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2 7
s u m m a r y

28High resolution, long and reliable rainfall time series are extremely important to assess reliable statistics,
29e.g. the Depth–Duration–Frequency curves that have been widely used to define design rainfalls and rain-
30fall drainage network dimensioning. The potential consequences of changes in measuring and recording
31techniques have been somewhat discussed in the literature with respect to a possible corresponding
32introduction of artificial inhomogeneities in time series. In this paper, we show how to detect another
33artificiality: most of the rainfall time series have a lower recording frequency than that is assumed, fur-
34thermore the effective high-frequency limit often depends on the recording year due to algorithm
35changes. This question is particularly important for operational hydrology, because we show that an error
36on the effective recording high frequency introduces biases in the corresponding statistics. We developed
37a simple automatic procedure to assess this frequency period by period and station by station on a large
38database. The scaling analysis of these time series also shows the influence of high frequency limitations
39on the scaling behaviour, leading to possible misinterpretation of the significance of characteristic scales
40and scale-dependent hydrological quantities.
41! 2012 Published by Elsevier B.V.

42

43
44 1. Introduction

45 Nowadays hydrology requires reliable statistics for shorter and
46 shorter durations and for a larger and larger range of return
47 periods, which can only be obtained from higher resolution and
48 longer time series (Berndtsson and Niemczynowicz, 1988;
49 Niemczynowicz, 1999; Ogden et al., 2000). For instance, the
50 requirements about temporal and spatial resolutions of rainfall
51 data for urban hydrology have been discussed by Schilling (1991)
52 and Berne et al. (2004) and tentatively quantified. Preliminary
53 studies (Berggren, 2007; Olofsson, 2007) showed that the esti-
54 mated number of floods was lower when using low time resolution
55 data of high intensity rainfall events, compared to those obtained
56 with the help of higher time resolution data.
57 However, the recording methods, which are very often based on
58 the idea of a sequence of so-called ‘‘homogeneous’’ rainfall epi-
59 sodes, i.e. episodes with a more or less constant rainrate, and the
60 effective measurement frequency may introduce quality problems
61 in these series (Fankhauser, 1997, 1998; LaBarbera et al., 2002),

62and therefore spurious estimates, e.g. spurious scaling breaks, that
63may have drastic consequences for operational hydrology that is
64more and more focused on short durations estimates. For instance,
65until 1985 in France and in many other European countries, most
66of the precipitation data were recorded on paper charts. As shown
67by (Kvicera et al., 2005) the same paper chart can be deciphered by
68experts in a significantly different manner. Indeed, the general
69method of chart reading corresponds to a transcription of the
70record graph into a series of segments of nearly ‘‘constant’’ slopes,
71which would correspond to a series of so-called ‘‘homogeneous
72rainfall episodes’’, which are supposed to have a constant rainrate.
73However, criteria defining a slope as being constant belong to the
74domain of pure ‘‘human’’ expertise, therefore this decomposition
75into a series of homogeneous episodes is always questionable. Fur-
76thermore, a precise rainfall measurement during extreme events
77remains a complicated task due to numerous jumps on the chart.
78The transition to electronic recording intended to significantly
79improve the precision of high frequency data. Unfortunately, the
80compressed data storage and corresponding data pre-processing
81have remained rather the same and therefore have maintained
82uncertainties similar to that of the chart transcription. The pres-
83ently available data correspond to a compression of the original
84tipping bucket series, i.e. Meteo-France regularly transforms the
85original data into a series of episodes with a rain rate that is con-
86sidered as constant in a bracket of 10% that abusively called
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87 ‘‘homogeneous’’ rainfall episodes. As illustrated on Fig. 1, the origi-
88 nal time series of rainfall are first transformed into a series of
89 successive episodes. The duration of the homogeneous episodes
90 are multiple of respectively 5 and 6 min for MF-P5 and MF-P6.
91 An obvious advantage of such a data compression is a significantly
92 reduced data volume compared to rainfall series stored with a con-
93 stant time increment. The series of homogeneous episodes there-
94 fore corresponds to a coupled series of discrete rainfall durations
95 di and discrete rainfall intensities Ri (i = 1,N). Both series display
96 a strong variability that, to some extent, has an opposite meaning
97 (see Fig. 1): highest values of duration di generally correspond to
98 the ‘‘zero’’ rainfall, i.e., that is under a level of detection by the
99 actual tipping bucket device; whereas the highest rainfall intensi-

100 ties Ri are observable over a rather short durations di.
101 A preliminary study of a set of 10 time series from a French
102 database (Hoang, 2008) put in evidence the deficit of short dura-
103 tion episodes. It seems that the understanding to some extent of
104 this deficit resulted in some cases in a partial reconstruction of
105 higher frequency rainfall time series, while such data were still
106 available. The time series having mixed data frequencies of mea-
107 surements may explain often observed scaling breaks that we will
108 discuss below.
109 Because the importance of scales and possible scaling behaviour
110 of hydrological data is particularly important for many applica-
111 tions (Tchiguirinskaia et al., 2004; Aronica and Freni, 2005; Kundu
112 and Bell, 2006), this paper investigates the sensitivity of the scaling
113 estimates and methods to the deficit of short duration rainfall data,
114 and consequently propose a few simple criteria for a reliable eval-
115 uation of the data quality.

