistication of
model parameter fitting is simply a smoke-screen that hides the models’ lack of physical basis, their scale
dependence, and their inability to fit widely diverse behaviours. More generally, we have to admit a lack of
qualitative improvement in hydrological modelling in recent times. In fact, operational hydrology may have
suffered for some time from ignoring the advances in theoretical hydrology, which have, in contrast, greatly
stimulated the nonlinear sciences. For instance, more than a century ago fractals were considered as geometrical
monsters, whereas decades ago river networks became classical fractal objects, and rainfall and discharges are now
classical examples of multifractal fields. These hydrological characteristics are still often ignored by operational
hydrology, whereas they explain not only its current limitations, but also how to overcome them. To illustrate these
problems, this paper focuses on the fact that hydrological fields are most likely singular with respect to measures of
time and volume. This would not only explain the ubiquitous scale dependence of hydrological observations, but
would also give the possibility to transform them into scale-independent quantities. The upscaling of a rainfall time
series from an hour to a year is therefore discussed in detail, and enables us to quickly introduce other examples.

Key words scales; measure; singularities; balance equation; fractals; multifractals

Ni monstres, ni miracles: l’hydrologie n’est pas un horsain des sciences non-linéaires!
Résumé Les utilisateurs de modèles hydrologiques peuvent légitimement déplorer l’incertitude excessive des
modèles qui leur sont proposés, pour ne rien dire de leur caractère fruste et de leurs approximations simplistes. La
sophistication croissante des procédures de calage des paramètres n’est qu’un rideau de fumée cachant l’absence de
bases physiques des modèles, leur dépendance d’échelle, et leur incapacité à rendre compte de comportements
contrastés. Plus généralement, nous devons reconnaître que la modélisation hydrologique n’a connu récemment
aucune amélioration qualitative. En fait, l’hydrologie opérationnelle souffre depuis longtemps de son ignorance des
avancées théoriques de l’hydrologie, qui ont par contre grandement stimulé les sciences non linéaires. Les fractals, par
exemple, étaient considérés il y a un siècle comme des monstres géométriques mais les réseaux hydrographiques sont
devenus des prototypes d’objets fractals, tandis que la pluie et les débits sont maintenant des exemples classiques de
champsmultifractals. Ces propriétés hydrologiques sont encore souvent ignorées par l’hydrologie opérationnelle alors
qu’elles expliquent ses limitations actuelles et permettraient de les surmonter. Pour illustrer cette problématique, ce
papier est centré sur le fait que les champs hydrologiques sont très probablement singuliers par rapport aux mesures du
temps et des volumes. Ceci non seulement expliquerait l’omniprésence de la dépendance en échelle des champs
hydrologiques, mais donnerait aussi le moyen de les transformer en quantités invariantes d’échelle. L’agrégation d’une
heure à une année d’une chronique de pluie est ainsi discutée en détail et nous permet d’introduire rapidement d’autres
exemples.

Mots clefs échelles; mesure; singularités; équation de bilan; fractals; multifractals
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HYDROLOGICAL MONSTERS OR AN
INADEQUATE FRAMEWORK?

With floods and droughts of all magnitudes, hydrology
seems to be as full of monsters as theCourt of Miracles
described by Victor Hugo (Hugo, 2002). However,
beyond this layman’s statement, the fundamental scienti-
fic question is: Do we have the appropriate theoretical
framework to tame these monsters yet, or do they remain
alien to our current framework?As a typical example, one
may take the often invoked “outliers”, which are usually
defined as observations that are numerically distant from
the rest of the data (Bernet & Lewis, 1994). Such a
distance may be due either to measurement problems
or to a probability distribution that admits large devia-
tions, e.g. “fat-tailed” distributions (i.e. with power-law
fall-offs).

Mathematicians immediately think about the pre-
liminary characterization of the functional space
(e.g. Lions, 1969), on which one tries to solve a given
(hydrological) problem. For instance, should we look
for smooth solutions over a given domain Ω, e.g. con-
tinuous and k times differentiable functions that define
the classical functional spaceC k(Ω), or, on the contrary,
to irregular solutions, i.e. having discontinuities or sin-
gular behaviours, such as those belonging to the more
recent Sobolev spaces, W k,p(Ω), where the derivatives
(up to the order k) may exist only in the sense of
generalized functions (Schwartz, 1950–1951; Lighthill,
1959)? This characterization has, in fact, been under-
taken by theoretical hydrology under various forms
seeking to characterize the extreme variability of hydro-
logical fields over a wide range of space–time scales. It
was first attempted with the help of geometrical and
phenomenological approaches. This brought a new
understanding of hydrological fields and their geome-
trical complexity; in addition, it greatly stimulated what
has been often called “fractal geometry” (Mandelbrot,
1983). Suddenly, the odd features of hydrological fields
became categorized – as were many other geophysical
fields – as being fractals, and became quantifiable with
the help of the corresponding concepts, in particular that
of fractal dimension. For instance, although everyone
has been aware for some time that the borderline of a
drainage basin could be as complex as coastlines, it is
not yet widely known that both could be characterized
by a fractal dimension,D, larger than the dimension of a
smooth curve (D ¼ 1). Furthermore, the larger this
dimension is, the more crooked is the borderline
(Perrin, 1913; Richardson, 1961; Mandelbrot, 1967;
Bendjoudi & Hubert, 2002; Sapoval et al., 2004).

