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Abstract Nowadays research is triggered by the permanent need to better relate the measured radar 
reflectivity to the surface rainfall. The knowledge of flow structure within cloud formation systems and the 
associated convective–stratiform separation may provide useful information in this respect. We will first 
discuss how stochastic multifractals can handle the differences of scales and measurement densities of the 
raingauge and radar data; and help to merge information from these data. Mosaics from the Météo-France 
ARAMIS radar network are used that correspond to horizontal projections of radar rainfall estimates for a 
1 km × 1 km × 5 min grid over France. In particular, three storm events with different dynamics over the 
Paris region were selected to illustrate the efficiency of the multifractal framework. In spite of the difficulty 
that usually the same precipitation field comprises both stratiform and convective formations, their 
respective scaling properties allow to decipher and to classify the radar data.  
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INTRODUCTION  

Precipitation constitutes a natural phenomenon which has very strong socio-economical impacts, 
especially as heavy rainfall usually associated with storms. Climate change and sprawling 
urbanization are two drivers that would increase the extremes. Both already put into question the 
usual implicit approximation of statistical stationarity, and therefore classical operational notions. 
To take into account this aspect, the hydrological systems of the rainfall alert and forecast need to 
provide the communities with more detailed space–time information. Ideally, this should cover 
time scales from 1 second and spatial scales ranging from millimetres to about 50 km, i.e. from 
drop sizes to Paris region scale. This range of scales is crucial for urban hydrology and it also 
corresponds to the lesser known scale range for precipitation fields. There are many ongoing 
discussions on possible rainfall scaling breaks below 30 km (e.g. Gires et al., 2011). A deeper 
understanding of the rainfall process across scales seems to be necessary for bridging the scale gap 
between radar and in situ measurements, which has been a long-lasting problem for radar 
calibration (Austin, 1987). In this paper we explore the scaling behaviour of horizontal projections 
of the radar rainfall estimates by properly dealing with the strong intermittency of rainfall that is 
more obvious at small scales. We first discuss interlinks between what could be termed 
convective/stratiform rainfall and a possible rainfall scaling break. Then we illustrate how the 
multifractal methods handle the differences of scales and measurement densities of the raingauge 
and radar data that are available f[?] 1 km × 1 km × 5 min grid. Finally we underline how merging 
the information from these data would increase our understanding of rainfall extremes. Empirical 
parameters allow an implementation of a procedure for simulation and nowcasting of rainfall fields 
and for cross-fertilization with operational applications.  
 