116 2. Data case study

117 Our study bears on 166 long rainfall time series that are a part
118 of a Meteo-France database (MF-P5) that have been used to cali-
119 brate the hourly hydrological SHYPRE model (Arnaud and Lavabre,
120 1999) and to estimate the long return period quantiles at hourly

121and longer durations. A particularity of the MF-P5 database is that
1225 min rainfall accumulation estimates being available due to par-
123ticular measuring experiments over some limited periods of time,
124were integrated in the originally hourly rainfall database. The more
125recent database (MF-P6) is based on 6 min rainfall accumulation
126estimates. In this paper we use three available rainfall time series
127of MF-P6 (Brest, Mont Aigoual and Marseille) that correspond to
128the respective periods of measurements from 1990 to 2008, from
1291992 to 2008 and from 1982 to 2008. Ongoing research is devoted
130to statistically estimate and stochastically simulate reliable sub-
131hourly rainfall quantiles, in part with the help of the above dat-
132abases. Thus the reliable evaluation of the data quality at shorter
133durations is particularly indispensable.
134The locations of these 166 gauges are rather evenly distributed
135over France, although with a higher concentration over regions of
136particular interest for flood studies, e.g. the Mediterranean area.
137The length of these time series ranges from 9 to 88 years.
138As a preliminary data analysis, we computed the probability of
139the durations di of non-zero rainfall episodes. As illustrated by
140Fig. 2, some of the duration probabilities are clearly dominated
141by only a few (or even a unique!) characteristic durations. The epi-
142sode duration having the highest occurrence probability corre-
143sponds to one of the three following cases.
144The first one (e.g. the time series of Nîmes, Fig. 2a) merely cor-
145responds to hourly data sets, that were recorded with the format of
146homogeneous episodes, without being actually transformed into
147such episodes. Although, there are rather surprisingly two excep-
148tions: a few rare episodes have durations of 5 min (0.04%) and
149115 min (0.02%) respectively.
150The second case (e.g. the time series of Marseille, Fig. 2b,) also
151corresponds to the dominance by the hourly duration (30.2%),
152but with other durations that are less negligible than in the case
153of the Nîmes times series, e.g. the Marseille time series has 5.7%
154of homogeneous episodes with a duration of 5 min. Furthermore,
155the full histogram of the Marseille series (Fig. 2b) displays dura-
156tions that are multiples of 5 min, including durations longer than
1571 h. One can therefore suspects that the Marseille time series, con-

Fig. 1. Illustration of the extraction of the « homogeneous » rainfall episodes from the Rimbaud original time serie.
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158 trary to the Nîmes series, were at least partially constructed from
159 5 min rainfall data with a given algorithmic transformations,
160 which in turn might have artificially increased the duration of
161 homogeneous episodes. Unfortunately, no document seems to be
162 available about this presumed transformation algorithm.
163 Finally, the third and most straightforward case corresponds to
164 the case when the smallest durations are dominant. The time series
165 of Rimbaud is one of a few rainfall data series that displays (see
166 Fig. 3) a clear peak of the duration probability at 5 min.
167 What can we infer from these rather different behaviours of the
168 duration probability? From a scaling point of view, a peak of
169 the duration probability at the shortest available duration, i.e. the
170 recording duration, is rather natural, because rainfall has higher
171 and higher variability over smaller and smaller time scales. One
172 may furthermore expect that the relation between the duration
173 of rainfall episodes with a given relative homogeneity and its prob-
174 ability of occurrence should have no characteristic scale and there-
175 fore should be a power law. This has been verified on multifractal
176 rainfall simulations. For example, Fig. 4 displays a power law
177 behaviour, emphasised by a linear fit in logarithmic coordinates,
178 of a probability distribution of 10% ‘‘homogeneous’’ episode dura-
179 tions, obtained on a rainfall simulation with multifractal parame-
180 ters a = 1.5 and C1 = 0.15. The universal multifractal parameters
181 C1 and a (Schertzer and Lovejoy, 1987b, 1997) measure respec-
182 tively the mean intermittency of the rainfall (C1 = 0 if the rainfall
183 is homogeneous or, loosely speaking, if it always rains) and the var-
184 iability of the rainfall intermittency (a = 0 if the intermittency of
185 the extremes is the same as the intermittency of the mean rainfall).
186 In fact, the power law behaviour of the distribution depends on the

187required degree of homogeneity and on the values of the multifrac-
188tal parameters. This power law behaviour is better respected with
189strong homogeneity thresholds, e.g. 5% and 10%. It becomes ques-
190tionable with weaker homogeneity thresholds, e.g. 20% and 40%.
191On the other hand, for a fixed a-value, a power law behaviour is
192more evident for higher values of C1. Overall, similar power law
193behaviours are therefore expected for measured rainfall data from
194the MF-P5 and MF-P6 databases. For instance plotting now the
195duration probability of the Rimbaud time series (Fig. 3a) in

Fig. 2. Probability distribution of the durations of « homogeneous » rainfall episodes in the Nîmes (a) and Marseille (b) time series. Both series have rather hourly effective
resolution.

Fig. 3. Probability distribution of the durations of « homogeneous » rainfall episodes in Rimbaud time series in a linear plot (a) and a log–log plot (b). The series has an
effective 5 min resolution.

