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The complexity of geophysics has been extremely stimulating for developing concepts and
techniques to analyze, understand and simulate it. This is particularly true for multifractals
and Generalized Scale Invariance. We review the fundamentals, introduced with the help of
pedagogical examples, then their abstract generalization is considered. This includes the char-
acterization of multifractals, cascade models, their universality classes, extremes, as well as
the necessity to broadly generalize the notion of scale to deal with anisotropy, which is rather
ubiquitous in geophysics.
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1. Introduction

Geophysics, especially atmospheric dynamics over
various scale ranges (i.e. from micro-turbulence
to climate dynamics), has been an inspiring com-
plex system for elaborating innovative concepts and
techniques. For instance, everyone has in mind, the
Lorenz’s paper of 1963 [Lorenz, 1963] and the cor-
responding “butterfly effect” paradigm. However,
there have been numerous contributions, which
showed that the complexity of geophysical phenom-
ena could be much more considerable and of a
somewhat different nature. This includes a rather
different approach to predictability by Lorenz him-
self [Lorenz, 1969], fractals [Mandelbrot, 1983],
strange attractors [Nicolis & Nicolis, 1984], self-
organized criticality [Bak et al., 1987; Bak & Tang,
1989], and stochastic resonance [Nicolis, 1981; Benzi
et al., 1982; Nicolis, 1982; Benzi, 2010]. This paper

is focused on the fundamentals of multifractals and
generalized scale invariance, and shows that they
are rather at the crossroads of the aforementioned
concepts. This is illustrated with the help of exam-
ples to understand, analyze and simulate nonlin-
ear phenomena in geophysics over wide ranges of
scales.

In a very general manner, multifractals are
space or space-time fields — the latter being often
called processes — that have structures at all
scales. They are, therefore, a broad generalization
of the (geometrical) fractals. Indeed, the set indi-
cator function of a fractal set is a field that has
only two values (= 0 or 1), whereas multifractal
fields generally have multiple values, which are very
often continuous. The property to have structures
at all scales is trivially scale invariant since it does
not depend on the scale of observation. This shows
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that a multifractal field can also be defined as being
invariant for a given scale transform, which is there-
fore a symmetry for this field. One says that it is a
scale invariant field or a scaling field for short. We
will give a very general, precise definition of this
invariance and the corresponding scale transform
that could be either deterministic or stochastic
(e.g. involves only equality in probability distri-
bution or other statistical equivalences), isotropic
or not.

Due to their definition, multifractals are
therefore not only quite general, but also quite
fundamental. Indeed, not only are symmetry princi-
ples the building blocks of physics and many other
disciplines [e.g. Weyl, 1952; Zee, 1986], but scale
symmetry is an element of the extended Galilean
invariance. Unfortunately, attention in mechanics,
especially in point mechanics, has been initially
focused on the space shifts between two (Galilean)
frameworks that differ only by a constant rela-
tive velocity or a given rotation that define the
pure Galilean group. But with extended bodies,
therefore continuous mechanics, it broadened to
other transforms such as scale dilations. In par-
ticular, [Sedov, 1972] pointed out in the wake of
the Π-theorem of Buckimgam [Buckingham, 1914,
1915; Sonin, 2004] the key role of the latter in fluid
mechanics, including for many applications (e.g. to
estimate the blast wave of a nuclear explosion).
More recently, Speziale [1985] demonstrated their
relevance in selecting and defining relevant sub-
grid models in turbulence. This has been widely
used under the denomination of self-similarity, but
with unnecessary limitations. Indeed, the main goal
was to find a unique scale transform under which
the nonlinear dynamical equations (in particular,
the Navier–Stokes equations associated with others,
such as the advection-dissipation equation). This
was mainly achieved by adimensionalising these
equations with the help of various so-called char-
acteristic quantities, including characteristic space
and time scales. Multifractals are, in fact, invari-
ant for a multiple scale symmetry and therefore
correspond once again to a broad generalization of
properties that were previously perceived in a too
restrictive framework. We indeed have to go from
scale analysis, a seminal example being the quasi-
geostrophic approximation derivation by Charney
[1948], to scaling analysis [Schertzer et al., 2011]
that we will briefly discuss in Sec. 8.4.

A not-so-trivial consequence of this multiplic-
ity of scale symmetries is that these fields could

be understood as an infinite hierarchy of embed-
ded fractals, e.g. those supporting singularities
higher than a given order. This is the source of
the terminology, but more importantly of a rather
straightforward manner to understand intermit-
tency: higher and higher levels of “activity” of
the field are concentrated on smaller and smaller
fractions of the space. This provides a rather
straightforward way to quantify and analyze inter-
mittency. This easiness is in sharp contrast with
the mathematical nature of a multifractal field: it
is a (mathematical) measure, which is furthermore
multi-singular. The fact that it is a measure implies
that it is not a pointwise field with a given value
at any given point, but it only yields an average
value over any given (small) neighborhood of this
point or an integration of a suitable set of “test
functions”. The fact it is multisingular with respect
to the Lebesgue measure, i.e. does not admit a
density with respect to the latter, means that its
estimated density at larger and larger resolution
diverges with various power-laws exponents. These
singularity orders are called singularities for short.
This can be therefore seen as a very broad gen-
eralization of the singular Dirac’s measure (often
improperly called function), whose mass is concen-
trated on a pointwise “atom” and therefore can
be understood as a divergence of its density that
becomes infinite at this point, whose dimension is
zero. For multifractals, theirs mass is distributed on
the embedded fractal sets mentioned above.

As discussed below, these generalizations, as
well as their necessity, step-by-step became patent
with the help of cascade models in turbulence and
strange attractors. These models were first rather
crude (e.g. discrete in scales) and apparently sim-
ple, but yielded nontrivial behaviors which were
step-by-step recognized as escaping from the origi-
nal framework of analysis, i.e. fractal analysis. Their
present refined offsprings (e.g. continuous in scales)
are generic models providing multifractal fields
and related data analysis techniques. These models
and multifractals have been used in a wide range
of scientific disciplines, from ecology to financial
physics, including high energy physics, geophysics,
astrophysics, etc. A priori, all domains of non-
linear science and complex science are concerned,
but geophysics remains a preeminent domain of
applications.

To cover various aspects of multifractals and
generalized scale invariance, the paper is organized
as follows:
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• Section 2 introduces the key notions of singular
measures with the help of the pedagogical exam-
ple of the rainrate at various resolutions,

• Section 3 introduces the cascade models in a
phenomenological manner and two pedagogical
models,

• Section 4 introduces the general multifractal
framework with the codimension and the scaling
moment functions and their duality via the
Legendre transform, as well as a comparison
between multifractal formalisms,

• Section 5 goes a bit further in formalism by
introducing cascade generators, characteristic
functions and multifractal scale symmetry in a
general, yet precise manner,

• Section 6 is devoted to the question of universal-
ity, in particular to drastically reduce the number
of parameters characterizing a multifractal,

• Section 7 pursues, in a given way, this discussion
to address the question of models that are con-
tinuous in scales,

• Section 8 suggests how to broadly generalize
the previous results with the help of general-
ized scales and Lie cascades in the framework
of Generalized Scale Invariance, as well as their
application to differential systems.

• Section 9 is focused on the question of extremes,
particularly on heavy tails that are easily gen-
erated by multifractals, the relationship with
self-organized criticality and related multifractal
transitions.

Although this is already a long paper, it does
not cover all the aspects of multifractals in geo-
physics. For instance, the question of multifractal
predictability [Schertzer & Lovejoy, 2004b] is not
discussed, but only evoked, in spite of the fact
that it corresponds to a broad generalization of the
results of [Lorenz, 1969]. More generally, and for the
same reason, although the concepts are illustrated
with the help of geophysical examples, this paper
does not pretend to review in an exhaustive man-
ner their applications to geophysics.

2. Singularities Everywhere in
Geophysics?

To better appreciate the underlying physico-
mathematical nature of a multifractal, let us con-
sider the precipitation intermittency with the help
of common sense intuition: most of the time it does
not rain, furthermore, when it does rain its intensity
can be extremely variable. In spite of this intuition,

an adequate mathematical framework had been
elusive for a while and has been seriously elabo-
rated only during the last twenty five years. Indeed,
the variability of precipitation — which occurs
over a wide range of (space and time) scales and
intensities — is beyond the scope of classical geo-
physics. A well-known symptom of this basic prob-
lem is that the basic hydro-meteorological quantity,
the rain rate r, has a strong scale dependency, since
it depends on the duration on which it is measured.
This is illustrated by Fig. 1(a) that displays (from
top to bottom) the Nı̂mes time series of rainrates
rλ(t) from an hour resolution (λ = 365 × 24) down
to a year resolution (λ = 1):

rλ(t) =
λ

T

∑
i

1[τi,τi+1[(t)R([τi, τi+1[);

τi+1 − τi =
T

λ
(1)

where R([τi, τi+1[) is the rain accumulation (i.e.
the rain received) during the time interval [τi, τi+1[
and 1A denotes the indicator function of any set
A. The intensity scale strikingly decreases with the
resolution, e.g. the maximum decreases from 35 to
0.1 mm/h, which gives some credence that the vari-
ability decreases with decreasing resolution. Nev-
ertheless, as emphasized in [Ladoy et al., 1993b]
the variability still exists in the yearly resolution.
The classical assumption is that the rain accumu-
lation is a regular (mathematical) measure dR(t)
with respect to the (Lebesgue) volume measure dt,
i.e. dR(t) admits a pointwise density r(t), defined
almost everywhere:

dR(t) = r(t)dt. (2)

This density r(t) is called the rainrate and
is considered as the basic quantity of interest
in hydrometeorology. However, this assumption
implies that r(t) would correspond to a scale inde-
pendent small scale limit of rλ(t)(λ → ∞), which
is in contradiction with the observed strong scale
dependency of rλ(t). On the contrary, as discussed
at length in [Schertzer et al., 2010], as well as in
Sec. 4.1, the assumption that dR(t) is a (multiple)
singular measure with respect to the Lebesgue mea-
sure implies that rλ(t) exhibits power-law singular-
ities at larger and larger resolutions:

rλ(t) ≈ λγ . (3)

Figure 1(b) displays these singularities for the
rainrate rλ(t) displayed in Fig. 1(a), resolution by
resolution. The intensity of these singularities γ’s is
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Fig. 1. Rainfall time series at Nı̂mes (1972–1975) from 1h to 1 year duration: (a) the rainrate rλ(t) [Eq. (1)] exhibits a strong
scale dependency, since its maximal value decreases from 35 to 0.1 mm/h from 1h to 1 year duration (the unit of the intensity
scale corresponds to 0.1 mm/h); (b) the corresponding singularities γ ≈ logλ(rλ) show on the contrary a remarkable scale
independency over the same range of durations. Reproduced from [Schertzer et al., 2010].
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Fig. 1. (Continued)

strikingly independent of the scale, contrary to the
rainrate intensity. One may also not note that there
is not a unique value of γ, i.e. the measure dR(t)
is a multiple singular measure, with respect to the
Lebesgue measure dt (which would yield γ = 0).
Therefore — contrary to the usual hypothesis —
there is no self-consistent definition of an instanta-
neous pointwise rain rate defined as a function r(t).