 
DEFINITIONS ACROSS SCALES  

Initially triggered by climatological studies, the discussion of convective vs stratiform rainfall was 
widely enlarged by the aspects of radar rainfall measurement. Most precipitation systems can be 
sorted as convective or stratiform, while there is no consensus on a precise definition of the terms 
convective/stratiform (see e.g. Steiner & Smith, 1998); notably their distinction is not always 
sharp. The most common cinematically-based classification into convective/stratiform formations 
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appeals to the characteristic scale and magnitude of the vertical velocity field. Indeed, Houze 
(1993) underlined that stratiform rainfall is more variable in the vertical than the horizontal, since 
hydrometeors (snow or rain) in stratiform clouds grow primarily by descent through a widespread 
updraft whose velocity magnitude is less than a metre per second. Thus, purely stratiform rainfall 
would result from mid-latitude frontal systems. Convective rainfall is associated with regions 
where rainfall remains equally variable in the horizontal and in the vertical directions, so the 
magnitudes of upward air motion would be sufficiently large in respect to the fall velocity of the 
hydrometeors. Steiner & Smith (1998) advocated that the definition of what might be termed 
convective/stratiform rainfall should hold across all scales. As a step in this direction, Seed (2004) 
investigated the extent of the vertical-horizontal anisotropy, depending on the physics dominating 
the rainfall production process. He proposed use of variograms of radar reflectivity in the vertical 
and horizontal dimensions to distinguish between convective and stratiform rainfall, although he 
admitted that this method requires very large samples of data. In particular, it requires vertical 
profiles of radar reflectivity that are not actually available among the ARAMIS products of Météo-
France (Gilet et al., 1983).  
 The same precipitation field often comprises formations of both types (Houze, 1997). In spite 
of this difficulty, meteorologists often select samples of predominantly stratiform or convective 
rainfall fields aiming to investigate their respective scaling properties. For example, Chumchean 
(2004) pre-classified over 800 fields of hourly rainfall accumulation over Sydney (Australia). He 
used the spectral analysis on 256×256 km2 rainfall fields of 1 km resolution. The spatial spectrum 
E(k) is the density of “energy” of the field (i.e. the squared field) per unit wave number k (km-1). A 
random field is scaling when its spectrum follows a power law, . Chumchean (2004) 
found differences in the estimates of the power law exponent, β, often called the “spectral slope”, 
for stratiform and convective rainfall, with respective average values of 2.3 and 2.1. However, the 
significance of this 10% difference could be put into question due to uncertainties. In fact, rainfall 
is a complex space–time process. Hence, contrary to the usual approaches that take into account 
only spatial fluctuation estimators, we propose to analyse the time evolution of this estimator to 
classify convective and stratiform rainfalls. We therefore discuss the capacity of a more general 
space and time scaling analysis, often resulting in non-stationary estimates of scaling parameters. 
Then the time series of scaling exponents could be directly used, for example, to automatically sort 
out the convective rainfall episodes among numerous radar data archives.  
 We use the ARAMIS data of Météo-France (Parent du Châtelet, 2003) for three storms over 
the Paris region, each lasting 4 h. These storms were a priori classified by meteorologists as two 
mixed events (on 11 January 2008 and on 9 February 2009 from 00:12 h to 00:16 h) and a 
stratiform rainfall on 13 February 2009 (from 00:01 h to 00:05 h). However, this classification 
remains only an indicative one for the selected periods and location. We started from the (spatial) 
 
 

        
Fig. 1 (a) Temporal evolution of the spectral slopes obtained on power spectra in space (1 km 
resolution) of consecutive samples of 5 minute rain accumulation; (b) power spectra in space, averaged 
over the duration of an event: 11 January 2008 (blue), 9 February 2009 (red) and 13 February 2009 
(black). All events yield the average spectral slope β = 1.5 (in space and time), independently of the 
physics that dominated the rainfall production process. 

(a) (b) 
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spectral analysis of 5 min time consecutive rainfall accumulation maps of 512 × 512 km2 with a 
1 km resolution. For all three storm events, the time series of the spatial power law exponents 
fluctuate around the mean value of β = 1.5 (Fig. 1(a)), independently from the physics that 
dominated the rainfall production process. The same value of the β exponent characterises the 
spatial power spectra averaged over the duration of the event (Fig. 1(b)). Although the stratiform 
rainfall is notably less intense (i.e. the spectrum is lower than the two convective ones), there are 
no significant differences in scaling behaviour at larger scales of these spectra. The power law 
behaviour confirms the scaling nature of the rainfall field, although Fig. 1(a) points out the 
problem of fluctuations or non-stationarity of the power law exponent estimates (and more 
generally, of scaling parameters) during each event. These fluctuations put into question the 
possibility to distinguish in a reliable manner convective vs stratiform situations with only the help 
of the spectral slope, although it was quite appealing.  
 
 
FRACTALS AND CONVECTIVE-STRATIFORM CLASSIFICATION  

The simplest scaling feature of radar images, i.e. rainfall clustering over a fractal support, can be 
easily established with the help of the straightforward box-counting algorithm. The boxes are 
defined as the pixels of a regular 2D grid covering the radar image, where a mesh size l is 
consecutively increased by a given factor (usually 2). Then the fractal dimension Df of the rain 
support is the exponent of the scaling law of the number of pixels n(l) containing at least one 
positive rainfall measurement: . Obviously a homogeneous 2D field will correspond to 