Fig. 4. Log–log plots of a probability distribution of the durations of 10%
‘‘homogeneous’’ episodes of a multifractal rainfall simulation (a = 1.5 and
C1 = 0.15). It displays a rather clear power law behaviour that corresponds to a
good linear fit in a log–log plot.
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196 logarithmic coordinates (Fig. 3b) we do obtain a linear behaviour,
197 which is particularly obvious over the smaller time scales.
198 Overall, these three examples illustrate first that databases are
199 not always homogeneous in the sense that the time series have
200 not a uniform measurement or recording frequency. Therefore, a
201 preliminary data quality analysis is rather indispensable before
202 using this database down to its claimed highest time resolution.
203 This is particularly indispensable for the hydrological estimates
204 being based on the scaling analysis. Indeed, while in the third case
205 scaling regimes could be expected to hold over the full range of
206 scales; the scaling behaviour will be presumably broken in the sec-
207 ond case, due to small scale data deficit, and certainly broken in the
208 first case due to the absence of small scale data. Contrariwise, scal-
209 ing techniques can be useful to assess the data quality.
210 Therefore, in the next sections we perform a scaling analysis of
211 the MF-P5 database, with a particular emphasis on various estima-
212 tion problems most presumably related to the data quality. Then
213 we discuss the principles of the SERQUAL procedure, which is
214 designed to routinely assess the quality of time series, helping to
215 select sequences of high quality data and therefore to significantly
216 reduce the dispersion of the hydrological estimates, e.g. quantiles
217 as well as scaling parameters.

218 3. Scaling analysis

219 It is rather usual, particularly in turbulence, to use the energy
220 spectrum for a preliminary test of scaling behaviour. Indeed,
221 scaling corresponds to a power-law energy spectrum S(k)
222 (Kolmogorov, 1941; Obukhov, 1941):
223

SðkÞ / k#b ð1Þ225225

226 where k is the frequency and b is the spectral exponent. In logarith-
227 mic coordinates, this power-law corresponds to a straight line,
228 whereas one generally obtains a highly spiky spectral behaviour
229 for an individual realisation of the rainfall data. Indeed, for an
230 empirical energy spectrum, the power-law is obtained only for
231 averages over a large number of realisations. When an averaged
232 spectrum still contains significant spectral spikes over given scales,
233 these scales are generally considered as characteristic ones. For
234 example, for time series influenced by the annual cycle, the annual
235 spectral spikes have been often discussed in the literature (Tessier
236 et al., 1993). Spectral spikes over small scales, in particular from
237 around 1–3 h for the rainfall, are rather frequent and feed the ongo-
238 ing debate on whether there is a small scaling break at these scales
239 (e.g. de Lima, 1998).
240 Fig. 5 displays outputs of the spectral analysis for the Rimbaud
241 time series. We first performed a spectral analysis over a yearly
242 realisation in order to test the hypothesis of inter-annual seasonal-
243 ity of the rainfall data. Indeed a spectral analysis is a useful tool to
244 detect periodic behaviour in time series: the frequency that corre-
245 sponds to a periodic time-scale will be characterised by an obvious
246 spectral spike. Indeed, the spectrum of a pure periodic signal with a
247 given frequency is a Dirac function centered at this frequency. As
248 illustrated by Fig. 5a, the spectral exponent of b = 1.087 approxi-
249 mates well the power law behaviour of the Rimbaud time series.
250 Furthermore, in spite of the large fluctuations of individual spectra
251 around the mean value of spectral exponent, there is not any obvi-
252 ous spectral spike. Therefore, there is no observational evidence of
253 seasonal effects on the monthly ensemble average of spectral esti-
254 mates. Being interested in scaling behaviour over smaller scales,
255 we then performed the spectral analysis over the monthly se-
256 quences of each rainfall time series. The data sequences were used
257 as independent realisations. Hence, for each frequency the esti-
258 mated average spectral value corresponds to a simple average over
259 all individual realisations. Let us emphasise the fact that we used a

260common practice of ensemble average with weak dependence be-
261tween samples: one should not be confused between the data res-
262olution (at which rainfall exhibits a strong dependence) and the
263much larger sample length (which corresponds to weak depen-
264dence for rainfall). Furthermore, the goal of this type of spectral
265analysis is to uncover the small scale dependence, not the larger
266scale one. As illustrated by Fig. 5, the interest of such an ensemble
267average is to easily uncover the spectral exponent by smoothing
268out the large fluctuations of the individual spectra: the energy
269spectrum averaged over 12 monthly realisations (Fig. 5b) is much
270smoother than the spectrum of a unique realisation (Fig. 5c) of the
271Rimbaud time series. Both are characterised by the approximate
272spectral exponent of b = 1.08, although the latter is much more
273obvious on the averaged spectrum. This also shows that no serious
274artefact is introduced by the ensemble average, but merely that