More influential should have been the development of
various techniques to assess and to simulate the variability
of hydrological fields. To underline that hydrology was in
many respects ripe for these developments, it is worth
noting that this was often obtained by revisiting some pre-
fractal techniques elaborated in hydrology. This is parti-
cularly the case for the “rescaled range analysis”
(Mandelbrot & Wallis, 1969a), which is a refinement of
the “range analysis” obtained byHurst (1951) on the basis
of an empirical analysis of the Nile floods (Klemeš, 1974;
Sutcliffe, 1979). In a similar way, the fractal rainfall model
“fractal sum of pulses” (Lovejoy & Mandelbrot, 1985;
Lovejoy & Schertzer, 1985) is a scaling refinement and
simplification of rainfall models, notably the Newman-
Scott model, based on the idea of adding random struc-
tures of various sizes, corresponding to storms, rainfall
super-cells and cells, respectively (Waymire & Gupta,
1981; Rodriguez-Iturbe et al., 1987; Arnaud & Lavabre,
1999; Onof et al., 2000). Among the significant conse-
quences of these fractal developments were the clearer
understanding of the following: a few relevant statistical
exponents may define classes of stochastic processes,
e.g. Lévy flights vs Gaussian walks (Painter, 1996); the
importance of long-range interrelations, for both previous
types of processes (Mandelbrot &Wallis, 1969b; Bras &
Rodriguez-Iturbe, 1985; Koutsoyiannis, 2002); and the
statistical classes of the extremes, e.g. fat-tailed vs thin-
tailed pdfs, i.e. power-law vs exponential fall-offs
(Turcotte & Greene, 1993; Turcotte, 1994; Chaouche
et al., 2002; Koutsoyiannis, 2004).

Unfortunately, operational hydrology did not ben-
efit as much from all these developments. An optimistic
understanding would be that the limitations of these
developments called for a paradigm shift: from geome-
try to physics; from the scaling sets of points to the
scaling of fields; from phenomenology to symmetries
of the generating equations; from additive to multipli-
cative stochastic processes; and from fractals to multi-
fractals. Indeed, it might be significant that this shift did
not occur in hydrology, but was imported to hydrology
from turbulence (Schertzer & Lovejoy, 1987), whereas
it was a rather direct answer to a long-lasting funda-
mental problem in hydrology: the scale sensitivity of
the fundamental hydrological observables.

WHAT IS THIS PAPER ABOUT?

Although review papers and books with applications of
(multi-) fractals to hydrology have been published
fairly regularly (e.g. Mandelbrot, 1989; Turcotte,
1989; Foufoula-Georgiou et al., 1991; Schertzer &
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Lovejoy, 1993; Lovejoy & Schertzer, 1995; Rodriguez-
Iturbe & Rinaldo, 1997; Schertzer et al., 2002a), the long
and lively discussion we had during the first day of the
workshop on “The Court of Miracles of Hydrology” held
in Paris in 2008 (Andréassian et al., 2010) indicated that
there is a need to discuss in depth the corresponding
paradigm shift that prevents hydrologists from being at
ease with these concepts, even though they respond to
what hydrologists have been seeking for a while.
Therefore, contrary to our initial intention, this paper is
not a review of the application of multifractals to hydrol-
ogy, although a section of this paper reviews several
application areas succinctly. On the contrary, this paper
aims to uncover almost all of what lies “beyond the
curtain”, i.e. beyond the expressions “scale symmetry”,
“singularities” and “singular measure” commonly used in
multifractals, which seem to have generated jargon and
conceptual barriers. Still following the workshop discus-
sions, we propose to “get to grips” with these concepts
with the help of an almost everyday hydrological exercise:
to upscale a time series, but with a slight variant that,
among various consequences, enables one to see the
singularities and scale invariance on a graph. This is so
straightforward that any reader can repeat this exercise
with her/his preferred time series. We therefore avoid, as
much as possible, shorthand notations, as well as lengthy
and cumbersome ones.

For this paper, we selected a rainfall time series,
because rainfall records are the most common and the
longest hydrological time series; however, this choice
should not hide the generality of the demonstration.
This generality may be understood first by the fact
that rainfall is considered as the main driver of hydro-
logical variability. We furthermore point out clearly
how this extreme rainfall variability brings into ques-
tion the usual smooth balance equation between various
hydrological fields. This presumably corresponds to the
core problem and main limitations of current hydrolo-
gical models (e.g. Beven, 1989; Beven & Binley, 1992;
Tchiguirinskaia et al., 2004; Beven, 2006; Vogel &
Roth, 2003), as well to attempts to overcome them
(e.g. Sposito, 1998; Sivapalan et al., 2003; Gupta,
2004; Viney & Sivapalan, 2004; Schertzer et al., 2007).

IS THE RAIN MEASURE REGULAR OR
SINGULAR?

There is a common-sense intuition of precipitation inter-
mittency: most of the time it does not rain, furthermore

when it does rain, its intensity can be extremely variable.
In spite of this intuition, an adequate mathematical fra-
mework had long been elusive, and has only been ser-
iously elaborated during the last 25 years. Furthermore,
this framework is ignored by operational hydrology.

The rain rate, which is the basic hydro-meteoro-
logical quantity, is indeed a surprising and outstanding
example of a fundamental paradox: even though
everyone is rather aware of the strong scale depen-
dency of the rain rate, since it depends on the duration
on which it is measured, almost everyone continues to
consider an instantaneous point-wise rain-rate func-
tion, r(x, t), defining the elementary rainfall, dR, across
an infinitesimal surface, dS(x), and during an infinitesi-
mal time duration, dt, as:

dR ¼ rðx; tÞ dS dt ð1Þ

When such a relationship holds between the (mathe-
matical) measures dR and dS dt, the measure dR is said
to be regular with respect to dS dt, and one can forget
the notion of mathematical measure to only focus on the
“density function”, r(x, t), which needs to be smooth
enough to be measurable by dS dt. Nevertheless, and
contrary to many classical mathematics textbooks, it is
worth noting that the notion of (mathematical) measure
is the most appropriate and natural notion ones needs
for measuring something like rain: a mathematical mea-
sure, μ, is a systematic procedure to assign to each
“suitable”1 subset B a measure of its contents or its size:

“suitable” subset B �!μ μðBÞ ¼
ð
B

dμ ð2Þ

This concept corresponds to a broad generalization of the
notion of length, surface and volume, which are assigned
with the help of the Lebesgue measures dx1, dx1dx2, and
dx1dx2dx3 for dimensions 1, 2 and 3, respectively.

