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Abstract The multiplicity of scales, and hence the further development of 
scaling concepts and techniques, is at the core of the problem of Predictions in 
Ungauged Basins (PUB). Indeed, PUB can be restated in the following 
manner: given a partial knowledge of the input (atmospheric states, dynamics 
and fluxes) and of the media (basin) over a given range of scales, what can we 
predict for the output (streamflow and water quality) and over which range of 
scales? Therefore, we review the recent advances and challenges with respect 
to our concepts, analysis and modelling techniques of the scaling behaviour of 
the input, media and output. This helps us to identify a realistic strategy for 
investigating PUB.  
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MULTIPLICITY OF SCALES AND PUB 
 
A fundamental methodological problem 
 
All agree that hydrological fields display an extreme variability over a wide range of 
nested space–time scales (e.g. Raudkivi, 1979; Tchiguirinskaia et al., 2004) and the 
scale ratio can easily reach 109 (e.g. 1000 km–1 mm). This is particularly the case for 
the rain field, where drop distribution is inhomogeneous down to submetric scales 
(Lovejoy & Schertzer, 1990a; Desaulnier-Soucy et al., 2001; Lilley et al., 2002), 
whereas the external of cloud fields is of the order of planetary scale (Lovejoy et al., 
2001; Lovejoy & Schertzer, 2006).  
 This is in sharp contrast with the inability of the classical methods to deal directly 
with such a wide range of scales. The latter are therefore compelled to introduce scale 
truncations and ad hoc parameterizations. Let us emphasize that these limitations are 
still relevant for the most advanced numerical simulation projects, such as the “Earth 
simulator” with its 1 km spatial resolution. In fact, the strong intrinsic limits of reduct-
ionist approaches in hydrology have often been pointed out (Beven, 1995; Wood, 1998).  
 These artificial sidesteps, nevertheless, lead to complex numerical codes that are 
both extremely difficult to transfer from one basin to another and to test with the help 
of empirical data that are not at the same scale. Furthermore, it is practically 
impossible to find an objective way to tune up the numerous parameters of these codes 
(e.g. Gosset & Gaume, 2002). As a consequence, predictions are reduced to fit and 
extrapolate past streamflow observations.  
 It is therefore not surprising that scaling approaches to hydrology have received a 
great deal of impetus. The general idea is that the search for invariance properties 
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across scales as fundamental hidden orders in hydrological phenomena should guide 
the development of data analysis and modelling methods (National Research Council, 
1991). In other words, multiscale variability is no longer considered as a difficulty to 
be avoided at all cost, but as a consequence of a symmetry which should be uncovered 
so as to cast order in an apparent disorder. This is rather incompatible with the classical 
approaches: this symmetry is obviously artificially broken by any scale truncation.  
 
 
A restatement of PUB 
 
In our opinion, PUB not only provides an unprecedented opportunity to test the 
relevance and applicability of existing scaling concepts and techniques, but also 
requires their further developments.  
 There should be no ambiguity about the fact that PUB never had the goal of 
replacing the data missing due to the recent and drastic decline of hydrological in situ 
networks (Shiklomanov et al., 2002; Vörösmarty et al., 2002). These data are in any 
case indispensable and their (hopefully) temporary loss highlights the fact that these 
data should be much better and more intensively exploited. Indeed, too often they have 
been used for little more than tuning model parameters.  
 More fundamentally, PUB can be restated in the following manner: given a partial 
knowledge on the input (atmospheric states, dynamics and fluxes) and of the media 
(basin) over a given range of scales, what can we predict for the output (steamflow and 
water quality) and over which range of scales?  
 
 
Why multifractals? 
 