Fig. 5. Log–log plots of the energy spectra of the Rimbaud time series: the spectrum
of a yearly data sample (a), the average of the corresponding 12 monthly spectra (b)
is obviously smoother than one of the 12 monthly spectra (c). All spectra have
nevertheless the same log–log regression that yields the same estimate of the
spectral exponent b = 1.08 .
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275 fluctuations around an average behaviour are smoothed out, as ex-
276 pected. Very close estimates were obtained for all three spectral
277 exponents (Fig 5a–c). This confirms the idea that the monthly
278 ensemble average spectra remain more practical to investigate
279 the scaling behaviour of the data over the small scale range.
280 Fig. 6 displays the energy spectra of Nîmes and Rimbaud time
281 series. While the Rimbaud rainfall data displays a rather clear scal-
282 ing behaviour emphasised by a linear fit with slope b = 1.08 (see
283 Fig. 6b), the small scale data deficit for the Nîmes time series intro-
284 duces a spurious spectral tail for frequencies kP (1 h)#1 (Fig. 6a),
285 with apparent scaling breaks at each of the harmonics of the effec-
286 tive recording frequency.
287 The spectral analysis confirms that the deficit of small scale
288 components, which was first uncovered with the help of the dura-
289 tion probability histograms, indeed introduces high frequency scal-
290 ing breaks in a spectral analysis of these time series. With this
291 example, it becomes obvious that the hourly data could not be
292 used as a substitute for 5 min rainfall time series. Furthermore,
293 the results suggest that some of the earlier arguments proposed
294 to physically justify the existence of scaling breaks (i.e. breaks in
295 the power laws of the spectrum) at small scales in rainfall may
296 need some re-evaluation from the data quality point of view, to
297 better distinguish real scaling breaks from spurious ones.
298 Let us note that similar scaling breaks would be observable with
299 the help of different methods of multiscaling analysis of rainfall.
300 Whereas spectral analysis corresponds to a second order statistical
301 analysis, the multifractal Trace Moment (TM) analysis (Schertzer
302 and Lovejoy, 1987a) is performed over a range of orders q of statis-
303 tical moments. These statistical moments can be estimated with
304 the help of a possible combination of both ensemble and time/

305space averages, i.e. in agreement with the law of large numbers,
306theses estimates of the statistical moment of order q correspond
307to averages of the corresponding power q of the rain rate Rk over
308a wide range of resolutions k (=T/d, where T is the largest time scale
309of the scaling regime, d is the observation duration). This allows
310assessing the scaling behaviour of extremes (corresponding to sta-
311tistical moments of high orders q’s, i.e. q’s much larger than the
312unity) as well as for moderate rainfalls (statistical moments of
313moderate orders, i.e. q’s of the order of the unity). As illustrated
314by Fig. 7, the multiscaling or multifractal behaviour corresponds
315to a power law behaviour of the corresponding moments (h.i
316denotes the ensemble average):

317

hRq
ki / kKðqÞ ð2Þ 319319

320here the rainfall rates Rk at various resolutions k <K (K corresponds
321to the highest available data resolution) are obtained by a succes-
322sive upscalings (aggregations) of the original time series RK, the
323exponent function K(q) describes the scaling of the q-order
324moments hRq

ki over a given range of resolution k’s. Where it is non-
325linear, it corresponds to multiscaling or multifractal behaviour.
326For each time series, we first performed the TM analysis over
327individual sequences of about 5 years of 5 min rainfall (i.e., 219 val-
328ues), which were considered, as usually done, as almost indepen-
329dent data realisations (see above discussion on ensemble
330spectra). Then for each of 166 time series, the value of statistical
331moment at a given resolution k corresponds to the average esti-
332mated at this resolution over all such realizations. Again, the scal-
333ing of the empirical trace moments, with respect to the data

Fig. 6. Log–log plots of the energy spectra of the Nîmes (a) and Rimbaud (b) time series: the latter displays a rather clear scaling behaviour (power law corresponding to a
linear fit in a log–log plot), whereas the former does not do it, in particular for frequencies kP (1 h)#1.

Fig. 7. Log–log plots of the Trace Moments of the Rimbaud (a) and Orgeval (b) time series. Both display a rather clear multifractal or multiscaling behaviour (power laws
corresponding to linear fits in a log–log plot), but the scaling holds up to the highest resolution (shortest duration = 5 min.) only for the Orgeval time series.
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334 resolution k, corresponds to a linear behaviour of their curves in
335 logarithmic coordinates.
336 For most of the series, TM curves display scaling breaks (see
337 Fig. 8) at about 40–80 min. As discussed below, they can be consid-
338 ered as a spurious because they could result from the deficit of
339 short ‘‘homogeneous rainfall episodes’’ in the record of series
340 (see Fig. 2 and corresponding discussion). These breaks may occur

341for larger periods, e.g. at about 10 h for the Mont Aigoual time ser-
342ies (see Fig. 9a), and the period of the scaling break is not clear for
343the Marseille time series (see Fig. 9b). This obviously illustrates the
344difficulty and raises many concerns on the possibility to use this
345time series to benchmark statistical analyses and stochastic
346simulations.
347A more refined multifractal analysis is obtained with the help of
348the Double Trace Moment (DTM) analysis (Lavallée et al., 1992;
349Schmitt et al., 1992). The latter allows to estimate in a rather
350straightforward manner the ‘universal’ multifractal parameters C1
351and a that in the case of universal multifractals (Schertzer and
352Lovejoy, 1987b) fully define the analytical expression of the scaling
353moment function:
354

KðqÞ ¼ C1

a# 1
ðqa # 1Þ ð3Þ 356356

357The main steps of the DTM analysis are schematised on Fig. 10.
358The first step corresponds to rising up the original time series RK to
359an arbitrary power g and then proceeding to a TM analysis of the
360corresponding field RgK. Therefore, the DTM method estimates the
361scaling of the statistical moments of RðgÞ

k ð1 < k < KÞ, which are
362obtained by upscaling (aggregating) RgK over a scale ratio K=k that
363generalises the Eq. (2) into:
364

hRðgÞq
k i % kKðq;gÞ ð4Þ 366366

367For every value of the statistical moment order q, Eq. (4) allows
368to estimate K(q, g) as a function of different g-values with the help
369of a linear regression of LogðhRðgÞq

k iÞ vs. LogðkÞ over a range of k ’s
370(see Fig. 11a).