We will show that the assumptions of scale depen-
dency and regularity are in fact incompatible: scale
dependency is a distinctive feature of singular mea-
sures with respect to Lebesgue measures (i.e. of the
type dx1 ... dxd). The source of this distinction is that
the action of dilation/contraction, Tλ, of the space on a
regular measure is a trivial rescaling, whereas it is
no longer the case on a singular measure. Let us
give a very first example with the help of the simple
(one-dimensional) time dilation/contraction, Tλ, of

1 We use this vague term to avoid technical terms such as σ-algebra, borelian sets, etc.
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(dimensionless) ratio λ (for λ � 1 and λ � 1,
respectively):

TλðtÞ ¼ t=λ ð3Þ

applied to the Lebesgue measure, dt:

"½τ; τ0½:
ð

½τ;τ0½

dt ¼ τ � τ0j j ð4Þ

and to the Dirac measure, δ, defined by:

"B :

ð
B

δt0ðtÞ ¼ 1Bðt0Þ ð5Þ

with the indicator function, 1B, of any set, B, defined
as:

1BðtÞ ¼ 1 if t 2 B;¼ 0 otherwise ð6Þ

The Dirac measure, often improperly called the Dirac
function, is indeed singular because, if one attempts to
define its density with respect to the Lebesgue mea-
sure, dt, one is compelled to consider a weird “func-
tion” which is zero everywhere, except at t0, where it
is infinite: the total mass (¼1) is indeed concentrated
in the “atom”, t0. The definitions of the measures
(equations (5)–(6)) already show that the action of a
time dilation/contraction, Tλ, will have quite different
results: whereas the Lebesgue measure will be
rescaled by the ratio, λ, as any time period [τ,τ0[, the
Dirac measure like its atomwill not be rescaled. This is
in agreement with the dimension of their support, 1
and 0, respectively.

A FUNDAMENTAL CHOICE

The action of a transform, Tλ, such as a simple contrac-
tion of time (equation (3)) on a measure μ (e.g. dμ¼ dt,
μ ¼ δt0(t)) corresponds to the general definition of a
pushforward measure, Tλ,*(μ), or image measure
(e.g. Bourbaki, 2004):

Tλ;�ðμÞðBÞ ¼ μðT -1
λ ðBÞÞ ,

ð
B

Tλ;�ðdμÞ

¼
ð

T -1
λ ðBÞ

dμ ð7Þ

which indeed pushes forward μ to measure any suita-
ble set B, with the help of the original measure of
B0 ¼ Tλ

-1(B): the transform Tλ,* of the measure μ just
compensates the inverse transform of the set Tλ

-1

(see Fig. 1). One may note that the inverse Tλ
-1 does

not need to be defined pointwise: the pre-image Tλ
-1(B)

is the subset of points that are (pointwise) transformed
into B. The mathematical interest of this definition
(equation (7)) is that the continuity of Tλ assures
that B0 ¼ Tλ

-1(B) is a suitable set for any suitable
set B. Furthermore, this definition applies to any gen-
eralized (space–time) contraction operator (Schertzer
& Lovejoy, 1985) that is necessary to handle space–time
processes and/or anisotropic media, e.g. atmospheric
turbulence (Chigirinskaya et al., 1994; Lazarev et al.,
1994) and subsurface media (Tchiguirinskaia, 2002).
Although we will stick to the pedagogical example of a
simple contraction of time in this paper (equation (3)),
the results obtained mutatis mutandis apply to much
more complex cases.

Noting that:

B ¼ ½τ; τ0½, T -1
λ B ¼ ½λτ; λτ0½ ð8Þ

the application of this definition (equation (7)), respec-
tively, to the Lebesgue and Dirac measures (equations
(5)–(6)) yields:

ð
½τ;τ0½

Tλ;�ðdtÞ ¼
ð

½λτ;λτ0½

dt ¼ λ
ð

½τ;τ0½

dt

) Tλ;�ðdtÞ ¼ λdt

ð9Þ

Fig. 1 Scheme of the “pushforward” transform Tλ,* of a
measure μ due to a time contraction Tλ with a scale ratio λ
(see equation (7)).
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ð
B

Tλ;�ðδt0Þ ¼
ð

T -1
λ B

δt0 ¼ 1T -1
λ Bðt0Þ

¼ 1Bðt0=λÞ ) Tλ;�ðδt0Þ ¼ δt0=λ ð10Þ

in agreement with our qualitative discussion at the end
of the previous section. In this paper, we will be inter-
ested in singular measures, R, more general than the
Dirac measure, i.e.:

Tλ;�ðRÞ ¼ λ1 -γR , RðT -1
λ BÞ ¼ λ1 -γRðBÞ ð11Þ

generalizing equations (9)–(10), with the help of the
“singularity” γ (γ ¼ 0 for the Lebesgue measure and
γ ¼ 1 for the Dirac measure).

Let us now emphasize the physical importance of
dilation/contraction of the coordinates: it indeed
belongs to the (extended) Galilean group formed by
the space–time transforms which leave invariant the
non-relativistic laws of nature. This corresponds to the
Galilean invariance of the physics law of nature, which
is also called Galilean relativity.