We can proceed to a similar analysis with
respect to space. This can be achieved with the
help of statistical moments that should, as discussed
in Sec. 4.2, display multiple power-laws generated

by singularities. Figure 2 displays the statistical
moments of the rain surrogate (radar reflectivity)
over nearly four orders of magnitude in scale but
could continue over another two orders of magni-
tude to smaller scales as observed with the help of
ground radar data [Schertzer & Lovejoy, 1987].

We will show that the stochastic multifractal
fields offer a very convenient and operational
framework to handle such stochastic (multi-)
singular measures. They indeed allow us to
systematically characterize, model and under-
stand extremely variable fields while avoiding the
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Fig. 2. Statistical moments 〈rq
λ〉 of order q of statistical moments (q = 0, 0.1, . . . , 2.9, bottom to top) with respect to their

resolution λ in a log–log plot of the rainrate rλ estimated by the radar of the TRMM satellite (≈ 1100 orbits) during a duration
∆t and across a horizontal section ∆x∆y (x along the satellite path, y transverse to it), with ∆y = 4.3 km, ∆x = Learth/λ
(Learth = 20 000 km). Straight lines correspond to power law fits. Reproduced from [Lovejoy et al., 2008a].

restrictive homogeneity assumptions implicit in
the conventional approaches. While traditional
numerical approaches are forced to use drastic
scale truncations, to transform partial differen-
tial equations (PDE’s) into ordinary differential
equations (ODE’s), to make arbitrary regularity
assumptions, and to perform ad-hoc and unjusti-
fied parameterizations (if only for the nonexplicit
“subgrid” scales), these classical manipulations
(and mutilations) violate a fundamental symmetry

of nonlinear PDE’s: their scale invariance (see
Fig. 4). Even in spite of these (over) simplify-
ing assumptions, the consequences of such choices
are ultimately complex and unwieldy numeri-
cal codes. Often the relevance of such codes, is
questionable and furthermore as their scales are
quite different from those of observations, they
are often only intercompared with other (simi-
lar) models. Multifractal analyses of these models
are therefore rather indispensable to evaluate their

v1,1

v2,1

v3,1 v3,2

v2,2

v3,4v3,3

vi,j

vi+1,2jvi+1,2j-1

Fig. 3. A rather general scheme of a (deterministic) cascade process, which actually corresponds to a simplification of the
Navier–Stokes equations, where only direct interactions between eddies and their offsprings are preserved. Reproduced from
[Chigirinskaya & Schertzer, 1996].
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Fig. 4. A polemical illustration of the drastic reduction
of Partial Differential Equations to Ordinary Differential
Equations in General Circulation Models. Reproduced from
[Schertzer & Lovejoy, 1993].

performance [Stolle et al., 2009; Lovejoy &
Schertzer, 2011; Gires et al., 2011]. Further-
more, they could be as well indispensable to
develop stochastic parametrizations, whose neces-
sity is more and more recognized [Palmer &
Williams, 2010], in order to reach the intrinsic pre-
dictability limits, which are themselve multifractal
[Schertzer & Lovejoy, 2004a].

Concerning multifractal modeling, cascade
models (see Fig. 3 for an illustration) are generic
multifractal processes. Indeed, they are built up
with the help of an elementary scale invariant pro-
cess that is hierarchically repeated scale after scale
along a hierarchical scaling tree of smaller and
smaller structures. They therefore generate scal-
ing fields and yield a rather straightforward way
to understand that extreme variability over a very
large range of scales may merely result from the
repetition scale after scale of a given elementary
process or interactions between neighboring scales.

This phenomenological idea can be traced back
to Richardson’s celebrated poem on self-similar cas-
cades [Richardson, 1922] describing atmospheric
dynamics as a cascade process. However, it required
some time and various developments before provid-
ing well-defined models [Yaglom, 1966; Mandelbrot,
1974; Frisch et al., 1978] and to become rigorously
conceptualized with the help of fractals [Mandel-
brot, 1977, 1983].

Then it evolved (after 1983), into a multifractal
approach. The earliest scale invariant multifractal

models, which we will review, are superficially quite
simple phenomenological “toy models”. Neverthe-
less, they yield exotic phenomena (exotic compared
to conventional smooth mathematical descriptions
of the real world. . .) and have highly nontrivial con-
sequences. For example, as we will see later, simple
cascade models already give rise to a fundamental
difference between observables and truncated pro-
cesses, and such a difference is a general property
of the wide class of “hard” multifractal processes
(which distinguish between “dressed” and “bare”
properties respectively) as discussed in Sec. 9.
These models produce hierarchies of self-organized
random structures.

3. Phenomenology of Cascades

Starting with [Richardson, 1922], the phenomenol-
ogy of (scalar) turbulent cascades was first dis-
cussed in the context of hydrodynamic turbulence
where the structures are “eddies”. Since we sim-
ply follow how the “activity”, measured by the tur-
bulent energy flux to smaller scales in turbulence,
becomes more and more inhomogeneous as large
structures break up into smaller and smaller scales,
cascades are a very general paradigm.

The key assumption in phenomenological mod-
els of turbulence (which became explicit with the
pioneering work of [Novikov & Stewart, 1964;
Yaglom, 1966; Mandelbrot, 1974] is that succes-
sive steps (independently) define the fraction of
the flux of energy distributed over smaller scales.
It should be clear that the small scales cannot be
regarded as adding energy; they only modulate the
energy passed down from larger scales. The explicit
hypothesis is that the fraction of the energy flux
(more generally the “activity”) from a parent struc-
ture to an offspring will be determined in a scale
invariant manner.

In the (pedagogical) case of “discrete (in scale)
cascade models” “eddies” are defined by the hier-
archical and iterative division of a D-dimensional
cube into smaller subcubes, with a constant ratio of
scales λ1 (greater than 1, very often equal to 2, see
Fig. 3). More precisely, for each n ∈ N , the initial
D-dimensional cube ∆0

0 of size L is divided step by
step into λn

1 smaller disjoint subcubes ∆i
n (ij = 0,

1, . . . (λn
1−1); j = 1, 2, . . . ,D) of size �n = L/λn

1 that
fully cover ∆0

0. In other words, the λ1-base coordi-
nates of the corner ci = iλ−n

1 of the subcube ∆i
n

has only n digits. The density of the flux energy εn

at the step n is taken to be strictly homogeneous
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on each “subeddies” of scale �n, i.e. εn is a step
function:

εn(x) =
λn−1∑
i=0

εi
n1

∆
i
n
(x) (4)

where 1
∆

i
n

is the indicator function of the subcube

∆i
n. The energy density εn−1 at step n − 1 will be

multiplicatively distributed to subeddies:

εn(x) = µεn(x)εn−1(x) (5)

with the help of the following multiplicative
increment decomposed on the same basis:

µεn(x) =
λn−1∑
i=0

µεi
n1

∆
i
n
(x) (6)

where the multiplicative increment components µεi
n

are usually assumed to be identically and inde-
pendently distributed (i.i.d.), as well as indepen-
dent of the variables ε

i
n, i.e. µε

i
n

d= µε. Ensemble
conservation, called “canonical conservation, of
the flux corresponds to (〈·〉 denotes the ensemble
average):

〈εn〉 = 〈ε0〉 (7)

obviously it requires that the random variable
µε defining the multiplicative increments should
satisfy:

〈µε〉 = 1. (8)

This is also a sufficient condition, except if the
cascade is degenerate, i.e. dies away after a finite
number of steps (εn → 0 almost surely). This arises
when a too strong, unrealistic mean intermittency
is chosen and we will see that this can be easily
quantified.

In spite of their apparently simple yet some-
what awkward discretizations, these models are
already able to give key insights into the funda-
mentals of cascade processes. This is confirmed
using more realistic (continuous in scale) cascades,
which are necessary to take into account other
(statistical) symmetries (e.g. translation invariance,
see Sec. 7).

3.1. Unifractal insights and the
simplest cascade model
(β-model)

The simplest cascade model, often called the β-
model, takes the intermittency of turbulence into
account by assuming [Novikov & Stewart, 1964;
Mandelbrot, 1974; Frisch et al., 1978] that eddies
are either dead (inactive) or alive (active). This
corresponds1 to the fact that the random variable
µε, which defines the multiplicative increments, has
only two states (see Fig. 5):

Pr(µε = λc
1) = λ−c

1 (alive)

Pr(µε = 0) = 1 − λ−c
1 (dead).

(9)

The boost µε = λc
1 > 1 is chosen so that the

ensemble averaged ε is conserved [Eq. (8)]. At each
step in the cascade, the fraction of the alive eddies

L

L
L/2

L/2

L/2

L/2

N(L) -D N(L) -D s

Ln 4

Ln 2
Ln 3

D = 
Ln 2

= 2

D   = s =1.58

ISOTROPIC

= self similarity

L∝∝ L

Fig. 5. A schematic of an isotropic discrete in scale cascade.
The left-hand side shows a nonintermittent (“homogeneous”)
cascade, the right-hand side shows how intermittency can be
modeled by assuming that not all sub-eddies are “alive”. This
is an implementation of the “β-model”. From [Schertzer &
Lovejoy, 1993].