Let us briefly recall that hydrology has very greatly stimulated scaling ideas (for 
reviews see Schertzer & Lovejoy, 1991; Lovejoy & Schertzer, 1995; Rodriguez-Iturbe 
& Rinaldo, 1997; Sposito, 1998; Schertzer et al., 2002). Indeed, from the 1950s 
onward particular attention was paid to scaling laws in hydrology (Hurst, 1951; Miller 
& Miller, 1955a,b; Hack, 1957). Scaling notions have been profoundly rejuvenated 
with the help of fractal concepts and models (Mandelbrot & Wallis, 1968, 1969; 
Lovejoy & Mandelbrot, 1985; Lovejoy & Schertzer, 1985) and much further with the 
help of multifractal concepts and multiplicative models (Schertzer & Lovejoy, 1987; 
Gupta & Waymire, 1993).  
 It is indeed symptomatic that scale dependence is rather ubiquitous in hydrology: 
clouds (Lovejoy, 1982), basins and rivers (Ijjasz-Vasquez et al., 1994) are too tortuous 
to have a scale-independent area or perimeter. A similar scale dependence occurs for 
cloud cover (Gabriel et al., 1988), precipitation occurrences (Hubert & Carbonnel, 
1988, 1989), etc.  
 However, scaling of multifractal fields, e.g. the rain rate that is the fundamental 
quantity of interest for precipitation, is required to well beyond these geometrical 
observations. In this respect, multiplicative cascades have been particularly useful. Due 
to the fact that the cascade process is developed down to an infinitesimal scale, its limits 
are no longer a function but a (mathematical) measure (Halsey et al., 1986). It is already 
the case for the simplest cascade model, the so-called "-model (Novikov & Stewart, 
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1964; Mandelbrot, 1974; Frisch et al., 1978): scale by scale, the field clusters on a 
fractal set. Its limit is no longer a pointwise function, but a broad generalization of the 
Dirac impulse “function”, which is in fact a measure that concentrates a field in a point.  
 However, as soon as the geometrical and binary (active/not active structure) 
framework of the "-model is dropped out, a full hierarchy of activity levels is obtained, 
each of them clustered on a fractal set (Schertzer & Lovejoy, 1984). A scaling field can 
be understood as resulting from a hierarchy of fractal sets, hence the name multifractal 
(Benzi et al., 1984; Parisi & Frisch, 1985).  
 Multifractals can also be understood as a broad extension of geostatistics (Matheron, 
1970; Delhomme, 1979): multifractals deal with random measures, instead of random 
functions, and the randomness is strongly non-Gaussian.  
 
 
Examples of multifractal prediction: universality and self-organized criticality 
 
To characterize a field as multifractal can be extremely useful since it may help to 
predict some of its fundamental features. For instance, there exist under fairly general 
conditions, “universal multifractals” that are attractive and stable limits of nonlinearly 
interacting identical multifractal processes (Schertzer & Lovejoy, 1987, 1997). Most of 
the physical fields of interest should be stable under these conditions, and therefore 
should be universal and characterized by very few universal exponents. The latter are 
physically significant, e.g. C1(C1 # 0) characterizes the mean sparseness: it is the (fractal) 
co-dimension of the mean field (i.e. C1 = d – D1, where D1

 is the corresponding fractal 
dimension, d the embedding dimension,) and an homogeneous field has C1 = 0 (D1

 = d);  
(0 $ % $ 2) characterizes the degree of multifractality of the field: a mono/unifractal 
field has % = 0, whereas the misnamed “lognormal” field has % = 2, and in a general 
manner % measures how rapidly the sparseness increases as the level of activity increases. 
 Another general prediction can be drawn from the observed multifractal behaviour 
of a field. Indeed, Schertzer & Lovejoy (1992) showed that the tail of the cumulative 
probability distribution should be a power-law rather than an exponential law. Its 
exponent qD corresponds to the critical order of statistical moments, i.e. the 
mathematical expectation of any qth power of the field will be infinite for any q # qD, 
although its empirical estimate on a finite sample will be finite and spurious (for more 
discussion see Schertzer et al., 2002). This singular statistical behaviour (Schertzer et 
al., 1993a,b) can be discussed in relation to  the notion of self-organized criticality 
(Bak et al., 1987, 1988; Bak & Tang, 1989; Bak & Chen, 1991), which is also based 
on scaling.  
 
 
WHAT DO WE KNOW ABOUT SPACE–TIME VARIABILITY? 
 