Fig. 9. Log–log plot of the Trace Moments of the Mont Aigoual time series (a) with the scaling break at about 10 h; and Marseille time series (b) without a clear scale of the
scaling break, in agreement with Fig. 2b.

Fig. 8. Log–log plots of the Trace Moments of the time series of Nîmes (a) and Saint Andre de Roquepertuis (b). Both display a clear scaling break at about 1 h and indeed the
probability distributions of their durations show hourly effective measurement frequency, instead of 5 min (see Fig. 2a for Nîmes).

Fig. 10. Schematic illustration of the DTM algorithm that displays its main steps.
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371 The particular usefulness of the DTM method is that its scaling
372 function K(q, g) (with K(q, 1) = K(q)) for the universal multifractals
373 satisfies the following relationship:
374

Kðq;gÞ ¼ gaKðqÞ ð5Þ376376

377 which enables to estimate the index of multifractality a with the
378 help of the slope of K(q, g) vs. g in a log–log plot. C1 is then esti-
379 mated with the help of the linear fit in the log–log plot (e.g. its
380 intersection with the axis Log(g) = 1) and Eq. (3). However, as illus-
381 trated by Fig 11b, due to the finite size of the samples, as well as to
382 detectability threshold, this relation (Eq. (5)) holds only over a finite
383 range [gmin, gmax] of g values. Following (Hittinger, 2008), these
384 bounds can be theoretically estimated with the help of the corre-
385 sponding second order phase transitions (Schertzer and Lovejoy,
386 1992) as being:
387

gmin ¼ ðcR=C1Þ1=a maxð1;1=qÞ ð6Þ389389

390

gmax ¼ ðd=C1Þ1=aminð1;1=qÞ ð7Þ392392

393 where cR is the codimension of the empirical rainfall support R, i.e.
394 when the rain rate is estimated as non-zero, which can be estimated
395 with the help of a box-counting algorithm and depends on the
396 detectability threshold, whereas d is the dimension of the embed-
397 ding space (d = 1 for time series). Nevertheless, the main difficulty
398 with Eqs. (6) and (7) is their nonlinear dependence on a, i.e. you
399 need a first estimate of a to examine over which range [gmin, gmax]
400 you can obtain a good estimation of a. Therefore, one may first
401 choose an intermediate value !g to compute in its neighbourhood

402a first guess of the slope of K(q, g) vs. Log(g), e.g. with the help of
403a given number n (usually n = 6) of the nearest discretised g values.
404It is rather convenient to define !g by:
405

Kðq;gÞ ¼ ðKðq;gÞminKðq;gÞmaxÞ
1=2 ð8Þ 407407

408where K(q, g)min and K(q, g)max correspond respectively to the lower
409and upper empirical values of K(q, g), i.e. the two horizontal
410branches of this curve (see Fig. 11b), and therefore to rough esti-
411mates of K(q, gmin) and K(q, gmax).
412Within the first estimate of [gmin, gmax], we developed two dif-
413ferent, new variations of the DTM algorithm, in order to verify
414whether one of them is significantly less sensitive to the data
415quality.
416The first variation is the DTM algorithm with an inflection point
417(DTM-IP): one looks for the inflection point Log(K(q, gIP)) of
418Log(K(q, g)) vs. Log(g) inside of the range [gmin, gmax], and estimate
419a with the help of the slope at this point (using again a given num-
420ber m (e.g. m = 6) of the nearest discretised g values).
421Poor quality data having no clear scaling behaviour will exhibit
422numerous inflection points and therefore generate a large disper-
423sion of parameter estimates. In order to reduce these uncertainties,
424we developed the iterative procedure. This method is based on the
425idea that one may obtain by iteration a better precision on the g
426range over which a should be estimated. Hence, the second varia-
427tion is the DTM method with a reduced range of g values (DTM-
428RR): the DTM-IP procedure is used for a second approximation of
429(a, C1) in order to estimate [gmin, gmax] with the help of Eqs. (7)
430and (8). Then these (a, C1) are re-estimated with the help of a linear
431regression of Log(K(q, g)) vs. Log(g) over [gmin, gmax].

Fig. 11. Illustration of determination of the double trace moment exponent K(q, g) values (a) as the slope of LogðhRðgÞq
k iÞ vs. LogðkÞ and the multifractality index a (b) as the

slope of Log(K(q, g)) vs. Log(g) in the DTM analysis, as well as the range [gmin, gmax] of the g values over which it can be accurately estimated.