1The β-model is often defined more vaguely than this. We follow the more precise stochastic presentation in [Schertzer &
Lovejoy, 1984].
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decreases by the factor β = λ−c
1 (hence the name

“β-model”) and conversely their energy flux den-
sity is increased by the factor 1/β to assure (aver-
age) conservation. After n steps, this drastic and
simple dichotomy is merely amplified by the total
scale ratio λn

1 :

Pr(εn = λnc
1 ) = λ−nc

1 (alive)

Pr(εn = 0) = 1 − λ−nc
1 (dead).

(10)

Hence either the density goes on to diverge
with an (algebraic) order of singularity c, or is at
once “killed” (set to zero)! Following the usual def-
inition of a geometric codimension C(A) of a set
A of dimension D(A) embedded in a space E of
dimension D(E):

C(A) = D(E) − D(A) (11)

c is the codimension of the alive eddies and
their corresponding (geometrical) dimension Ds is
(if c < D):

Ds = D − c (12)

which is often called the dimension of the support
of turbulence. The degenerate case merely corre-
sponds to c ≥ D, i.e. when Eq. (10) would yield
a negative dimension, which in fact corresponds
to the fact that intermittency is so large that any

activity almost surely vanishes after a finite number
of steps.

3.2. The simplest multifractal
variant (the α-model)

We already pointed out the mere occurrence/
nonoccurence of rain is not too informative, e.g.
in the Nimes time series [Fig. 1(a)] the daily aver-
age ≈ 2.1 mm mm/day is negligible compared to a
228 mm in a few hours — the October 1988 catas-
trophe in Nı̂mes! Furthermore, we already pointed
out that this time series does not display a unique
singularity [see Fig. 1(b) and the corresponding dis-
cussion in Sec. 2]. The variability of time series in
Nimes is so significant that [Ladoy et al., 1993a]
and [Bendjoudi et al., 1997] found evidence of diver-
gence of high order statistical moments (a subject
we will discuss more in Sec. 9). Similarly, Fig. 6
shows the qualitatively similar spatial distribution
of the radar reflectivity of rain. This variability
seems strikingly analogous to that of the energy flux
cascade in turbulence (see schematic in Fig. 7), an
analogy that turns out to be quite profound.

On the theoretical level the β-model turns out
to be a poor approximation to turbulence because it
is unstable under perturbation: as soon as one con-
siders a more realistic alternative [Schertzer & Love-
joy, 1983] to the caricatural dead/alive dichotomy,

Fig. 6. A 1-D subsatellite section of satellite radar reflectivity (Z; units mm6/m3) of rain at a 4.3 km horizontal resolution,
one full orbit showing flux-like spikes; the mean Z is 53mm6/m3. From [Lovejoy et al., 2008a].
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CASCADE 
  LEVELS

 0 -- 

 1 -- 

 2 -- 
  . 
  . 
  . 

 n -- 

x
y

ε

0l

l0 / λ1

2

n

l0 / λ

l0 / λ

multiplication by 4
independent random
(multiplicative) 
increments 

multiplication by 16
independent random
(multiplicative)
increments

Fig. 7. A schematic of few steps of a discrete multiplicative cascade process, here the “α-model” with two “pure” singularities
γ+ > 0, γ− < 0 (corresponding to the two values taken by the independent random increments λγ+ > 1, λγ− < 1) leading to
the appearance of mixed singularities γ (γ− ≤ γ ≤ γ+). From [Schertzer & Lovejoy, 1989b].

most of the peculiar properties of the β-model
are lost. Indeed, let us consider the more realistic
α-instability allowing subeddies to be either “more
active” or “less active”:

Pr(µε = λ
γ+

1 ) = λ
c+
1

Pr(µε = λ
γ−
1 ) = 1 − λ

c+
1 = λ

c−
1

(13)

with γ+ > 0, γ− < 0. The β-model is recovered
with γ+ = c = c+; γ− = −∞ and the “canonical”
conservation [Eq. (7)] implies that there are really
only two free parameters out of c+, c−, γ+, γ−, since
it corresponds to:

λγ+−c+ + λγ−−c− = 1. (14)

At step n, we have “mixed” singularities
γr, 0 ≤ r ≤ 1 resulting from linear combinations
of the “pure” singularities γ0 = γ−, γ1 = γ+, where
r = n+/n is the fraction of outcomes of γ+ along
the cascade branch leading to γr:

γr = rγ+ + (1 − r)γ−

Pr(ε = (λn
1 )γr) =

(
n
nr

)
(λn

1 )rc++(1−r)c− 	 (λn
1 )c(γr)

c(γr) = r(Logλ1
(r)+ c+)+(1−r)(Logλ1

(1−r)+ c−)
(15)

where
(

n
nr

)
is the number of nr-combinations of n

objects and the Stirling formula is used to derive
asymptotics for large n and for any given (and
fixed) ratio r = n+/n. The “p-model” [Meneveau &
Sreenivasan, 1987] and the “binomial multifractal
measure” correspond to microcanonical versions of
the α-model, which means that the flux of energy
is strictly conserved, not only on the ensemble
average. This constraint fundamentally changes the
properties of the processes, as we shall see below.

4. The General Multifractal
Framework

4.1. The codimension function c(γ)

The pedagogical example of the α-model provides
helpful insights into the general formalism necessary
for more general cascade processes. For instance,
in the α-model as the number of cascade steps n
becomes large, one obtains asymptotic expressions
[from Eq. (11)] which depend only on the total ratio
of scale (denoted λ = L/� ≥ 1):

Pr(ελ ≥ λγε1) ∼ λ−c(γ) (16)
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This is a basic multifractal relation for mul-
tifractal processes, which merely states that the
measure of the fraction of the probability space
corresponding to the events

Aλ(γ) =
{
(x, ω) ∈ E × Ω | ελ(x, ω) ≥ λγε1

}
(17)

has a (statistical) codimension c(γ), the precise
meaning of the asymptotic equivalence (λ → ∞)
denoted by ∼ will be discussed below. As already
emphasized, there is generally no upper bound on
c(γ). On the other hand, due to the nested hierarchy
of these events (∀λ, γ ≤ γ′ : Aλ(γ) ⊂ Aλ(γ′)) c(γ)
is necessarily an increasing function of γ.

Other fundamental properties are that c(γ)
must be convex and that if the process is con-
servative [Eq. (7)], then c(γ) has the fixed point:
c(C1) = C1, where C1 is at the same time a singu-
larity corresponding to the mean of the process and
its codimension: at this point c(γ) is tangent to the
bisectrix. Figure 8(a) illustrates these properties of

c(γ)

γ

C1

rare 
events

extreme
events

C1

(a)

γ

extreme
events

rare
events

D γs

D

D+Ds

Ns ≈ λDs c(γ)

(b)

Fig. 8. A schematic illustration of a conserved multifrac-
tal, showing (a) the relations c(C1) = C1 and c′(C1) = 1,
where C1 is the singularity of the mean, (b) how the sam-
pling dimension imposes a maximum order of singularities
γ’s. From [Schertzer & Lovejoy, 1993].

the codimension function c(γ). This graphical rep-
resentation helps also to estimate the limitations
due to the finite size of a sample with the help of
the “sampling dimension” Ds [Schertzer & Lovejoy,
1989b; Lavallée et al., 1991] defined as being the
scaling exponent of the number Ns of independent
samples of resolution λ:

Ns,λ ≈ λDs (18)

as well as the corresponding “sampling singular-
ity” γs that is the almost sure maximal singularity
present in a sample of sampling dimension Ds. This
singularity γs has therefore a codimension equal
to the overall effective dimension of sampling [see
Fig. 8(b)]:

c(γs) = D + Ds = ∆s; (19)

and it will be discussed further in Sec. 9.4.

4.2. The multiscaling of moments
K(q) and the Legendre
transformation

Under fairly general conditions, a random variable
can be specified by either its probability distri-
bution or by (all) its statistical moments. For a
non-negative random variable x, these two repre-
sentations are linked by a Mellin transformation M ,
which is:

〈xq−1〉 = M(p)

=
∫ ∞

0
xq−1p(x)dx (20)

p(x) = M−1(〈xq−1〉)

=
1

2πi

∫ c+i∞

c−i∞
〈xq−1〉x−qdq (21)

(essentially these are simply the Laplace and inverse
Laplace transforms for the logs). In fact, if the
moments increase slowly with q (when they sat-
isfy the “Carleman criterion” — see [Feller, 1971]),
only the knowledge of the integer order moments is
sufficient. The relevance of the Carleman criterion
for turbulence has been discussed in [Orszag, 1970],
but in any case the full Mellin duality [Schertzer &
Lovejoy, 1993; Schertzer et al., 2002] will hold.

This is somewhat more general than the
Legendre duality pointed out in [Parisi & Frisch,
1985], but we can check that the Legendre trans-
form is the asymptotic (λ→∞) result linking the



January 19, 2012 9:1 WSPC/S0218-1274 03064

3428 D. Schertzer & S. Lovejoy

corresponding exponents. Since the codimension
c(γ) is the scaling exponent of the probabilities,
let us introduce the corresponding scaling moment
function K(q):

〈εq
λ〉 ≈ λK(q). (22)

For large log λ, we can use the saddle point
approximation (Laplace’s method, see for example
[Bender & Orszag, 1978]) which yields asymptotic
approximations to integrals of exponential form.
One obtains that K(q) is related to c(γ) by:

〈εq
λ〉 =

∫
dPr(ελ)εq

λ ∼
∫

dPr(ελ)λqγ

=
∫ ∞

−∞
Log(λ)dc(γ)λqγλ−c(γ) (23)

which yields the asymptotic behavior (λ → ∞):

λ  1:
∫ ∞

−∞
dc(γ)eLog(λ)(qγ−c(γ))

∝ eLog(λ)Maxγ(qγ−c(γ)) (24)

as well as the prefactor, which we do not con-
sider here. A similar expansion can be done for
the inverse Mellin transform Eq. (21), and we have
therefore the (involutive) Legendre duality for the
exponents:

K(q) = max
γ

{qγ − c(γ)}

⇔ c(γ) = max
q

{qγ − K(q)}. (25)

This demonstrates that both curves are convex
(iterating twice the Legendre transform, a noncon-
vex curve yields its “convex hull”). One may note
that the convexity of K(q) follows from the fact
that it is the “second Laplace, base λ characteristic
function” of Logλ(ελ). This duality also means that
the curve c(γ) is the envelop of the tangencies of
K(q) and conversely. Hence there is a simple one-
to-one correspondence between moments and orders
of singularities.