, and lower and lower fractal dimensions correspond to more and more inhomogeneous 
fields. Figure 2(a)–(c) displays the temporal evolution of the two fractal dimensions estimated on 
national radar images (512 × 512 km2) of 5 min rainfall accumulation, over two distinct sub-ranges 
of scales. Indeed, we detected a change in the scaling behaviour at about 20 km that corresponds to 
low values of the coefficient of determination estimated over the full range of scales, and was 
particularly visible on 11 January 2008. This implies that two distinct fractal dimensions are 
necessary over the small scale range (1–16 km) and over the large scale range (16–512 km), 
respectively. The small scale analysis (i.e. performed over the small scale range) confirms a 
general dependence of the support fractal dimension on the percentage of rainfall under the 
threshold of radar detection (i.e., the “zero rainfall”): the fractal dimension tends to decrease with 
an increase of zero rainfall, e.g. it decreases from 1.93 to 1.88 during the episode of 9 February 
2009 when the zeros increase from 30% to 41%. Although the same  is observed for two 
types of rainfall events: the convective type on 11 January 2008 with about 55% of zero rainfall 
during the episode and the stratiform type on 13 February 2009 with 70% of zeros. Therefore, a 
small scale fractal dimension would not be sufficient to sort out radar data. On the contrary, a 
comparison of small scale and large scale fractal dimensions gives a striking dissimilarity of the 
first two rainfall events (11 January 2008 and 9 February 2009) with respect to the third one (13 
February 2009). While the large scale fractal dimensions remain close to 2 for the first two events 
and hence, remain distinct from the corresponding small scale fractal dimensions. In contrast, on 
13 February 2009 the estimates of the large scale fractal dimension fluctuate around the small 
scale value of . This result is in agreement with the fact that the horizontal extent of 
vertical air motions during a stratiform situation may grow up to hundreds of kilometres. Hence, 
the stratiform and decaying convective rainfall systems would naturally result in a more 
widespread precipitation, which in turn would result in similar estimates of fractal dimension over 
small and large scales. In contrast, a convective situation is characterized by significant vertical air 
motions over horizontal scales ranging from several metres to several kilometres. So, over a larger 
area, a convective rainfall system can be understood as a homogeneous distribution ( ) of 
smaller scale precipitation cells, all having a lower fractal dimension. Therefore, the fractal 
concept provides a simple basis to automatically sort out convective rainfalls from radar data. It is 



I. Tchiguirinskaia et al. 
 

4 

worth mentioning that for both rainfall types, the estimates of fractal dimension at small scales Df  
 

(a)  (d)  

(b)  (e)  

(c)   (f)  
Fig. 2 Temporal evolution of the fractal dimensions (left column) and of the multifractal parameters 
(right column), all estimated on 48 images (512×512 km2) of 5 min rainfall accumulations: 11 January 
2008 (a), (d), 9 February 2009 (b), (e) and 13 February 2009 (c), (f). Grey histogram indicates the 
percentage of pixels with “zero-rainfall”, pink and red lines correspond to the estimates over the small 
scales (1–16 km), orange and purple lines correspond to the estimates over the large scales (16–
512 km).  

 
 
remain smaller than 2. This highlights that homogeneous distributions of rainfall would be 
particularly inappropriate for urban modelling. Indeed, at smaller scales, the proportion of pixels 
having non-zero rainfall should decrease as  to cope with reality. 
 
 
PHYSICAL SIGNIFICANCE OF MULTIFRACTAL PARAMETERS 

Different estimates of the fractal dimension exponent Df could be obtained over the same range of 
scales by simply changing the threshold that defines the non-zero rainfall: the rainfall intensities, 
therefore, correspond to a multifractal field (Schertzer & Lovejoy, 1987; Biaou et al., 2003). 
Universal Multifractals (Schertzer & Lovejoy, 1997) can be defined with the help of a very limited 
number of parameters that have a strong physical significance and can be evaluated either 
theoretically or empirically. The parameter α measures the multifractality of the field. When α = 0, 
the field is fractal and could be defined by a unique fractal dimension. C1 is the co-dimension of 
the mean field and measures its mean fractality. A homogeneous field that fills the embedding 
space has C1 = 0. When this parameter increases, the field becomes more and more intermittent, 
i.e. is concentrated on smaller and smaller fractions of the total area. The parameter estimation 
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methods are based on the upscaling of the field raised to various powers (Lavallée et al., 1993). 
Figure 2(d)–(f) displays the temporal evolution of the multifractal parameters α and C1 that are 
estimated on the same radar data and also separately over the same small and large ranges of 
scales, as for the fractal dimension estimates of Fig. 2(a)–(c). The multifractality of rainfall fields 
is stronger (α > 1) over small scales (i.e., over the range of 1–16 km). Over larger scales (i.e. over 
the range of 16–512 km), the high percentage of zero-rainfall reduces the multifractality while 
increasing the mean co-dimension C1. The rainfall field appears to be more intermittent over large 
scales. This phenomenon is sometimes considered as the “unsolved issues regarding the treatment 
of the zero values” (Seed, 2004).   
 