Input variability 
 
Multifractal behaviour of the rainfield was analysed on various precipitation time 
series ranging from milliseconds to centuries, as well on a few spatial series ranging 
from metres to planetary scales (Schertzer & Lovejoy, 1987; Gupta & Waymire, 1990, 
1993; Ladoy et al., 1991, 1993; Fraedrich & Larnder, 1993; Hubert et al., 1993, 1995, 
2001; Tessier et al., 1993; Olsson, 1995, 1996; Carsteanu & Foufoula-Georgiou, 1996; 
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Harris et al., 1996; Olsson & Niemczynowicz, 1996; de Lima, 1998; Bendjoudi et al., 
1997; Schmitt et al., 1998; Biaou, 2002; de Lima et al., 2002; Mouhous, 2002). This 
effort also bears on the understanding of the radar and satellite measures (Lovejoy & 
Schertzer, 1990b; Lovejoy et al., 1996; Féral & Sauvageot, 2002) as well as the 
difficulties faced by classical calibration methods (Gabriel et al., 1988; Giraud et al., 
1986; Tessier et al., 1994).  
 Particular attention was paid to determine the universal exponents C1 and % of the 
rainfall rate. In spite of the development of rather robust statistical methods (Lavallée 
et al., 1992, 1993), their determination remains difficult due to the extreme and non-
classical variability that they characterize. Furthermore, there is the additional and 
important problem of the zeroes. Empirically, the zeroes greatly affect the low rain rate 
statistics, hence methods for estimating % will be sensitive to the way the measuring 
instrument handles the problem; hence estimates of % range from 0.5 to 0.75 for time 
series and from 0.9 to 1.5 for space. There is the need to pursue this empirical 
investigation in order to reduce the scatter of the present results, in particular for space 
and time comparison, although the latest results from the TRMM reflectivities 
(Lovejoy & Schertzer, 2007) indicate that a single multiplicative process coupled with 
low instrumental detection thresholds can accurately account for the reflectivity (and 
hence presumably precipitation) statistics down to at least 5 km.  
 Nevertheless, independently of more precise estimates of the universal exponents, 
an exponent a qD & 3 for the exceedence probability tail has been shown to be rather 
universal for the rain-rates time series (Hubert et al., 2001). As a consequence, the 
asymptotic law of the extremes is of Fréchet type rather than Gumbel type (Hallegatte 
et al., 2002; Schertzer et al., 2006; 2007).  
 Note that we are rather at the beginning of the multifractal analysis of space–time 
variability (Marsan et al., 1996; Over & Gupta, 1996; Biaou, 2002), although the corresp-
onding methods have existed for a while (e.g. space–time generalized scale, Schertzer & 
Lovejoy, 1985). Furthermore, it will be important to characterize the scaling inter-relat-
ions between rain and other atmospheric fields (dynamics, clouds, moisture fluxes, etc.).  
 
 
Output variability 
 
Similar investigations have been progressively extended to flow rates (Turcotte & 
Greene, 1993; Tessier et al., 1996; Pandey et al., 1998; Hubert et al., 2002; Labat et al., 
2002; Tchiguirinskaia et al., 2002) and much remains to be done for water quality. 
Universal exponents and critical exponents of moment divergence were estimated, but 
they exhibit a larger scatter than their rainfield counterparts. This scatter is presumably 
physically due to the variability of basins, as well as the necessity to perform an 
adequate renormalization of the flow rates with respect to the basin size (Tchiguirinskaia 
et al., 2002, 2007). 
 
 
Basin variability 
 
The spatial variability of basins has mostly been investigated in the framework of 
fractal geometry, in particular for their geomorphology and river networks (Shreve, 
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1966, 1969; LaBarbera & Rosso, 1987; Tartabon, 1988; Robert & Roy, 1990; Tartabon 
et al., 1991; Ijjasz-Vasquez et al., 1993; Maritan et al., 1996). Nevertheless, 
Klinkenberg & Goodchild, 1992; Lavallée et al., 1993; Verge & Souriau, 1994; 
Lovejoy et al., 1995; Pecknold et al., 1997; Gagnon et al., 2006) performed 
multifractal analyses of the topography. The latter is known to be of prime importance 
for the basin response (Beven & Kirkby, 1979; Tartabon et al., 1991), in particular for 
wetlands (Tchiguirinskaia et al., 2000). It turns out that topography multifractality 
seems to be quite universal from at least 40 m up to planetary scales and somewhat 
surprisingly its multifractality is rather extreme (%'& 1.8), whereas its mean fractality is 
rather low (C1 &'0.12).  
 However, other soil properties have to be taken into account. This in particular is 
the case of hydraulic conductivity whose fractal properties (Wheatcraft & Tyler, 1988; 
Tyler, 1990), then multifractal properties (Tchiguirinskaia, 2002) have been analysed 
and show much more universality than previously believed.  
 