4.3. Comparison of multifractal
formalisms

Until now, we rather used a codimension multifrac-
tal framework [Schertzer & Lovejoy, 1987, 1989a,
1992] rather than a dimension multifractal frame-
work [Parisi & Frisch, 1985; Halsey et al., 1986]. The
latter was first introduced in order to explain the

nonlinearity of the scaling exponents of the velocity
structure functions (the statistical moments of the
velocity increments) empirically observed in [Ansel-
met et al., 1984]. Parisi and Frisch [1985] consid-
ered that the singularities of the velocity increments
defined as local Holder exponents should be geo-
metrically and rather deterministically distributed
over embedded fractals. The f(α) formalism [Halsey
et al., 1986], which dealt with multifractal strange
attractors, in many respects further emphasized this
implicit nonrandom and geometric framework. At
the notation level, a dimension formalism such as
f(α) formalism is formally related to codimensions
according to:

αD = D − γ; fD(αD) = D − c(γ). (26)

This is without fundamental formal problems
as far as c(γ) < D, although all these dimensions
depend on the considered embedding dimension D,
as emphasized by the corresponding subindex D.
Similarly, the scaling exponent τ(q) of the partition
function [Hentschel & Procaccia, 1983] is related to
that of the moments as

τD(q) = (q − 1)D − K(q). (27)

With the help of the so-called refined self-
similar hypothesis [Kolmogorov, 1962; Obukhov,
1962], the velocity increment singularities can be
linearly related to the singularities of the energy
flux, therefore, we will keep the energy flux as the
basic field to compare the formalisms. The geo-
metric approach considers the following supports of
singularities:

Sλ(γ) =
{
x ∈ E | ελ(x) = λγε1

}
(28)

which rather correspond to the boundary of the
events Aλ(γ), which are defined by an inequality
sign [Eq. (17)] instead of an approximate equality,
i.e. Sλ(γ) = ∂Aλ(γ) for a given stochastic realiza-
tion ω ∈ Ω. As a consequence, there is no compelling
reason that the supports Sλ(γ) should be hierar-
chically embedded, contrary to the events Aλ(γ).
There is neither a compelling reason that their
(geometrical) codimensions should be convex and
increasing with respect to the singularity γ. There-
fore, Parisi and Frisch [1985] explicitly made the
corresponding hypothesis. Another difference is the
limits (λ → ∞) that are considered. In the geomet-
ric approach, one rather considers the set of points
S(γ) which has the given singularity γ for even-
tually all resolutions λ’s (i.e. for large enough λ),
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Fig. 9. Schematic diagram of the “pushforward” transform
Tλ,∗ of a (mathematical) measure µ due to a time contraction
Tλ with a scale ratio λ (reproduced from [Schertzer et al.,
2010]).

therefore the limit inferior:

S(γ) = lim
Λ→∞

SΛ(λ) ≡
⋃
λ

⋂
Λ>λ

SΛ(γ) (29)

whereas, the asymptotic scaling of the probability
[Eq. (16)] is rather related to the limit superior
[Schertzer et al., 2002]:

A(γ) = lim
Λ→∞

AΛ(γ) ≡
⋂
λ

⋃
Λ>λ

AΛ(γ) (30)

which corresponds to singularity γ for infinitely
often resolutions λ’s. Let us illustrate this ques-
tion by pointing out that stochastic multifractal sin-
gularities are nonlocal [Schertzer & Lovejoy, 1992].
Indeed, when we add more and more cascade steps
in a stochastic cascade, the singularity γλ(x) at a
given location x and increasing resolution λ under-
goes a random walk (see e.g. Fig. 10), whereas a
complete localization of the singularity would cor-
respond to a pointwise limit: γ(x) = limλ→∞ γλ(x).
Therefore, the relevant limit notion is the upper
limit [Eq. (30)] rather than the much more stringent
lower limit [Eq. (29)]. For applications, this means
that the multifractal field is nonlocal, and one can-
not always track a given singularity value by locally
refining the analysis of the field, e.g. with the help
of wavelet analysis. This may yield spurious results.
Parisi and Frisch [1985], Frisch [1995] acknowledged
that within their formalism they could get only a
bounded range of singularities (in fact c(γ) < D) for
the so-called lognormal model. The practical impor-
tance of c(γ) ≥ D will be discussed in Sec. 9.

On the overall, we reviewed the fact that
beyond their strong communality, various multi-
fractal formalisms have important differences due
to basic assumptions on the nature of the process
(e.g. stochastic or deterministic), the hypothesis to
be done is more or less stringent, but the resulting
hierarchy of fractals can be also rather different: it

Fig. 10. Nonlocal development of singularities γλ(x) (at location x and resolution L/λ) in a perspective view (along the
number of steps n = Log2[λ]) in a discrete cascade of elementary scale ratio λ1 = 2 and of universal parameters α = 1.5, C1 =
0.5 (see Sec. 6.3) over an overall ratio of scale Λ (≥ λ). It is rather obvious that for any given x, γλ(x) fluctuates for increasing
λ, contrary to the hypothesis of localness of singularity.
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could be either defined for each realization or with
looser probabilistic constraints.

5. Generators, Characteristic
Functions and Multifactal Scale
Symmetry

Discrete cascades, i.e. with scale ratio λ ∈ λN
1 = {1,

λ1, λ
2
1, λ

3
1 . . .}, point out that the ελ form a multi-

plicative group, a property that will be extended to
continuous cascades. It is defined by the fact that a
cascade from resolution 1 to Λ, can be obtained by
multiplying a cascade from resolution 1 to λ ≤ Λ
by a cascade from λ to Λ. Because, the latter corre-
spond to a rescaled cascade from resolution 1 to Λ/λ
(see Fig. 11), this group property corresponds to:

∀Λ ≥ λ ≥ 1: εΛ = ελT ∗
λ (ε′Λ/λ) (31)

where T ∗
λ is the “pullback” transform for any

function f :

∀x ∈ E: T ∗
λ (f)(x) = f(Tλ(x)) (32)

defined by a geometric point transform Tλ on the
space E, on which ελ is defined (i.e. time and/or
space). For the moment, up to Sec. 8 devoted
to Generalized Scale Invariance, Tλ is taken to
be trivial scale transformation, i.e. the isometric
contraction:

Tλ(x) =
x

λ
(33)

although it is already clear that the generality of the
pullback transform will allow broad generalizations
of the results obtained for the isometric contraction.

The name pullback evokes the fact that this trans-
form acts in the opposite direction (“contravari-
antly”) to that of the original transform Tλ. This
general notion is particularly useful when dealing
with differential equations [Schertzer et al., 2012].
It is dual to the “pushforward” transform Tλ,∗ act-
ing (“covariantly”) on measures according to the
following duality equation:∫

fTλ,∗(dµ) =
∫

T ∗
λ (f)dµ. (34)

The pushforward transform Tλ,∗ is particularly
useful to mathematically deal with singular mea-
sures such as rain accumulation [Schertzer et al.,
2010]. It is rather easy to check that the (trivial)
group property of the original transform Tλ extends
to both the pullback and pushforward transforms
and that both are linear respectively on vector
spaces of functions and their dual spaces of mea-
sures.

Like for all one-parameter groups, we are inter-
ested to characterize the infinitesimal generator of a
cascade, which can be stochastic. Loosely speaking
this allows us to return to an additive group. Let
us consider the generator Γλ of the cascade over a
(noninfinitesimal) scale ratio λ defined by:

ελ = exp(Γλ). (35)

The additive group property corresponding to the
multiplicative property displayed by Eq. (31) is:

∀Λ ≥ λ ≥ 1: ΓΛ = ΓλT ∗
λ (Γ′

Λ/λ). (36)

The generator is well defined for any finite res-
olution λ, but its limit for asymptotically large

1

λ

Λ

λ

λ

Λ
dressed cascade

bare cascade

hidden cascade

1 1

X=

T*
λ

Λ / λ

Fig. 11. A schematic diagram (horizontal segments schematically represent involved scales) showing a (“dressed”) cascade
from resolution 1 to a (“bare”) cascade from resolution 1 to λ, multiplied by a (“hidden”) cascade from resolution Λ/λ to Λ,
which is the pushback transformed with the help of T ∗

λ of a cascade constructed from resolution 1 to Λ/λ. The terminology of
“dressed, bare and hidden” cascades will be discussed in Sec. 9.2. Reproduced from [Schertzer et al., 2002].
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resolutions is not trivial. This can be seen with
the help of the moment scaling function K(q),
which gains a new and convenient meaning. Indeed,
Eq. (22) can be rewritten under the form:

〈eqΓλ〉 = Zλ(q) = eKλ(q) (37)

where Zλ(q) and Kλ(q) are none other than respec-
tively the (Laplace) first and second characteristic
functions — or respectively the moment and cumu-
lant generating functions — of the generator Γλ.
This further shows that the characteristic function
of Γλ, should be logarithmically divergent (with the
scale ratio λ):

Kλ(q) = K(q)Log λ (38)

hence a nontrivial small scale limit of the genera-
tor Γλ.