Fig. 12. Log–log plot of the Double Trace Moments of Saint Andre de Roquepertuis (a) and Orgeval (b). The latter displays a rather clear multifractal behaviour, whereas the
former displays a scaling break at about 1 h. In both cases, these curves exhibit a multiscaling behaviour similar to their TM counterparts, i.e. respectively Figs. 8b and 7b.
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432 While the test results of these procedures on synthetic multi-
433 fractal fields will be discussed elsewhere, in Section 5 we discuss
434 an adapted Nash criterion to compare the respective DTM-IP and
435 DTM-RR multifractal estimates obtained on the MF-5P database.
436 The obtained estimates confirm that, independently of the type
437 of assessment procedure, the question of the data quality persists.
438 Fig. 12 with no surprise illustrates that the DTM curves display
439 spurious scaling breaks similar to those of the TM curves. The scal-
440 ing breaks at about 1 h, e.g. the time series of Nîmes (Fig. 8a) and
441 Saint Andre de Roqueqertuis (Figs. 8b and 12a), could be explained
442 by the deficit of high frequency rainfall episodes. Indeed these ser-
443 ies have only an hourly time resolution, hence a visible deficit of
444 ‘‘homogeneous’’ episodes of shorter durations.
445 This means that the range of durations over which the universal
446 multifractal parameters can be safely estimated is very sensitive to
447 the quality of high frequency data. Not taking care of this question
448 may lead to a serious increase of uncertainties in the hydrological
449 estimates, e.g. in the Depth–Duration–Frequency (DDF) curves that
450 are widely used in the hydrology.
451 Fig. 13 displays the DDF curves of the annual maxima for the
452 Orgeval time series. The measured data having a 5 min resolution
453 were also up-scaled to hourly data. Hence, the curves represented
454 by round and square symbols correspond respectively to 5 min
455 and hourly durations. Then the curve represented by triangle sym-
456 bols for 5 min duration is obtained with the help of uniform disag-
457 gregation of hourly data, i.e. a transformation of hourly to 5 min
458 precipitations were obtained by uniformly distributing the rainfall
459 over the 12 time sub-intervals of 5 min. This illustrates the effect
460 of using the hourly data to artificially construct the DDF curves
461 for sub-hourly durations. For the duration of 5 min, the Fig. 13
462 shows a significant difference between the DDF curves corre-
463 sponding to the ‘‘true’’ 5-min data and the corresponding artificial
464 data.
465 Due to lack of small scale variability, the latter, obtained with
466 the help of a uniform disaggregation from hourly rainfall data (tri-
467 angles) remain weaker than those estimated from the observed
468 precipitations (circles). For instance, the depth for a return period
469 of 15 years (and a 5 min duration) drastically decreases from 22
470 to 4 mm. This illustrates that the deficit of ‘‘homogeneous’’
471 episodes of shorter duration would cause important underesti-
472 mates of the rainfall for operational applications in the hydrology.
473 We will pursue elsewhere the analysis of these hydrological conse-
474 quences with the help of rainfall–runoff models.

4754. SERQUAL: a procedure to select high quality data sequences

476The observed sensitivity of the results of scaling analysis to
477small scale data quality lead us to develop an automatic procedure
478SERQUAL, written in the open access programming language SCI-
479LAB (Pinçon, 2000), that allows to quantify the quality of the time
480series not only over the whole time series, but also period by per-
481iod, e.g. in this paper we started from year by year analysis,
482although the method is not at all limited to this period choice. In-
483deed, the yearly period was considered in the present paper due to
484the somewhat surprising observation that indeed the quality of the
485time series is in general far from being uniform and even monoto-
486nous, e.g. the data quality can decline in most recent years! How-
487ever, for dryer climates a longer period might be needed.
488The procedure SERQUAL is based on the conjunction of three
489criteria. The first one is the observation quality, which is measured
490by the percentage of missing data as follows:
491

rmis ¼
Tmis

Ttot
ð9Þ 493493

494where Tmis is the total time length of missing data and Ttot is the to-
495tal length of the data record.
496The second criterion is the quality of the effective time resolu-
497tion. It is measured by the episode duration having the highest
498probability, where the probability of the di episode duration is esti-
499mated as follows:
500

PrðdiÞ ¼
NðdiÞP
j
NðdjÞ

ð10Þ
502502

503where N(di) is the number of the episodes of duration di. Therefore,
504when the probability of the 5 min episode duration is the highest
505one, the data sequences are considered having the effective 5 min
506resolution. At first glance, it is surprising to note that the effective
507resolution may change depending on the period of year for the same
508station. Let us remember that a detailed transcription from the
509paper record graphs was often performed only for some sever rain-
510falls. Therefore, these detailed small-scale data were inserted into
511rainfall records of a lower time resolution. These facts explain the
512observed changes in effective duration in the time series of a given
513station.
514The final criterion is the quality of the probability distribution of
515episode durations. This quality is measured with the help of the
516determination coefficient (R2) of the power law (over a given range
517of durations). In this paper, the determination coefficient (R2) is
518estimated with the help of a linear regression of Log(Pr(d)) vs.
519Log(d) over the range of small durations from 10 min to 2 h
52030 min. If the R2 coefficient is higher than 0.8, the quality is graded
521as ‘‘A1’’; if it ranges from 0.65 to 0.8, the quality is graded as ‘‘A2’’;
522from 0.5 to 0.65, the quality is graded as ‘‘A3’’. Finally the quality is
523graded as ‘‘0’’ if the determination coefficient is less than 0.5.
524One may note that the two last criteria require that SERQUAL
525should be only applied to long enough records. For each of these
526criteria, Fig. 14a–c displays geographical maps indicating the qual-
527ity of the 166 rainfall time series from the MF-5P database. The
528corresponding data quality rates can be finally pooled together to
529get an overall data quality estimator.
530Applying the SERQUAL procedure on the 166 rainfall time ser-
531ies, the results show (Fig. 14a) that most of the data have only a
532hourly resolution (110 series among 166, or 66%). There are only
53340 rainfall time series having the effective resolution of 5 min.
534The corresponding rainfall gauges are mainly concentrated in three
535administrative regions of France: 15 gauges are in the region of
536Rhône-Alpes (Isère county with identification number 38), 6
537gauges are in the region of Ile-de-France (Yvelines county with
538identification number 78) and 19 gauges are in the south of France