The attention in mechanics, especially in point
mechanics, has been focused initially on the space shifts
between two (Galilean) frameworks that differ only by
a constant relative velocity or a given rotation, which
define the pure Galilean group. However, with
extended bodies and, therefore, continuous mechanics,
this broadened to other transforms, such as scale dila-
tions. In particular, Sedov (1972) pointed out in the
wake of the Buckingham π theorem (Buckingham,
1914, 1915; Sonin, 2004) the key role of the latter in
fluid mechanics, including for many applications
(e.g. to estimate the blast wave of a nuclear explosion).
More recently, Speziale (1985) demonstrated their rele-
vance in selecting and defining relevant subgrid models
in turbulence. It should also be mentioned that the
fundamental role of scale change in fluid mechanics
can be traced back to Aristotle (Physica, Chap. IV,
Hardie & Gaye, 1930).

In fact,multifractalsmerely generalize this approach
by considering not a unique dilation, but a hierarchy of
dilations. However, presently it is sufficient to question
whether hydrology can afford not to respect these sym-
metries, which are so fundamental in physics and
mechanics. The previous discussion pointed out that we
would violate this symmetry if we made the wrong
hypothesis about the regularity/singularity of the rain
measure. For example, the so-called “physically-based

models” rely on balance equations written with the help
of density functions, e.g. for the mass balance for
surface runoff:

@sðx; tÞ=@t ¼ rðx; tÞ � qðx; tÞ � iðx; tÞ ð12Þ

where s, q and i are the densities of storage, discharge
and infiltration. Are these quantities well defined
and, in particular, do they satisfy the (extended)
Galilean invariance? We will first point out that
most likely the rainfall rate does not exist, and there-
fore one has to recast the mass balance equation into
another form.

WHAT CAN WE INFER FROM EMPIRICAL
DATA?

Let us now illustrate the scale dependence of the rain
rate with the help of Fig. 2(a), which displays (from top
to bottom) the Nîmes time series of rain rates at increas-
ingly coarser time resolutions (the constant surface of
the raingauge does not intervene) from hourly to
yearly resolution. It is striking that the intensity scale
is decreasing with the resolution, e.g. the maximum
decreases from 35 to 0.1 mm/h, which indicates that
the variability decreases with decreasing resolution.
Nevertheless, as emphasized by Ladoy et al. (1993),
the variability is still there at coarser resolution.

To show that these observations are rather in oppo-
sition to the regularity of the rain measure with respect
to the Lebesgue measure dt, we are compelled to intro-
duce some notation. Let us first define the dimension-
less resolution λ as the ratio of the external time scale, T,
e.g. the total number N of hours of the time series, with
the given duration Δt, e.g. a number n of hours:

λ ¼ T=Δt ¼ N=n ð13Þ

and the corresponding regular partition {τi} of the time
period T into adjacent and disjoint windows of dura-
tion T/λ:

X
i
½τi; τiþ1½¼ ½0; T ½; τiþ1 � τi ¼ T=λ ð14Þ

The data resolution, which is therefore the highest
empirical resolution, will be denoted in general by Λ.
Then the rain rate at a given resolution, λ, is the step
function, rλ(t), defined by:

In nonlinear sciences hydrology is not an outlier! 969
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Fig. 2 Observed rainfall at Nîmes (1972–1975) from 1 hour to 1 year duration: (a) the rain rate rλ(t) (equation (15)) does
exhibit a strong scale dependence, since its maximum value decreases from 35 to 0.1 mm/h from 1 hour to 1 year duration (the
unit of the intensity scale corresponds to 0.1 mm/h). (b) The corresponding singularities γ � logλ(rλ), in contrast, show a
remarkable scale independency over the same range of durations. Both show evidence of the singular nature of the rainfall
measure (see text).
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rλðtÞ ¼ λ
T

X
i
1½τi;τiþ1½ðtÞRð½τi; τiþ1½Þ ð15Þ

i.e. the series of the rain rates averaged over the win-
dows [τi,τi+1[. For instance, Fig. 2(a) corresponds to
the averages, rλ(t), of the hourly rain rate, rΛ(t), of the
original time series over adjacent and non-overlapping
windows of n hours (n ¼ 1, 2, ..... , 24 � 365). In
mathematical terms, the definition of rλ(t) given by

equation (15) is too precise and one would really need
a looser definition, but it is helpful to fix ideas and it is
of practical interest. Indeed, such a transform is widely
used to “upscale” time series.

Let us note now that the dilation/contraction Tλ
(e.g. equation (3)) has a trivial but fundamental property
of being a one-parameter (λ) multiplicative group, i.e.:

"λ1; λ2 : Tλ2 � Tλ1 ¼ Tλ2λ1 ) T -1
λ1

¼ Tλ -1
1

ð16Þ

10 days

0

1
2
3

4
5
6
7

19
72

19
72

19
72

19
72

19
73

19
73

19
74

19
74

19
75

19
75

19
72

19
72

19
72

19
73

19
73

19
73

19
74

19
74

19
74

19
75

19
75

19
75

19
72

19
72

19
72

19
72

19
73

19
73

19
73

19
73

19
74

19
74

19
74

19
74

19
75

19
75

19
75

19
72

19
72

19
72

19
72

19
72

19
73

19
73

19
73

19
73

19
74

19
74

19
74

19
74

19
75

19
75

19
75

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

19
72

19
72

19
72

19
72

19
73

19
73

19
73

19
73

19
74

19
74

19
74

19
74

19
75

19
75

19
75

3 weeks

0

1

2

3

4

5

3 months

0

1

2

3

19
72

19
72

19
72

19
72

19
73

19
73

19
73

19
73

19
74

19
74

19
74

19
74

19
75

19
75

19
75

19
75

1 year

0

1

2

1972 1973 1974 1975 1972 1973 1974 1975

(a) (b)

Fig. 2 (Continued).
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and there is a corresponding group property to go from
one curve to another: we can do this in a unique step
(e.g. Λ!λ2) or in two or more steps (e.g. Λ!λ1!λ2).
Indeed, the application of the pushforward transform,
Tλ,* to the measure rλ1(t)dt corresponds to:

rλ2ðtÞdt ¼ Tλ2=λ1 ;�ðrλ1ðtÞdtÞ ð17Þ

and, due to equation (7), the group property of Tλ is
transposed to Tλ,*.