We may now define fractal and multifractal
symmetries in a very general and precise man-
ner. Following [Lamperti, 1962], scale invariance for
stochastic fractals is usually defined by:

ε(Tλx) d= λHε(x) (39)

where H is a given unique scaling exponent and ε
can be an increment of random walk or field, as
well as a measure. Considering the latter case, this
can be rewritten with the help of the pushforward
transform into a standard form of a symmetry Sλ:

Sλε
d= ε; Sλ = T̃λ oTλ,∗ (40)

which corresponds to the product of a pushforward
transform Tλ,∗ by a codomain contraction, i.e. a
contraction T̃λ on the space where ε is valued (up
until now the real space �):

T̃λ = λ−H . (41)

A multifractal symmetry is obtained for
Eq. (40) as soon as T̃λ is no longer defined by a
unique scaling exponent, but by a full set of singu-
larities γ’s:

T̃λ
d= λ−γ ≡ e−Γλ . (42)

Generalized scale invariance (Sec. 8) will fur-
ther generalize this symmetry due to nonscalar
anisotropic T̃λ and/or Tλ,∗.

6. Universality

6.1. The concept of universality

The jump from fractals to multifractals is huge,
since it corresponds to a jump from a unique

dimension to an infinite hierarchy of dimensions.
This is emphasized by the fact that there is only
a convexity constraint on the nonlinear functions
K(q) and c(γ), therefore a priori an infinity of
parameters are required to determine a multifractal
process. For obvious theoretical and empirical rea-
sons, physics abhors infinity. This is the reason why
in many different fields of physics the theme of uni-
versality appears: among the infinity of parameters,
it may be possible that only a few are relevant. For
instance, in critical phenomena most of the expo-
nents describing phase transitions depend only on
the dimensionality of the system. This is especially
true as soon as we go beyond ideal systems to more
realistic ones that should be robust to perturbations
or self-interactions. Such perturbations or interac-
tions may wash out many of the peculiarities of the
theoretical model, retaining only some essential fea-
tures. Loosely speaking, a theoretician may concoct
a model for an isolated system depending on a very
large number of parameters, but most natural sys-
tems are open and the resulting interactions can
wash out most of the details, just leaving the (few)
essentials. This was the basic idea of the Renormal-
izing Group approach [Wilson & Kogut, 1974].

The system can therefore be expected to con-
verge to some universal attractor, in the sense that
a whole class of models/processes with rather dis-
tinct parameters will be nevertheless attracted to
the same process defined by only a small num-
ber of relevant parameters: the larger the basin of
attraction, the more universal the attractor.

6.2. Universality in multiplicative
processes?

The study of multiplicative random processes has a
long history [Aitchison & Brown, 1957] going back
to at least [McAlsister, 1879], who argued that mul-
tiplicative combinations of elementary errors would
lead to lognormal distributions. Kapteyn [1903] gen-
eralized this somewhat and stated what came to be
known as the “law of proportional effect”, which has
been frequently invoked since, particularly in biol-
ogy and economics (see also [Lopez, 1979] for this
law in the context of rain). This law was almost
invariably used to justify the use of lognormal dis-
tributions i.e. it was tacitly assumed that the log-
normal was a universal attractor for multiplicative
processes. Although Kolmogorov [1962], Obukhov
[1962] did not explicitly give the law of propor-
tional effect as motivation, it was almost certainly
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the reason why they suggested a lognormal distribu-
tion for the energy dissipation in turbulence. This
claim seemed to be secured by the explicit “lognor-
mal” cascade model developed in [Yaglom, 1966].
The claim of universality of the lognormal model
was first criticized in [Orszag, 1970] and then in
[Mandelbrot, 1974].

Whereas Orszag’s criticism was on the grounds
that the (infinite) hierarchy of integer order
moments would not determine a lognormal process,
Mandelbrot’s criticism was based on the fact that
even if the cascade process were lognormal at each
finite step, that in the small scale limit, the spatial
averages would not be lognormal. This limit already
poses a nontrivial mathematical problem, since it
corresponds to a weak limit of random measures
[Kahane, 1985], as discussed in Sec. 9.1. Further-
more, since the particularities of the discrete models
(e.g. the α-model) remain at each scale, therefore in
its small-scale limit, this lead to the opposite claim:
that multiplicative cascades do not admit any uni-
versal behavior [Mandelbrot, 1989, 1991; Gupta &
Waymire, 1993].

6.3. Universal multifractals and the
multiplicative central limit
theorem

As long as we keep the total range of scale fixed
and finite mixing (by multiplying them) indepen-
dent processes of the same type (identical distribu-
tion, therefore the same codimension function c(γ)
and scaling moment function K(q)), and then take
the limit Λ → ∞ [Schertzer & Lovejoy, 1987, 1988],
we avoid the difficulties that we mentioned above
and a totally different limiting problem is obtained.

For instance, this may correspond to a (renor-
malized) densification of the excited scales by
introducing more and more intermediate scales
(see Fig. 12), e.g. to obtain a continuous scale
cascade model as discussed in Sec. 7. Alterna-
tively, we may also consider the (renormalized)
nonlinear mixing of identically independently dis-
tributed (i.i.d.) cascade models which correspond to
their multiplication. In both cases, we first look for
the cascade processes that are stable under either
nonlinear mixing or densification, then to their
attractivity and their domain of attraction. Stable
cascades are the fixed points ελ

d= ε
(1)
λ of:

λ−a1ελ =
∏

i=1,N

(λ−aN ε
(i)
λ )1/bN (43)

Fig. 12. Scheme of densification of scales: each horizontal
line schematizes to a step of the cascade from large to small
scales (up to bottom). Scale densification of a cascade (left,
with a rather large elementary scale ratio) corresponds to
more and more intermediate steps (right, with a smaller ele-
mentary ratio). From [Schertzer & Lovejoy, 1997].

where aN , bN (with the nonrestrictive choice b1 = 1)
are renormalizing constants and ε

(i)
λ are N indepen-

dently identically distributed cascade processes on
the same range of scales with an overall resolution
λ for nonlinear mixing or ε

(i)
λ are the successive ele-

mentary cascade steps (of elementary resolution λ)
for a scale densification over the same scale ratio λ.
Secondly, one has to check that these stable points
are attractive over a given domain of processes.

A multiplicative central limit theorem [Sch-
ertzer & Lovejoy, 1997] is obtained with the help
of the cascade generator. Indeed, Eq. (43) cor-
responds to the generalized (additive) stability
problem [Lévy, 1925, 1937; Gnedenko, 1943; Gne-
denko & Kolmogorov, 1954], i.e. the following fixed
point:

Γλ − a1Log λ =
N∑

i=1

Γ(i)
λ − aNLog λ

bN
. (44)

For instance, iteration of Eq. (43) or (44) shows
that the bN ’s form a multiplicative group with
aN = a1:

bNM = bNbM (45)

and one then may introduce the exponent α to
generate this group:

bN = N1/α. (46)

On the other hand, taking ensemble averages
of both sides of Eq. (43) one obtains that the scal-
ing moment function K(q) of ελ is the fixed point
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K(q) = K(1)(q) of:

K(q) − a1q = N

[
K(1)

(
q

bN

)
− aNq

bN

]
(47)

which yields the solutions:

K(q) = cqα + a1q. (48)

Attractivity is rather immediate. Indeed, let us
consider the following K(i)(q) (with β > α):

K(i)(q) = K(q) + O(qβ)

= cqα + a1q + O(qβ) (49)

we have therefore:

K(q) − a1q = lim
N→∞

N

[
K(1)

(
q

bN

)
− aNq

bN

]
(50)

and therefore the corresponding ελ is attractive:

λ−a1ελ = lim
N→∞

∏
i=1,N

(λ−aNε
(i)
λ )1/bN . (51)

Finally, with the help of the constraint K(1) =
0 of a conservative field, Eq. (48) yields the following
scaling moment function of a conservative universal
multifractal [Schertzer & Lovejoy, 1987] (see Fig. 13
for an illustration):

K(q) =
C1

α − 1
(qα − q); 0 ≤ α ≤ 2 (52)

where C1 is the singularity of the mean field (q = 1),
which with the help of the Legendre transform is
defined by:

C1 =
d

dq
K(q)

∣∣∣∣
q=1

. (53)

The constraint on α mentioned in Eq. (52)
results from the requirement that the (first) char-
acteristic function Zλ(q) [Eq. (37)] of the genera-
tor should be positive definite so as to be a Mellin
transform of a probability (according to the Schoen-
berg’s theorem [Schoenberg, 1938], which comple-
ments the Bochner’s theorem [Bochner, 1955] for
the Laplace transform). The two extreme cases
correspond respectively to the (uni/mono) fractal
β-model (α = 0) and the lognormal model (α = 2),
whereas the case α = 1 is derived from Eq. (52)
with α → 1:

K(q) = C1qLog q; α = 1. (54)

Equation (52) shows that for 0 < α < 2 the
generator Γλ follows an “extremely asymmetric”
or “skewed” Levy distribution (i.e. its skewness
parameter β = −1) so that the fat tail (power-
law tail) is present only for negative fluctuations,
otherwise the field ελ will have divergent statistical
moments (K(q) = ∞) for all positive order q. Nev-
ertheless, all the negative statistical moments of ελ

diverge, which is neither a problem, nor surprising
due to its frequent extremely low or even zero values
(especially for the β-model).

Due to the fact that qα/α and γα′
/α′ are

Legendre duals for (1/α) + (1/α′) = 1, one obtains
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Fig. 13. The universal multifractal moment scaling exponent K(q) normalized by C1. They lie between the parabolic (α = 2)
“log-normal” model and the linear (α = 0) β model.
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“log-normal” model and the bilinear (α = 0) β model.

from Eq. (52):

c(γ) = C1

(
γ

C1α′ +
1
α

)α′

;
1
α

+
1
α′ = 1 (55)

see Figs. 13 and 14 for illustration of the parameter
sensitivity of the scaling moment and codimension
functions.