Fig. 13. The DDF curves of the annual maxima of the Orgeval time series. Square
symbols correspond to hourly duration. For 5 min duration corresponding to round
and triangle symbols, there is a significant difference between the DDF curve
obtained from the observed precipitations (rounds) and the one obtained with the
help of uniform disaggregation from the hourly precipitations (triangles). This
confirms the need to well assessed the effective frequency of measurement and
record.
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539 (Var county with identification number 83). It is important to note
540 that when applied to year by year sequences, instead of doing it to
541 the whole series, the SERQUAL procedure shows that all the series
542 of counties 38 and 78 (respectively 15 and 6 series) have an effec-
543 tive time resolution of 5 min. On the contrary, the 19 series of the
544 county 83 exhibit a much more complex behaviour due to a mix-
545 ture of various effective time resolutions (Fig. 15). The data quality
546 analysis also shows that among the 126 series that do not have an
547 overall time resolution of 5 min, 39 series have a few (not neces-
548 sarily consecutive!) years an effective time resolution of 5 min
549 (Fig. 16), the other 87 time series do not have any year with such
550 an effective time resolution.
551 Therefore, in order to perform our analysis on data having a uni-
552 form quality, we selected series or extracted sub-series that corre-
553 spond to successive years having an effective time resolution of
554 5 min and for a length greater or equal to 5 years. According to this
555 selection criterion, 15 time series were selected for the county 38
556 and 6 for the county 78. For the county 83, we could only extract
557 subseries: 14 for the period 1989–2005, but only one for the peri-
558 ods 1987–2005, 1989–1995 and 1991–2005. Two series of this
559 county did not have any of such periods.
560 Therefore, with the help of the SERQUAL procedure, only 38
561 time series, among 166 available ones, were selected as the high
562 quality rainfall measurements, and in particular, as the full series

563having the effective data resolution of 5 min. These 38 time series
564have been used for further validation analysis discussed in the next
565section.

5665. Discussion of the results

567As we already mentioned, scaling methods in general remain
568very sensitive to data quality. For example, (Hittinger, 2008) dis-
569cusses many difficulties in automatic routines of the DTM-IP meth-
570od when looking for a precise estimate of the multifractal
571parameters a and C1. To quantify the uncertainties of parameter
572estimates, we decided to compare the DTM-IP results with those
573obtained with the help of the iterative procedure DTM-RR. In both
574cases, we started with rather crude estimates of a and C1, which
575analytically define the maximum probable singularity cs of a sam-
576ple and therefore the upper bound of statistical orders q and g that
577can be used in the TM and DTM analyses. The determination coef-
578ficient R2 can be furthermore used as an indicator of quality for lin-
579ear fits. While, the iterative methods becomemuch less sensitive to
580the crudity of initial estimates and the quality of original data, they
581do not distinguish the real data breaks from the spurious ones.
582We decided to apply both DTM-IP and DTM-RR methods to the
58338 time series of 5 min rainfall that were pre-selected by the SER-

Fig. 14. Geographical maps of the quality of the series: effective time resolution quality (a: 5 min. (red), 10 min. (green), 15 min. (dark blue), 20 min. (purple), 30 min.
(yellow), 60 min. (aqua)), missing data (b: 0–20% (dark blue), 20–40% (aqua), 40–60% (green), over 60% (yellow), probability distribution of episode durations (c: A1 for
R2 P 0.80 (green), A2 for 0.65 6 R2 < 0.80 (dark blue), A3 for 0.50 6 R2 < 0.65 (purple) and 0 for R2 < 0.50 (red)). For these three figures, the corresponding number of stations
corresponding to a given quality level with respect to a given criterion is displayed between parenthesis. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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584 QUAL procedure. We intended to compare the multifractal param-
585 eter estimates, obtained by these two methods: close estimates
586 would support the idea that the SERQUAL criteria assure a suffi-
587 cient data quality in order to detect an unperturbed scaling behav-
588 iour and over the appropriate range of scales without the necessity
589 of iterative methods. In order to compare the parameter estimates
590 obtained by the two methods, we use a Nash criterion adapted to
591 our situation.
592 The Nash coefficient is defined in the following manner
593

Nash ¼ 1#
P

ðYi # XiÞ2P
ðXi # XÞ2

ð11Þ
595595

596 where the Xi are the reference values (usually, the observations), !X
597 their average, and Yi the predicted values. This coefficient is
598 bounded above by 1, which corresponds to a perfect prediction,
599 whereas lower and lower values correspond to worst and worst
600 prediction. For instance, 0 corresponds to a prediction that is not
601 better that the average !X.
602 Because the multifractal parameters obtained by the DTM-RR
603 method are much less sensitive to the data quality, we will use
604 them as the reference data with respect to the classical Nash crite-
605 rion, whereas the multifractal parameters obtained by the DTM-IP
606 would be used instead of the model prediction. Fig. 17 displays
607 good correspondences between the estimated multifractal param-
608 eters that agree with the Nash parameters of 0.85 for a-estimates
609 (Fig. 17a) and of 0.96 for C1-estimates (Fig. 17b).
610 We have now to discuss another feature of the high resolution
611 rainfall data we used. Meteo-France is in charge of maintaining