How do these mathematical properties apply to
data? At the moment, due to the finite resolution Λ of
the data, i.e. there is no empirical rλ with a resolution
λ > Λ, we cannot always go upward on Fig. 2. Indeed,
for the present time, we only know how to upscale the
time series, i.e. degrade its resolution. The effective
range of λ for Tλ,* is therefore rather limited to λ � 1,
i.e. the effective Tλ,* forms only a semi-group.

Let us emphasize the fact that there is an unam-
biguous deterministic manner to degrade the resolu-
tion of the data (e.g. equation (15) for λ2< λ1), because
we are just losing some information from the time
series, whereas in order to downscale the time series
(λ2 > λ1), i.e. to upgrade its resolution, we need to
add information. Therefore, there is generally not a
unique manner to do it and the inverse of the trans-
forms Tλ,* (λ � 1) can no longer be deterministic, but
rather is stochastic in order to yield the set of all the
possible realizations of the downscaled time series.
For instance, when we go upwards on Fig. 2, we just
see one possible upscaled realization. Otherwise,
one must select a rather arbitrary deterministic scheme
(Obregon et al., 2002; Puente & Sivakumar, 2007;
Cortis et al., 2009). We refer to Sivakumar et al.
(2001) and Schertzer et al. (2002b) for a discussion
on the deterministic vs stochastic approaches in
hydrology.

Before discussing further the question of the
inversion of Tλ,*, let us come back to the question
of the scale/resolution sensitivity of the rλ(t) as dis-
played in Fig. 2(a): the curves rλ(t) become spikier
and spikier with increasing resolution. There are
indeed many ways to show that this is in contra-
diction with the assumption that the rain measure
dR is regular, i.e. admits a (smooth) density function
r(t) with respect to the Lebesgue measure (equation
(1)). For instance, the application of the mean value
theorem to equation (1) yields:

"λ; i; 9si 2 ½τi; τiþ1	 : rðsiÞ; λ
T

ðτiþ1

τi

rðtÞdt ð18Þ

rλðtÞ ¼
X

i
1½τi;τiþ1½ðtÞrðsiÞ ð19Þ

Equations (18–19) mean that the upscaling (with the
help of Tλ,*, λ < 1) would merely correspond to a
uniform sampling of the hypothetical function r(t)
(the uniformity being enforced by the integration
with respect to dt involved in equation (18)), not to
the generation of a rather different function.
Obviously, Fig. 2(a) does not correspond to a series
of uniform samplings of the same function r(t).

In particular, this is the case of the original hourly
time series rΛ(t) (more generally the time series at the
largest possible resolutionΛ), which can be understood
as an upscaled version of the hypothetical (smooth) r(t).
The latter would correspond to a much larger resolution
than Λ (remembering that for a given external time
scale T, a larger and larger resolution corresponds to a
smaller and smaller duration Δt – see equation (9) – for
the time partition). The contradiction is that the function
of r(t), if it exists, cannot be smooth because its sam-
pling at resolution Λ is not. Furthermore, a too “wild”
function r(t) would not be measurable by dt.

The existence of the function r(t) is even more
questionable when going in the opposite direction,
i.e. downscaling the time series (with Tλ,*, λ > 1).
Indeed, not only is rΛ(t) ¼ TΛ/λ1,*rλ1(t) much “wilder”
than the yearly rain rates rλ1(t), but this would be
amplified even more if we were to iterate TΛ=λ1;�,
i.e. downscale to hour/24 � 365, hour/(24 � 365)2,
etc., up to a time where a strong mechanism introduces
a break in these iterations (Desaulnier-Soucy et al.,
2001; Lilley et al., 2006). Otherwise, iterations of
TΛ/λ1,* will just show how rλ(t) departs more and
more from a smooth function and therefore from an
increasingly questionable convergence to a hypotheti-
cal function r(t). On the contrary, there is no difficulty
for such a “wild” rλ(t) to (weakly) converge to a singu-
lar measure dR(t) on any suitable subset B:

ð
B

rλðtÞdt �!λ!1
ð
B

dRðtÞ ð20Þ

which means that the measures of any given suitable
set B obtained with the help of rΛ(t)dt and dR(t) are
rather the same for large enough λ.
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HOW POPULATED IS THE COURT OF
MIRACLES?

We have shown how the apparent hydrological mon-
sters could be mere manifestations of a singular mea-
sure that cannot be handled as a regular measure:
monstrous fluctuations are the rule, they are not out-
liers, and occur more frequently than was usually
thought. The most striking resulting feature is that the
(theoretical) statistical moments can easily be infinite
causing their empirical estimates to be erratic and to
diverge with sample size. This can be understood in
physical terms as resulting from the fact that the upscal-
ing cannot smooth out intense small-scale events.