7. Continuous Scale or “Infinitely
Divisible” Cascades

7.1. The limitations of discrete
scale cascades

An important consequence of universality is the
possibility of starting with a discrete cascade model
(e.g. one with an elementary scale ratio λ1 = 2) and
with the help of a scale densification to obtain a con-
tinuous in-scale process λ1 → 1. Such cascades are
necessary since physically we expect real systems to
involve a continuum of scales and there is usually
no physically based quantization rule that would
restrict scale ratios to integer values. Furthermore
the discrete models involve a hierarchical splitting
rule of structures into substructures which is based
on a notion of distance which is not a metric, but
rather an “ultra-metric”. More precisely, it cor-
responds to the λ-adic ultrametric: the distance
between two structures at a given level of a discrete
cascade process is defined by the level of the cascade
where they first share a common ancestor, i.e. not
by the usual distance. This implies that the distance
between the centers of two contiguous eddies is

not uniformly distributed. Since all the statistical
interrelations between different structures depend
on this ultra-metric, not on the usual metric, this
has drastic consequences. In particular, there is no
hope of obtaining a (statistically) translation invari-
ant cascade, since such invariance depends on the
metric, not the ultra-metric.

In summary, discrete cascades are useful for
grasping many of the fundamentals, but one has
to avoid being blocked by their artifacts. As a
final note on discrete scale cascades, let us empha-
size that almost all rigorous mathematical results
on cascade processes have been derived in this
restricted framework; this is not only because
it is convenient, but also for complex historical
reasons — including the debate on universality
discussed above. As a consequence, the issue of con-
tinuous scale or infinitely divisible cascades has not
been discussed enough.

7.2. Continuous scale cascades and
their generators

The general idea of cascades as one-parameter
multiplicative groups discussed in Sec. 5, especially
Eq. (31) becomes essential for continuous scale
cascades. For instance, the corresponding addi-
tive property for generators [Eq. (36)] show that
they should be infinitely divisible, i.e. they can be
divided into smaller and smaller additive compo-
nents. On the other hand, we also saw that scaling
requires a logarithmic divergence of the generator.
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For a concrete and generic example, let us con-
sider the case of universal multifractals (Sec. 6.3),
whose generators are not only infinitely divisible,
but also stable and attractive. They are therefore
robust under nonlinear interactions. To satisfy the
logarithmic divergence their generators [Eq. (33)]
should be (colored) stable Lévy noises [Schertzer &
Lovejoy, 1987] obtained by a fractional integration
over a given “subgenerator”, which is white Lévy
noise γ

(α)
0 with a Lévy stability index α and fur-

thermore “unitary” in the sense that its (Laplace)
second characteristic function is:

K0(q) = sign(α − 1)qα · 1q≥0 + ∞ · 1q<0 (56)

which means that γ
(α)
0 is extremely asymmetric

[Schertzer et al., 1988] for α < 2, i.e. with a
skewness β = −1, to have only strong negative
extremes. This is no longer relevant for the Gaus-
sian case (α = 2), which is necessarily symmetric

(β = 0,K(q) = q2) and has therefore no divergence
for q < 0. Figure 15 compares the subgenerators in
the α < 2, α = 2 cases.

This can be seen under a (fractional) differen-
tial form of order D/α′ using a fractional power of
the Laplacian ∆x (with a scale resolution L/λ):

−(−∆x,λ)D/2α′
Γλ(x) ≈ γ

(α)
0 (x) (57)

or under the corresponding and more explicit (frac-
tional) integration form:

Γλ(x) =
∣∣∣∣ var(α)
mD−1(∂BL)

∣∣∣∣
1/α∫

BL\BL/λ(x)

dDγ
(α)
0 (x′)

|x − x′|D/α

− var(α)Log λ;

var(α) =
C1

α − 1
(58)

Fig. 15. A schematic showing a gaussian and extremal Levy subgenerator (with α = 1.6); note that there are extremes only
for the negative fluctuations. From [Wilson, 1991].
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where BL(x) is the ball of center x and size L (which
could be arbitrarily chosen), mD−1(∂BL) is the
(D − 1)-dimensional measure of its (hyper-)surface
∂BL. For isotropic cases, BL(x) = {x′ | |x − x′| ≤
L/2}, BL\BL/λ(x) = {x′ |L/2λ < |x − x′| ≤
L/2} and mD−1(∂BL) = 2(L/2)D−1πD/2/ΓE(D/2)
(where ΓE is the Euler Gamma function). In
order to get some convergent moments (finite
K(q)), the subgenerator γ

(α)
0 must be extremely

assymmetrical. It is also interesting to note that
ελ due to Eq. (58) is the solution of the following
differential equation:

dελ = ελdγλ (59)

where dγλ is the infinitesimal generator of the
multiplicative group of ελ:

dγλ =
∣∣∣∣ var(α)
mD−1(∂BL)

∣∣∣∣
1/α ∫

∂BL/λ(x)

dDγ
(α)
0 (x′)

|x − x′|D/α

(60)

where var(α) corresponds to a generalization of the
(quadratic) variation of a (semi-) martingale (e.g.
[Metivier, 1982]) and this explains why:

dγλ − dΓλ =
var(α)dλ

λ
. (61)

7.3. Nonconservative multifractals
and the Fractionally Integrated
Flux model (FIF )

Integration of Eq. (59) [or equivalent use of the gen-
erator defined by Eq. (58)] yields a conservative field

Fig. 16. Isotropic (i.e. self-similar) multifractal simulations showing the effect of varying the parameters α and H (C1 = 0.1
in all cases). (From left to right) H = 0.2, 0.5 and 0.8. (From top to bottom) α = 1.1, 1.5 and 1.8. As H increases, the fields
become smoother and as α decreases, one notices more and more prominent “holes” (i.e. low smooth regions). The realistic
values for topography (α = 1.79, C1 = 0.12, H = 0.7) correspond to the two lower right-hand simulations. All the simulations
have the same random seed. Reproduced from [Gagnon et al., 2006].
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ελ, which is not always a desirable property. The
classic example of such nonconsevative processes is
the turbulent velocity field; in Kolmogorov three-
dimensional isotropic turbulence, whose structure
function is not scale invariant: 〈∆v2(L/λ)〉 ≈
λ−2H〈∆v2(L)〉, with: H = 1/3. This constraint is
easily satisfied with the help of a fractional integra-
tion of order H:

νλ(x) ∝
∫

BL\BL/λ(x)

dDε(x′)
|x − x′|D−H

. (62)

In the framework of this Fractionally Integrated
Flux model [Schertzer et al., 1997], the singularities
are redistributed with an average shift of −H as
seen on the structure functions, i.e. the statistical

moments of the increments ∆ν(x, x′) = |ν(x) −
ν(x′)|:

〈|ν(x) − ν(x′)|q〉 ∝ |x − x′|qH−K(q). (63)

These increments have therefore a scale depen-
dent mean, with H �= 0 as scaling exponent (see
Figs. 16 and 17). Figures 15 and 18 display the
effect of changing the order of this scale invariant
smoothing of order H. The convolution involved in
Eq. (63) corresponds to a fractional integration of
(fractional) order H over ε. However, there is not
a unique definition of such a noninteger integra-
tion. For instance, to respect causality for processes
in time, the corresponding kernel or Green func-
tion should be totally asymmetric in order not to

Fig. 17. All simulations have H = 0.35 (this is a scale invariant smoothing, see Sec. 7.3). The parameter C1 increases from
0.05 to 0.8 in steps of 0.15 from left to right and α increases from 0.4 from top to bottom in units of 0.4 to 2.0 (bottom).
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Fig. 18. All simulations have C1 = 0.05. The parameter H increases from 0.05 to 0.8 in steps of 0.15 from left to right and
α increases from 0.4 from top to bottom in units of 0.4 to 2.0 (bottom).

integrate over the future [Marsan et al., 1996]. This
is particularly important for predictability studies
[Schertzer & Lovejoy, 2004a] and multifractal fore-
casts [Macor et al., 2007]. In fact, it suffices to intro-
duce a Heaviside function (1t≥0) as a prefactor to
the noncausal kernel to obtain a causal Green func-
tion g(t, t′), e.g.:

g(t, t′) =
1t−t′≥0

|t − t′|D−H
. (64)

Furthermore, “delocalized” kernels can be
defined for space-time processes to have a given
scaling exponent D−H and at the same time singu-
larities (e.g. poles) in their Fourier transforms that
generate waves. This will be discussed further in the
next section that introduces the necessary concept
and tools of Generalized Scale Invariance.

8. Generalized Scale Invariance (GSI)

8.1. Generalized scales

Up until now we have considered “self-similar” frac-
tals and multifractals i.e. geometric sets and fields
that are not only scaling, but also statistically rota-
tionally invariant. However real world systems are
not isotropic so that it is important to generalize
this to strongly anisotropic systems. The resulting
“Generalized Scale Invariance” (GSI) was actually
motivated by the need to account for the strong
scaling stratification of the atmosphere [Schertzer &
Lovejoy, 1985b, 1985a]: Fig. 19 gives a (scaling)
anisotropic version of the isotropic cascade scheme
(Fig. 5) originally developed to model atmospheric
stratification, which has gained increasing empiri-
cal confirmation (Fig. 20) with the help of various



January 19, 2012 9:1 WSPC/S0218-1274 03064

Multifractals, Generalized Scale Invariance and Complexity in Geophysics 3439

ANISOTROPIE

= COMPRESSION et 
REDUCTION

L y

L x
/4L x

L y /2 L y /2

/4L x

sD ___
Ln 4

Ln 6
= 1.29=

Del
Ln 8
Ln 4
___ = 1.5=

N(L) - L
- DsN(L) - L - Del

Fig. 19. Anisotropic cascade scheme: compare with Fig. 5.
From [Schertzer et al., 2002].

atmospheric measurements [Chigirinskaya et al.,
1994; Lazarev et al., 1994; Lilley et al., 2004; Love-
joy & Schertzer, 2007; Lovejoy et al., 2007].

The usual approach to scaling is to first posit
(statistical) isotropy and only then to consider scal-
ing. This approach is so prevalent that the terms
“scaling” and “self-similarity” are frequently used
interchangeably! The most famous example of this
is Kolmogorov’s hypothesis of “local isotropy” from
which he derived the k−5/3 spectrum for the wind
fluctuations (k is a wavenumber). The GSI approach
is the converse: it first posits scale invariance (scal-
ing), as the main symmetry and then considers
the remaining nontrivial symmetries. One may eas-
ily check that the type of anisotropic construction
shown in Fig. 19 reproduces itself from scale to scale
without introducing any characteristic scale. Since
it involves scaling anisotropy in fixed directions, it
is called “self-affinity”. This anisotropic scheme is
apparently the first explicit model of a physical
system involving a fundamental self-affine fractal
mechanism [Schertzer & Lovejoy, 1984, 1985a].