 
WHERE DO WE GO? 
 
Let us again emphasize that further empirical analyses are needed for empirically 
estimating a few fundamental scaling exponents, and therefore data. On the other hand, 
and rather in parallel, it is important to further develop stochastic models in order to 
better understand—with the help of either their analytical properties or their numerical 
simulations—the interrelations between various fields, in particular for their extremes, 
how to up/downscale or how to condition the large scales, the meaning of remotely 
sensed measurements, the predictability limits, and how to proceed to stochastic 
forecasts (Schertzer & Lovejoy, 2004).  
 
 
Multifractal modelling 
 
The basic numerical algorithm for making continuous (in scale) multifractal models, 
including non-conservative fields, was first described in Schertzer & Lovejoy (1987), 
extensions to downscaling in Wilson et al. (1991), to linear generalized scale 
invariance in Pecknold et al., (1993), to causal space–time modelling in Marsan et al., 
(1996) and Schertzer et al. (1997), as well as extensions to non scalar fields in 
Schertzer & Lovejoy (1995). We expect more or less straightforward developments in 
order to obtain more and more adequate modelling of the hydro-meteorological input 
that should be used for effective multifractal forecasts, e.g. with the help of incomplete 
radar and/or satellite data.  
 The key developments will be at the level of basin response modelling. Whereas a 
(linear) fractional integration of rain-rates yield some realistic-like simulations of river 
runoff in certain cases (Tessier et al., 1996; Pandey et al., 1998), more careful analysis 
shows that it requires other developments. For instance, far beyond the scope of fractal 
generation of river networks (Scheidegger, 1967; Takayasu et al., 1988), one has to 
take into account the multifractality of the drainage area (Tchiguirinskaia et al., 2002), 
which up to now has been has understood as a mere consequence of a finite-size effect 
(Maritan et al., 1996).  
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Anomalous transport in complex media 
 
On the other hand, the associated anomalous transport properties could be approached 
along the lines of a generalized diffusion in complex media in order to explain the 
fractal behaviour (Kirchner et al., 2000), in fact the presumably multifractal behaviour 
of contaminant concentration fluctuations and more generally of water quality.  
 The first level of complexity is obtained with the help of a classical disorder, i.e. 
Gaussian, but whose intensity is extremely inhomogeneous in space. One then may 
obtain a classical transport equation (advection–diffusion, Fokker Planck (Van 
Kampen, 1981), but with extremely variable coefficients (Machta, 1981; Zwanzig, 
1982; Havlin & Ben Avraham, 1987; Kavvas & Karakas, 1996). The extreme case 
corresponds to a multifractal intensity of the microscopic disorder (Meakin, 1987; 
Marguerit et al., 1997; Lovejoy et al., 1998), which indeed yields anomalous diffusion 
laws. This has been proposed for river modelling (Meakin et al., 1991), although 
without any concrete application.  
 Another level of complexity is obtained by considering a strongly non-Gaussian 
microscopic disorder, more precisely a Levy white-noise. Fluctuations are so 
important, that the “microscopic” refers only to the particle size, not to its effect. One 
obtains a Fractional Fokker Planck equation, in fact a fractional diffusion–advection 
equation (Zaslavsky, 1994; Chechkin, 1995; Compte, 1996; Yanovsky, 1997); in 
particular, the classical Laplacian diffusion operator is raised to a fractional power. 
Benson et al. (2000, 2001) strongly argued for its applicability to subsurface transport.  
 Finally, considering a Lévy disorder with an inhomogeneous intensity can 
combine both complexity levels. One obtains (Schertzer et al., 2001) an inhomo-
geneous fractional Fokker-Planck equation, whose properties have been not yet fully 
explored.  
 
 
An investigation strategy for PUB 
 
The discussion above defines in fact a dual strategy to investigate PUB. On the one 
hand, we have to analyse larger and large databases (including remote sensed data) to 
better characterize the multiscale variability of the inputs, the basin and the flow 
output. This is indispensable to better assess what are the common features (e.g. 
universal exponents) and the differences. In parallel and in close interaction with these 
empirical developments, we need to further develop and test our modelling capacities. 
It is also important to foresee somewhat autonomous modelling developments to 
define conceptual PUB problems that will be tractable enough to give deep insights 
into the more involved and realistic PUB problems.    
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