A more quantitative point of view can be obtained
with the help of the group Tλ,* of up-/down-scaling
(λ � 1 and λ > 1, respectively). Whereas the upscaling
Tλ,* (λ � 1) is already defined in an unambiguous
deterministic manner (equation (15)) with the help of
the dilation Tλ, it is timely to further discuss the stochas-
tic downscaling, Tλ,* (λ � 1). In fact the answer has
been known for a while as a cascade process, which
generically breaks structures into smaller ones and can
be traced back to a humorous footnote of Richardson
(1922). This process can be seen theoretically as a
stochastic solution of the multiplicative group property
(equation (16), but for Tλ,*) obtained with the help of the
generator of this one-parameter group. Let us first note
that, if rλ was only a number instead of being a step
function with respect to time, the solution of equation
(17) for all λ would be straightforward:

Tλ;� ¼ λγ; rλ ¼ λγr1 ð21Þ

for any arbitrary “singularity” γ (when positive it does
measure the divergence of γ with the increasing resolu-
tion λ). This already shows that, to avoid the scale
dependency of rλ(t), it might be sufficient to consider
the corresponding singularities γ � logλ(rλ) γ ¼ -8, if
rλ ¼ 0. This is confirmed strikingly by Fig. 2(b), which
displays these singularities for the upscaled fields dis-
played by Fig. 2(a). However, not surprisingly, there is
not a unique singularity. Nevertheless, the intensity of
these singularities is rather independent of the scale.
This is supported, furthermore, by Fig. 3 – on a longer
period. To go further, one may look for singular beha-
viours of R([τi,τi+1[) in equation (15), i.e. in agreement
with equation (11):

Rð½τi; τiþ1½Þ ¼ λγi -1Rð½0; T ½Þ ð22Þ

Figure 2(b), which displays logλ(rλ(t)), points out that
the γi do not have a common and unique finite value γ,
indeed:

rλðtÞ ¼ Rð½0; T ½Þ
T

X
i
1½τi;τiþ1½ðtÞλγi

) logλ rλðtÞð Þ
¼

X
i
1½τi;τiþ1½ðtÞ γi þ logλ

�
Rð½0; T ½Þ

T

�� �

ð23Þ
where the last term is slowly decreasing with the
resolution λ. It is obvious in Fig. 2(b) that there is no
accumulation of γi around zero, which confirms the
singular behaviour of the rainfall accumulation, dR(t),
with respect to the Lebesgue measure, dt. In fact, it
shows more than that: dR(t) is in fact multi-singular
rather than uni-singular because of the variability of
the singularities, γi. Thus, one is naturally led to mea-
sure the frequency of occurrence of a given singularity,
γ, and, therefore, the probability of the periods of time
when a singularity γi exceeds a given γ, i.e. to measure
the support Σλ (γ) of the singularity γ at resolution λ:

X
λ

ðγÞ ¼ rλ>λγf g ¼
X
i

1γ!>γ½τi; τiþ1½ ð24Þ

and to estimate the corresponding exceedence
probability:

Prðrλ � λγÞ � λ - cðγÞ ð25Þ
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Fig. 3 Singularities of the annual rain rates γ� logλ(rλ) over
the 17-year period (1972–1988) at Nîmes show that: the
4-year period 1972–1975 represented on Fig. 1(b) is
representative of the full data record; while the “monsters”
were met on a daily scale during this period, they remain
rather hidden on the annual scale, e.g. 1988 is not
exceptional on the yearly scale, whereas it includes a
hydrological catastrophe on the daily scale.
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The power law dependence on the resolution (r.h.s. of
equation (25)) corresponds to the fact that this measure
is expected to be singular ðcðγÞ�0Þ and to have a
group property like Tλ,*. The function c(γ) is necessa-
rily non-decreasing due to:

"γ1<γ2 : Σλðγ1Þ 
 Σλðγ1Þ ð26Þ

The exceptional mono-/uni-fractal case corresponds
to c(γ) having a unique non-zero value, and the
even more exceptional, regular case corresponds to
c(γ) ; 0.

The scale sensitivity of the exceedence probabil-
ity (equation (25)) is removed in the same manner as
for rλ(t), i.e. with the help of the base-λ logarithm:
Fig. 4 shows that indeed the estimates of c(γ) obtained
in this manner collapse together for durations from
1 to 32 h, which covers the duration range of general
interest in hydrology. Furthermore, it can be shown
that the exponent c(γ) is the (statistical) co-dimension
of the limit set Σ(γ) of Σλ (γ) for an infinite resolution λ
(Schertzer et al., 2002a): for c(γ) < 1, Σ(γ) has a fractal
dimension D(γ) ¼ 1 - c(γ). Therefore, this measure is
generally multifractal in the sense that it corresponds
to an infinite hierarchy of embedded fractals level sets,
whereas the term multifractal was first coined (Parisi
& Frisch, 1985) in a geometric and deterministic
framework, which was therefore more restrictive
than the present one. One may note that the multi-
fractal genericity has been rigorously demonstrated

in functional spaces such as the Sobolev spaces
(Fraysse & Jaffard, 2006): multifractal elements of
these spaces are prevalent, recalling that the concept
of “prevalence” generalizes that of “almost every” on
infinite dimensional spaces (Hunt et al., 1992). The
following simple example illustrates this mathematical
result: among the infinite number of (continuous)
curves joining two points, the curves, which are differ-
entiable everywhere, are obviously extremely rare in
comparison with more convoluted non-differentiable
curves (e.g. obtained with the help of Brownian
motion).

Overall, large fluctuations of the order of λγ

(for large γ > 0) are neither monsters nor outliers, but
have already a probability about λ-c(γ) of occurring.
Below, we will show that it could be even larger.

HOW DO WE GENERATE APPARENT
MONSTERS?