(a)   (b)  

    (c)  (d)  
Fig. 3 Temporal evolution of multifractal parameters: (a) raingauge time series at Orly with α (dark 
blue), C1 (pink), γs (blue) and the linear fit of the estimates of γs (green line); (b)–(d) centred radar 
images of 5 min rainfall accumulation, 11 January 2008, 12:00–16:00 h (b), 9 February 2009,  
12:00–16:00 h (c) and 13 February 2009, 01:00–05:00 h (d). Grey histograms indicate the percentage of 
zero-rainfall pixels, dashed lines for α, dotted lines for C1 (red and purple for the small (1–16 km) and 
large (16–128 km) scale ranges, respectively).   

 
 
TENDENCY IN THE EVOLUTION OF RAINFALL EXTREMES   
Over large scales, α < 1 and C1 ≈ 0.25–0.5 (Fig. 2(d)–(f)) are qualitatively close to those estimated 
on continuous raingauge time series. This opens ways of combining the analysis of raingauge and 
radar data, in spite of their differences in scales and measurement densities. Figure 3(a) displays an 
example of the temporal evolution of multifractal parameters estimated on time series at Orly 
raingauge in the region of Paris during the period 1993–2008. The stochastic multifractal 
parameter estimates reflect the long-range dependencies and clustering of rainfall extremes, often 
having power law probability distributions. A simultaneous increase of both parameters directly 
implies an increase of extremes. Otherwise, the evolution of extremes can be investigated with the 
help of the maximum observable singularity: . Like for Orly’s time 
series, a slight positive slope of the linear regression of its temporal evolution (Fig. 3a) indicates a 
possibly more important increase of the maximum intensity of rainfall, , which 
should not be neglected for small time scales . If such behaviour would be only observed on 
radar data, it could be attributed to a change in the QPE system during the year 2004. This 
illustrates a potential usefulness of completing the scaling analysis of radar data with the help of an 
analysis of available raingauge time series.  
 It is worthwhile noting that the difference in estimates between small and large scales 
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becomes less obvious when reducing the initial domain to 128 × 128 km2, compatible with the 
surface area of the Paris region (12011 km2). The storm events, selected for this paper, were 
indeed essentially located over this region. Reducing the initial domain, we therefore limited our 
analysis to the area of intense rainfall. Hence, the multifractal parameters obtained (Fig. 3(b)–(d)) 
are in good agreement with those estimated over the small scale range of the initial domain 
(Fig. 2(d)–(f)), and furthermore are compatible with those obtained for heavy rainfall episodes 
extracted from local raingauge time series (Hoang, 2008).  
 
 
CONCLUSIONS 
The aim of this study is to explore the scaling behaviour of horizontal projections of the radar 
rainfall estimates by properly dealing with the strong intermittency of rainfall. We start from the 
investigation of possible relations between radar rainfall scaling breaks and associated convective–
stratiform separation. The differences of scales and measurement densities of the raingauge and 
radar data are easily handled in the framework of stochastic multifractals. This framework 
embodies all possible probability tail behaviours and clustering of the extremes, including possible 
long-range dependencies: two most important statistical features to fit empirical quantile estimates. 
Multifractal methods allow rainfall quantiles to be evaluated dynamically. For universal 
multifractals, the parameters a and C1 fully define their statistics. This explains why the observed 
compatibility between the multifractal parameters for raingauge measurements and radar data is 
essential to merge the two types of data. Increased reliability of the parameters reduces the 
uncertainty in the predicted regional hydrological extremes. The results obtained illustrate a slight 
tendency for the hydrological extremes to become particularly local and intense in the Paris area. 
These preliminary results encourage more extensive use of radar archives for better detection of 
local climate trends. 
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