612most of the archives of the precipitation data in France and gener-
613ally have been using a 6 min time step for short duration rainfall
614(the MF-6P database), whereas in the above sections we primarily
615discussed the results obtained on the 5 min rainfall (MF-5P data-
616base). It was therefore instructive to compare these two databases,
617in particular by performing quality tests for the same stations over
618the same periods.
619Table 1 displays the main features of this comparison on the
620example of 3 stations: Brest, Mont Aigoual and Marseille. It turns
621out that the effective time resolution is higher for the MF-6P time
622series, whereas the rain period is longer for the MF-5P time series,
623in particular for the Marseille series over the period 1982–1988.
624Among the rainfall data of Marseille, with the help of the SER-
625QUAL procedure we finally selected 2 years having the best data
626quality, i.e., the year 1986 with an effective 5 min resolution (from
627MF-P5) and the year 1999 with an effective 6 min resolution (from
628MF-P6). Fig. 18 displays the corresponding probability distribu-
629tions of the durations of « homogeneous » rainfall episodes during
630each year. This figure puts on evidence the existence of the power
631law with an exponent close to 2 that stands up to the highest res-
632olution of 6 min rainfall. Indeed, while a 5 min resolution remains
633dominant for the year 1986, a power law could be roughly fitted up
634to 10 min resolution, which was the one selected for the SERQUAL
635procedure. Therefore, strengthening the third criterion of the SER-
636QUAL procedure that evaluates the quality of probability distribu-
637tion, i.e. estimating the power law over the full range of small
638durations, would lead to the rejection of the 5 min Marseille data.
639In this paper we gave preference to a looser criterion (i.e., with
64010 min resolution) in conjunction with the criterion on the effec-

Fig. 15. Effective time resolution quality (ranging from 5 min to less than 120 min, see colour code) estimated year by year of the 40 series having an overall 5 min resolution.
The displayed effective time resolution is rather inhomogeneous and non stationary. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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641 tive time resolution quality. Let us anyway mention that such a
642 departure from the power law, which has been observed for the
643 highest resolution, could be related to a rather unexpected increase
644 of the fractal dimension of the rainfall support. Indeed, Fig. 19 dis-

645plays the fractal dimensions of the rainfall support in Marseille
646during the years 1986 and 1999. With no surprise, the rainfall sup-
647port fractal dimension at lower resolution converges to the dimen-
648sion of the embedding space: it always rains at monthly scales. For

Fig. 16. Effective time resolution quality year by year of the 39 series which do not have an overall effective time resolution of 5 min, but have at least 1 year of 5 min
resolution. The displayed effective time resolution is even more inhomogeneous and non stationary than that of Fig. 15.

Fig. 17. Correlation of parameters a and C1 estimated respectively by the DTM-IP and DTM-RR methods, as well as the corresponding Nash coefficient.

Table 1
Intercomparison between the MF-5P and MF-6P databases.

Station Brest Mont_Aigoual Marseille

Period 1990–2003 1992–2003 1997–2004 1982–1988
Database 5P 6P 5P 6P 5P 6P 5P 6P
Effective time resolution Hourly 18 min Hourly 18 min Hourly 6 min 10 min 6 min
Missing data duration/period duration (%) 11.3 9.2 9.0 5.3 3.5 1.8 3.3 3.3
Rainfall duration/period duration (%) 13.4 6.8 12.3 7.8 4.1 1.71 19 3.3
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649 higher time resolutions (from a month to about an hour) the rain-
650 fall is known to be an intermittent process and indeed the support
651 fractal dimension is of the order of 0.5. However, instead of having
652 the same intermittent behaviour for sub-hourly durations, there is
653 an increase of the support fractal dimension for both rainfall data
654 of Marseille. This is more obvious for the 5 min resolution data,
655 where the fractal dimension reaches again the embedding space
656 dimension. Such a behaviour suggests that a given downscaling
657 algorithm was applied to hourly data to obtain a seemingly
658 5 min data resolution and which introduces spurious uniform fre-
659 quencies of data recording. Since such a behaviour was observed
660 for other stations, future research on high resolution data sets is
661 needed to clarify this issue.

662 6. Conclusions

663 The obtained results show that the deficit of high frequency epi-
664 sodes causes scaling breaks and therefore difficulties to define scal-
665 ing laws of the rainfall with many consequences for operational

666hydrology. Indeed, whereas scaling methods provide powerful
667tools for nowadays hydrology, we demonstrated that a particular
668attention should be paid to the data quality in order to adequately
669interpret the often observed scaling breaks and their consequences
670on the parameter estimates.
671In this direction, we developed a first version of a SERQUAL pro-
672cedure to automatically detect the effective time resolution of
673highly mixed data. Being applied to the 166 rainfall time series
674(MF-P5 database), the SERQUAL procedure has detected that most
675of them have an effective hourly resolution, rather than a 5 min
676resolution. Furthermore, series having an overall 5 min resolution
677do not have it for all years. Indeed the effective resolution may
678have been unstationnary and changed for a given station. This is
679because the majority of long time series correspond to continuous
680records of hourly rainfall, into which sub-hourly data had been in-
681serted based on the transcription from the paper record graphs.
682Unfortunately such transcriptions were often performed only for
683some periods of timemerely corresponding to sever rainfall events.
684The systematisation of automatic recording has eliminated this
685problem for the recent years records, but not for the older parts
686of the time series. At first, this raises serious concerns on how to
687benchmark stochastic rainfall models at a sub-hourly resolution,
688which are particularly desirable for operational hydrology. There-
689fore, database quality must be checked before use. Furthermore,
690we showed that our procedure SERQUAL enable us to extract high
691quality sub-series from longer time series that will be much more
692reliable to calibrate and/or validate short duration quantiles and
693hydrological models.
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