To downscale rλ(t) to higher resolutions than the data
resolution Λ, i.e. to find solutions of equation (17)
with λ ¼ λ2 > λ1 ¼ Λ that also satisfy equation (23),
one can consider a discrete cascade with an elementary
scale ratio μλ > 1 (¼2 usually). The latter downscales
the rain rate rλ(t) according to the following elemen-
tary transform, Tμλ* which corresponds to a pullback
transform of a function, as discussed elsewhere in
detail:

rλðμλÞðtÞ ¼ ~TμλðrλðtÞÞ
¼

X
i

X
j¼1;μλ

1½τji;τjþ1
i ½ðtÞrλðτiÞ μλð Þγji ð27Þ

where the refined partition τji
� � ¼ T -1

μλ τj
� � ðτji ¼

τiþðj�1ÞΔt=μλÞ and the singularities γji are independent
identically distributed variables with the exceedence
probability:

Prðγ ji � γÞ � μλð Þ -cðγÞ ð28Þ

The desired properties (e.g. equation (25)) have been
enforced for the scale ratio μλ and by iterating n times
the transform Tμλ*, this also will be true for the ratio
(μλ)n. In spite of the finite data resolution Λ, this
enables us to stochastically restore the full group
“property” of Tλ,*, at least over a given set of discrete
scales T/(Λ(μλ)n). It should be mentioned that the
discrete scale constraint can be relaxed with the help
of cascades continuous in scales, e.g. with coloured
Lévy noises such as stochastic generators (Schertzer &
Lovejoy, 1987, 1997), also referred to as infinitely
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Fig. 4 Estimates of c(γ) obtained with the help of logλ(rλ(t))
(see equations (23)–(24)) and the Weibull plotting position
for durations ranging from 1 to 32 h of the rain rates and
their singularities displayed in Fig. 2. The good
superposition of the corresponding co-dimension curves
gives an empirical support to the scaling of the
probabilities (equation (25)). The often cited asymptotic
slope qD ¼ 3 (i.e. the exponent of the power-law fall-off
of the probability tail) is displayed, and fits rather well the
high singularity behaviour, in particular for short durations.
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divisible cascades. These continuous cascades have
been used in various domains and are called “universal
multifractals” due to their property of stability and
attractivity, which correspond to a broad and multi-
plicative generalization of the central limit theorem.

The statistical moments are used for many appli-
cations and thanks to the Mellin transform (Schertzer
et al., 2002a) the scaling relationship of equation (25)
transposes to:

<rqλ> � λKðqÞ ð29Þ

where <�> denotes the mathematical expectation and
K(q) is the scaling function of the moments of order q.
The prior constraints on K(q) are that it should be
convex like c(γ) and K(0) ¼ 0 to assure the normal-
ization of the probability. Both functions are conjugate
with respect to the Legendre transform (Parisi &
Frisch, 1985; Mandelbrot, 1999) with the conse-
quence, among many others, that a non-constant c(γ)
corresponds to a nonlinear K(q). The latter in turn
implies that all the classical dimensionless ratios of
statistical moments, such as the variation coefficient,
skewness and flatness are scale dependent, with a
scaling exponent of the type:

Kðq; ηÞ ¼ KðqηÞ � ηKðqÞ ð30Þ

with η ¼ 2 and q ¼ 1/2, 3/2, 2 for the variation
coefficient, skewness and flatness, respectively.
Obviously, K(q,η) retains only the nonlinear part of
K(q) and therefore cancels only for mono-/uni-fractal
or regular cases. In fact, the exponent K(q,η) is the
cornerstone of the double trace moment method to
determine the exponents of the universal multifractals
(Lavallée et al., 1992; Veneziano & Furcolo, 1999).

There is a more subtle posterior constraint: K(q)
jumps to infinity when the order q reaches the critical
value, qD,, which is a non-trivial solution (q ≠ 1) of:

KðqÞ ¼ Dðq� 1Þ ð31Þ

where D is the dimension of integration of the process,
which is not necessarily integer, although we took
D ¼ 1 to upscale the data in this paper. The theoretical
statistical moments for q � qD are infinite and their
empirical estimates are erratic and diverge with the
sample size (Schertzer & Lovejoy, 1992). This results
from the fact that the usual statistical moment of rλ(t)
bound above the “trace moments” that scale with the

exponent K(q) – D(q – 1) and therefore diverge when
q � qD (Schertzer & Lovejoy, 1987). With the help of
the Legendre transform, the corresponding co-
dimension function and the probability distribution are
shown to become linear with the slope qD (above the
corresponding critical singularity γD, see Fig. 4) and fat-
tailed (for large enough thresholds, s), respectively:

γ � γD : cðγÞ � D ¼ qDðγ� DÞ ð32Þ

s >> 1 : Prðrλ > sÞ � sqD ð33Þ

The latter corresponds to an extreme case of intermit-
tency, often called “self-organized criticality”
(Bak et al., 1988; Bak & Chen, 1991). Is it therefore
appropriate to go on calling such extremes monsters,
when they belong to the same statistical population as
much more moderate events?

IS THIS HELPFUL?

The generality of up-/down-scaling is so wide and so
ubiquitous in hydrology that the domain of application
of what we have discussed in this paper covers a
large part, if not all, of the hydrological sciences.
Furthermore, the singular behaviour of the rain mea-
sure forces us to recast the balance equation (equation
(12)) in terms of (singular) measures rather than their
hypothetical densities with respect to the (space–time)
Lebesgue measure (dx dt), i.e.:

ΔSðBÞ ¼ RðBÞ � QðBÞ � IðBÞ ð34Þ

where ΔS, R, Q and I are the measures of the storage
evolution, precipitation, discharge and infiltration,
respectively, for any suitable space–time subset. This
balance implies that the singular behaviour of one of
these measures will contaminate at least one other.
This explains why the multifractal rainfall analyses
can and must be extended to the runoff, as emphasized
by Tchiguirinskaia et al. (2007). This began to be
carried out either for runoff series analyses explicitly
in time (Tessier et al., 1996; Pandey et al., 1998; Labat
et al., 2002), or implicitly in space (Gupta &Waymire,
1990, 1998), by considering that the observation reso-
lution corresponds to the size of the basin. Equation
(34) may also explain the disturbing fact that concep-
tual and lumped models are often more successful than
distributed physically-based ones (Hansen et al.,
2007), or that refining the latter is not always helpful
(Wood, 1998). Obviously, equation (34) will be
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inextricable without theoretical knowledge on its
pushforward by a change of space–time scales.

To illustrate that once you have the appropriate
framework (almost) everything becomes rather straight-
forward, let us consider, as suggested by an anonymous
referee, the puzzling so-called separation of skewness of
the annual maximum flood series of more-or-less homo-
geneous hydrological regions (Matalas et al., 1975). This
separation was defined by the fact that fluctuations in
empirical skewness estimates were found to be much
larger than those drawn from any common regional
distribution. As pointed out by Dawdy & Gupta
(1997), the skewness scale dependence for a multifractal
field, discussed above, presumably explains in a straight-
forward manner the separation of skewness: a purely
homogeneous region but comprising basins of different
sizes will indeed display strong skewness fluctuations
due to the differences of scale/resolution. This also rein-
forces questions already raised by Bobee et al. (1989)
about the interpretation and use of the separation of
skewness as a criterion for discrimination between can-
didate probability distributions (Rossi et al., 1984;
Ahmad et al., 1988).

In a general manner, the scaling moment function
K(q) can be estimated from any d-dimensional data set
(in situ, radar, lidar, satellite, simulation outputs). This
already provides a lot of information about the structure
of the field (time series), in particular its extremes.
Furthermore it enables us to downscale the field sto-
chastically for simulations and predictions, for instance:

– Various remotely-sensed data have been used to
show that the outer spatial scale of the hydro-
meteorological fluctuations is of the order of the
planet (Lilly & Paterson, 1983; Schertzer &
Lovejoy, 1984; Lovejoy et al., 2001, 2004, 2008;
Lilley et al., 2004), i.e. these fields presumably
fluctuate up to the largest possible spatial scale.

– We pointed out that singular measures easily pro-
vide such a strong intermittency that it corresponds
to fat-tailed probability distributions for the
extremes. This issue was often considered as con-
troversial for applications, but more recently the
discussion of this important topic has become less
partisan (Schertzer et al., 2006).

– The detection and quantification of the evolution
of the hydrological extremes in a climate scenario
(Royer et al., 2008), which more than ever brings
into question (Hubert et al., 2007) the ubiquitous
hypothesis of stationary statistics (a requisite for
the classical frequency analysis):

(i) the multifractal parameters that rule the
extremes were estimated on the resolved
scales of the model (larger than 250 km),
and their respective temporal evolution
dates (from year 1860 to 2100) are opposite
each other in the present century, whereas
the hydrological extremes increase/decrease
if both parameters do;

(ii) this result may already explain why it is so
difficult to detect this evolution by classical
methods on discharge time series
(Kundzewicz et al., 2005; Svensson et al.,
2006), and the maximum precipitation gen-
erated by the model; and

(iii) furthermore, the probable maximum singu-
larity (Douglas & Barros, 2003; Hubert
et al., 2003), which can be analytically com-
puted from these parameters, resolves this
ambiguity not only on the resolved scales
but all through the scaling range down to
scales relevant to hydrology.

– The assessment of the intrinsic predictability limits
of hydrological processes, which bounds above
our effective predictive capacity, and therefore
determines the required model quality to be
achieved: multifractal predictability has been
shown to be distinct from those of the “butterfly
effect” (Schertzer & Lovejoy, 2004).

CONCLUSIONS

Having pointed out that the mathematical measure is
indeed the appropriate mathematical tool to quantify
rain and other hydrological fields, we stressed the
important differences between singular and regular
measures, the latter being (unfortunately) much more
popular. We emphasized the fundamental role of chan-
ging scales by dilation/contraction and, thus, analysed
the application of the up-/down-scaling on singular
measures, which yields non-trivial results contrary to
regular measures.

With the help of a rainfall time series and the mass
balance equation, we argued that hydrological fields
are most likely singular measures and that most (if not
all) the so-called hydrological monsters result from
this feature, more precisely from the fact that this
singular measure is improperly handled as a regular
measure. Furthermore, we pointed out what we can
gain by handling this measure properly – in particular
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that the downscaling of a field merely corresponds to a
cascade process – along with a few applications.

In summary, it is timely:
– to recognize that the hydrological court of miracles

is rather depopulated,
– to fit concepts to experimental data rather than to

fit parameters, and
– to consider the full extent of the statement of the

US National Research Council (1991): “The
search for an invariance property across scales
as a basic hidden order in hydrologic phenomena
to guide development of specific models and new
efforts in measurement is one of the main themes of
hydrologic science.”

When envisioning a new framework for hydrol-
ogy, it may be appropriate to keep in mind two bold
statements from the author of the court of miracles
(Hugo, 1980, 2002a,b):

– “Rien ne résiste à un acharnement de fourmi ”
“Nothing is resistant to ant eagerness” (Hugo,
1980); and

– “La raison, c’est l’intelligence en exercise; l’ima-
gination c’est l’intelligence en erection.” “Reason
is the application of intelligence, imagination is
intelligence in erection” (Hugo, 2002b).

Both statements emphasize the eagerness and imagi-
nation that are required to develop an adequate frame-
work for hydrology, that are out of reach for business-
as-usual approaches.
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