GSI corresponds to the fact that the contrac-
tion operators Tλ [Eq. (33)] or T̃λ [Eq. (34)], which
define the scaling symmetry [Eq. (40)], are no longer
isotropic [Eq. (33)] nor merely scalar [Eq. (41)]. For
simplicity sake we first focus on the anisotropy of
Tλ, keeping T̃λ scalar, but mutadis muntandis the
same apply to an anisotropic T̃λ and a scalar Tλ,
and finally both being anisotropic. In an abstract
manner, Tλ is a generalized contraction on a vector
space E, if it is a one-parameter (semi-) group for

Fig. 20. The symbols show the mean absolute fluctuations
(the first order structure functions) of the lidar backscatter
ratio ρ (a surrogate for the passive scalar aerosol density).
The points near the shallow slope (slope 1/3, Kolmogorov
value) are the horizontal fluctuations, the points near the
steeper line (slope 3/5, Bolgiano–Obukhov value) are for the
vertical fluctuations. The averages are over an ensemble of
nine vertical airborne lidar cross-sections spanning the range
of ≈ 100 m–100 km in the horizontal and 3 m–4 km in the ver-
tical. ∆r is either the vertical or horizontal distance measured
in meters. The lines have the theoretical slopes 3/5, 1/3, they
intersect at the sphero-scale here graphically estimated from
the intersection point as ≈ 10 cm. From [Lilley et al., 2004].

the positive real scale ratio λ (λ ≥ 1 for a semi-
group), i.e.

∀λ, λ′ ∈ R+: Tλ′ ◦ Tλ = Tλ′λ (65)

and admits a generalized scale denoted ‖x‖ (to
distinguish it from the usual Euclidean metric
|x|), which satisfies the following three properties
[Schertzer et al., 1999] further to that of being non-
negative:

(i) nondegeneracy, i.e.

‖x‖ = 0 ⇔ x = 0 (66)

(ii) linearity with the contraction parameter 1/λ,
i.e.

∀x ∈ E, ∀λ ∈ R+: Tλ‖x‖ ≡ ‖Tλ · x‖ = λ−1‖x‖
(67)

(iii) balls defined by this scale, i.e.

B� = {x | ‖x‖ ≤ �} (68)
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must be strictly decreasing with the contrac-
tion Tλ:

∀L ∈ R+, ∀λ > 1: BL/λ ≡ Tλ(BL) ⊂ BL

(69)

and therefore:

∀L ∈ R+, ∀λ′ ≥ λ ≥ 1: BL/λ′ ⊂ BL/λ. (70)

The usual Euclidean norm |x| of a metric space
is the scale associated to the isotropic contraction
Tλx = x/λ. The two first properties are rather
identical to those of a norm, whereas the last one
is weaker than the triangular inequality, which is
required for a norm.

8.2. Linear GSI

This corresponds to the simplest, but already
startling generalization of scale invariance: Tλ is
no longer a scalar transform, but remains a linear
transform. In this case, the group property Eq. (65)
corresponds to the fact that this linear trans-
form is power law of a given linear (infinitesimal)
generator G:

Tλ = λ−G ≡ exp(−G · Log(λ)). (71)

This can be easily understood with the help of
the corresponding matrices. This “integral” form is
equivalent to the following differential one:

λ
d

dλ
Tλ = −G ◦ Tλ. (72)

This differential equation also governs the evo-
lution (λ ≥ 1) of the point xλ = Tλx1, whose tra-
jectory starts from an initial ball BL and crosses
the balls BL/λ. The classical isotropic contraction
corresponds to the scalar case: G = 1, where 1
denotes the identity application. The next simplest
case corresponds to the “self-affine” case [Mandel-
brot, 1985], where G is diagonalizable, with real
eigenvalues µi and eigenvectors ei. Figure 21 shows
that “zooming” into such a multifractal leads to sys-
tematic changes in shapes of the basic structures.
This graphically demonstrates the “phenomenolog-
ical fallacy” [Lovejoy & Schertzer, 2007] in which
differences in morphology are confounded with dif-
ferences in mechanism. Figure 22 shows the effect
of varying the “sphero-scale”; the scale where struc-
tures are roughly “roundish”.

It is straightforward to check that for
Spec(G) > 0, where Spec(·) denotes the spectrum,
the scale can be defined for any given positive
0 < α ≤ ∞ as:∥∥∥∥∥

∑
i

xie
i

∥∥∥∥∥ =

(∑
i

‖xie
i‖α

)1/α

(73)

with:

∀ i, xi : ‖xie
i‖ = ||xi|1/µiei| (74)

where | · | is a given norm on the vector space. These
equations are very convenient to define anisotropic
processes, including space-time processes. Indeed,
the Green functions defining either a generator or
a FIF model could be defined either in the physical
space or the Fourier space with the help of these
scales, e.g. for a (causal) space-time process:

ĝ(k, x) ≡
∫

dDxdtei(k x+ωt)g(x, t)

= (iω + ‖k‖Ht)−H/Ht (75)

where Ht is the scaling anisotropy exponent
between time and space. Furthermore, to obtain a
pole, therefore waves, still keeping the same scal-
ing behavior, it suffices to consider [Lovejoy et al.,
2008b]:

ĝw(k, x) = (iω − ‖k‖Ht)−H/Ht (76)

as well any weighted products of g(k, x) and
gw(k, x), i.e. weighted convolutions of g(k, x) and
gw(k, x). This already provides a wide, although
presumably not exhaustive framework to study tur-
bulence and waves. Equation (74) also confirms that
the transformation of the norm | · | to the general-
ized scale | · | corresponds to a nonlinear transform
(except for the scalar case: G = 1), which may be
defined as:

xi → sign(xi)|xi|1/µi . (77)

Nevertheless, the most interesting cases cor-
respond to complex eigenvalues, which obviously
introduce rotations, and nondiagonalizable genera-
tors (Jordan matrices). This is illustrated in Figs. 23
and 24 for a two-dimensional generator G. The real-
ity of the eigenvalues corresponds to:

a2 =
(

Tr(G)
2

)2

− Det(G) > 0 (78)

and a dominant stratification effect, whereas a2 <
0 corresponds to a dominant rotation effect. For
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Fig. 21. A sequence from a zoom of a stratified universal multifactal cloud model with α = 1.8, C1 = 0.1, H = 1/3, Hz = 5/9.
(From top left to bottom right) Each represents a blow-up by a factor 1.31 (total blow-up is a factor ≈ 24 000 from beginning
to end). If the top left simulation is an atmospheric cross-section 8 km left to right, 4 km thick, then the final (lower left)
image is about 32 cm wide by 16 cm high; the sphero-scale is 1m as can be roughly visually confirmed since the left-right
extent of the simulation second from bottom on the right is 1.02 m where structures can be seen to be roughly roundish. From
[Lovejoy & Schertzer, 2010].

reasons discussed below, G is parametrized in the
following way:

G =
(

d + c f − e

f + e d − c

)
; a2 = c2 + f2 − e2. (79)

All the simulations have α = 1.8, C1 = 0.1,H =
0.33 (the empirical parameters for clouds), and are
simulated on 256 × 256 grids with the same start-
ing seed so that the differences are only due to the
anisotropy (the colors go from blue to white indi-
cating values low to high). However, there are much
more general properties. For instance, the Jacobian
of any contraction is Tλ:

det(Tλ) = λ−Del (80)

with:
Del = Tr(G) (81)

which corresponds to an effective dimension called
“elliptical dimension” in reference to the elliptic-
like shape of the balls under a GSI contraction.
It is merely the topological dimension d = Tr(1)
of the vector space for the isotropic contraction.
On the other hand, differentiation of the “integral”
property of linearity with the contraction parameter
[Eq. (67)] yields:

λ
d

dλ
‖xλ‖ = ∇x‖xλ‖ · G · xλ (82)

which rather corresponds to a generalization
of Euler’s theorem for homogeneous function
(obtained for a self-affine G). This differential form
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Fig. 22. The effect of the sphero-scale, Cloud parameters: α = 1.8, C1 = 0.1, H = 1/3, r = vertical/horizontal aspect ratio
top to bottom: r = 1/4, 1, 4, left to right, sphero-scale = 1, 8. From [Lovejoy & Schertzer, 2010].

can be used to assure that balls are strictly decreas-
ing with the contraction Tλ. This can be achieved
for:

BL = {x | (x,Ax)1/2 ≤ L} (83)

where A is a given bilinear application, Eq. (82)
indeed yields [Schertzer & Lovejoy, 1985a; Schertzer
et al., 1999] the following necessary and sufficient
condition that the balls Tλ(BL) ≡ BL/λ are strictly

decreasing with the contraction group Tλ:

Spec(sym(AG)) > 0 (84)

where sym(·) denotes the symmetric part of a lin-
ear application. When A is furthermore positive and
symmetric, i.e. the ball BL is an ellipsoid, this con-
dition [Eq. (84)] reduces to:

Spec(sym(G)) > 0 ⇔ Re(Spec(G)) > 0. (85)
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Fig. 23. (Top row) k = 0, we vary c (denoted i) from −0.3,−0.15, . . . , 0.45 left to right and e (denoted j) from
−0.5,−0.25, . . . , 0.75 top to bottom. On the right we show the contours of the corresponding scale functions. (Middle row)
Same except that k = 10. (Bottom row) e = 0 the c is increased from −0.3,−0.15, . . . , 0.45 left to right, from top to bottom,
k is increased from 0, 2, 4, . . . , 10. See text for more details. From [Lovejoy & Schertzer, 2007].
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Fig. 24. (Top row) The same as the bottom row of Fig. 23 except that e = 0.75. (Middle row) c = 0 and e left to right
is: −0.5,−0.25, . . . , 0.75. (Bottom row): Same as the middle row except that c = 0.15. In all rows, from top to bottom, k is
increased (0, 2, 4, . . . , 10), the right hand shows the corresponding scale functions. From [Lovejoy & Schertzer, 2007].
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For the two-dimensional case [and parame-
trization given by Eq. (79)], this reduces to the
following:

Tr(G) > 0 and

det(G) > 0 ⇔ d > 0 and d2 > a2.
(86)

8.3. Nonlinear GSI and Lie
cascades

We will use the example of the two-dimensional gen-
erator G with its above parametrization [Eq. (79)]
that corresponds to a “pseudo-quaternions” repre-
sentation:

G = d1 + eI + fJ + cK;

1 =
⌊
1 0
0 1

⌋
, I =

⌊
0 −1
1 0

⌋
,

J =
⌊
0 1
1 0

⌋
, K =

⌊
1 0
0 −1

⌋ (87)

to point out that in a rather general manner linear
GSI results can be extended, albeit given technical
difficulties briefly mentioned below, to the nonlinear
GSI and lead to the general notion of Lie cascades.
Let us first point out that there are at least two rea-
sons to look for nonlinear GSI. The first one is that
one has often to work with manifolds rather than
with vector spaces, the second one [Schertzer &
Lovejoy, 1991], not necessarily independent of the
previous one, is that one has often to deal with
local symmetries, e.g. the original (Weyl’s) local
gauge invariance, rather than with global ones. The
main point is that the generators of the (local)
symmetries define Lie algebra whose structure is
essential to understand the interrelations between
various symmetries.

Indeed, let us consider that the symmetries
Tλ and T̃λ, therefore the whole scale symmetry
Sλ [Eq. (40)], together with all other potential
symmetries (e.g. more classical symmetries such
as rotations) smoothly vary with respect to their
parameters. These symmetries not only form a
group with respect to their composition, but also
a smooth manifold and therefore a Lie group G
(e.g. [Sattinger & Weaver, 1986]). In a rather gen-
eral manner, this group is generated from the
symmetries that are infinitesimally close to the
identity (for infinitesimally small parameter vari-
ation), which spans the tangent space to the iden-
tity transformation. In fact, these generators form
a Lie algebra g, i.e. a vector space with a (bilinear)

skewed product called the Lie bracket [·, ·] that fur-
thermore satisfies the Jacobi identity. For matrices,
the Lie bracket is defined to be the commutator:[

X,Y
]

= XY − Y X (88)

In the example of the two-dimensional generator G
we have:

2I =
[
J,K

]
, 2J =

[
I,K

]
, 2K =

[
J, I
]

(89)

whereas 1 obviously commutes with any element
of this Lie algebra l(2, R) of the two-dimensional
real matrices. Recall that any Lie algebra g is said
to be abelian if its bracket, whatever is its expres-
sion, vanishes (i.e. ∀X,Y ∈ g : [X,Y ] = 0, in
short: [g, g] = 0), a Lie subalgebra s of g is a sub-
space of g that is closed under the Lie bracket (i.e.
[s, s] ⊂ s), a subspace l of g is an ideal of g if s is
not only closed with itself but with g (i.e. [g, l] ⊂ l),
the largest abelian ideal of g is called its radical
and if it is zero g is called semi-simple. The cru-
cial importance of abelian (sub-)algebra is due to
the fact that the corresponding Lie (sub-)groups are
indeed commutative, i.e. the symmetries commute.

With the help of these definitions, it is rather
straightforward to check that the one-dimensional
subalgebra R generated by 1 is the radical of l(2, R),
whereas s spanned by {I,J,K} is semi-simple. The
latter is classically known as sl(2, R), the special
two-dimensional real linear algebra of matrices with
zero trace. We have:

l(2, R) = R ⊕ sl(2, R) (90)

which is merely a particular example of the Levi
decomposition of any Lie algebra into its radical
and a semi-simple subalgebra. It is also important
to note that the three two-dimensional subalgebra
si (i = 1, 3) spanned respectively by {1, I}, {1,J},
{1,K} are all abelian (s1 is merely equivalent to the
set of complex numbers), but they are not ideals of
l(2, R). It means that the corresponding subgroups
are commutative, but do not commute with any ele-
ment of the full group generated by l(2, R). A simple
consequence is that if the generator G of Tλ (resp.
G̃ of T̃λ) belongs to s3, then it will commute with
any symmetry generated by K, but not with those
generated by I, i.e. rotations.

Whereas the mapping from Lie groups to Lie
algebra is rather one-to-one, the inverse is often
more complex: different Lie groups may have the
same Lie algebra. Nevertheless, the exponential
map allows to fully capture the local structure of the
group from its algebra. Here, the exponential map
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Fig. 25. GSI balls for λ = 1 to 10 by steps δλ = 0.5: (a) linear case for g(x) = Gx [Eq. (91)] where the matrix is defined
according to Eq. (79) with the set of parameters (d, c, f, e) = (1, 0.5, 0.5, 1), i.e. stratification being dominant, (b) nonlinear

case: the parameter e now depends on the location x : e(x) = |x|3/4. This introduces an extreme differential rotation.

from a tangent space to its manifold correspond to
the generalization of the exponential function, par-
ticularly seen under its differential form as:

dxλ

dλ
= −g(xλ)

λ
. (91)

Loosely speaking, one has only to carefully
distinguish the tangent space from its manifold,
whereas both are confused in the (linear) case of
vector spaces. The above mentioned limitation to
the local structure is that the integration can intro-
duce an external outer scale, i.e. the inverse of Tλ =
T1/λ, i.e. a dilation, for large λ is not always defined.

As simple examples, we can consider the inte-
gration of the nonlinear differential equation (91),
with the initial condition x1 belonging to a given
ball BL, still on a vector space E, but where g
is nonlinear. Its gradient ∇xg is equivalent to a
local (infinitesimal) generator G. Therefore, the
condition of (local) growth of the balls for linear
GSI applies now to ∇xg. For the two-dimensional
case, the same parametrization as before for G
[Eq. (87)] corresponds to spatially variable coef-
ficients (d, c, e, f) and if BL is a symmetric ellip-
soid, ∇xg needs only to satisfy the same condition
[Eq. (86)] as G.

Figure 25(b) is one among many figures that
can be obtained in this nonlinear manner. Note due
to nonlinearity the balls Bλ, are no longer convex
sets, contrary to the linear case.

8.4. GSI, scaling analysis and
differential systems

GSI has a huge potential of applications when
dealing with anisotropy and classical differential

systems. Indeed, the classical manner to deal with
such problems was to first proceed to a scale anal-
ysis, i.e. to define so-called characteristic quanti-
ties that help to select a few corresponding rele-
vant terms that will be retained to build up approx-
imations of the original equations. However, as dis-
cussed by analysis [Schertzer et al., 2012], on the
particular example of the quasi-geostrophic approx-
imation [Charney, 1948], there are many reasons to
expect that the scaling of the approximation will be
different from the original equations. GSI allows to
proceed in a different manner: an anisotropic analy-
sis enables us to select the relevant interactions that
occur on a wide range of scales (contrary to the scale
analysis, which is local in scale) and obtain a new
set of equations, which corresponds to a statistical
breaking of an isotropic statistical symmetry, which
can be seen as a broad generalization of the spon-
taneous symmetry breaking. Here, the anisotropic
scaling splits a vector equation that admits isotropic
scaling into separated component equations. In the
case of the vorticity equation this can be obtained
by first decomposing the fields and operators into
horizontal and vertical components (with respective
indices h and v), e.g. for the velocity field u and gra-
dient operator ∇:

u = uh + uv; ∇ = ∇h + ∇v (92)

and with the help of the following pushback trans-
forms [Schertzer et al., 2012]:

T ∗
λ (u) = λγ(uh + λhuv);

T ∗
λ (∇) = λγ(∇h + λ−h∇v)

(93)
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where h is the scaling anisotropy exponent of the
vertical vs. the horizontal, as well as the correspond-
ing decomposition of the vorticity ω into:

ω = ωv + σ + τ ; ωv = ∇h × uh,

σ = ∇h × uv, τ = ∇v × uh

(94)

where ωh = σ+τ is the horizontal vorticity, which is
assumed to be negligible at large scales where the
(almost vertical) Earth rotation Ω is assumed to
be dominant. A careful examination of the scaling
exponents resulting from Eq. (93) involved in the
vorticity equation (D./Dt denotes the Lagrangian
time derivative):

Dω

Dt
= ω · ∇u (95)

points out that the latter splits into the three fol-
lowing equations:

Dσ

Dt
= σ · ∇huh

Dτ

Dt
= (τ · ∇h + ωv · ∇v)uh

Dωv

Dt
= (τ · ∇h + ωv · ∇v)uv

(96)

Conversely, these three equations, together
with the large scale condition ωv ≈ Ω, allow an
anisotropic scaling like that displayed by Eq. (93),
as well as a nonlinear growth of the horizontal
vorticity. The latter mechanism is absent from
the quasi-geostrophic approximation, which corre-
sponds to σ ≡ τ ≡ 0 and the approximation:

Dωv

Dt
≈ Ωv · ∇vuv. (97)

Contrary to the quasi-geostrophic equations,
the fractional vorticity equations (96) are not
an approximation of the vorticity equations (95),
because solutions of the former are also solutions of
the latter. They rather correspond to select relevant
interactions to provide solutions having a scaling as
prescribed by Eq. (93). This explains the extreme
contrast between Eq. (96) with a 3D nonlinear vor-
ticity stretching and Eq. (96) with only a weak, lin-
ear stretching. We believe that this scaling analysis
is rather illustrative of the potential of GSI to bet-
ter investigate the nonlinear generating equations
of anisotropic scaling fields, well beyond the scale
analysis and the resulting classical approximations.

9. The Extremes: Self-Organized
Criticality and Multifractal
Phase Transitions

9.1. The singular small-scale limit
of a cascade process

The small-scale limit λ → ∞ of a cascade process is
very singular since for any positive singularity γ,
the density ελ ≈ λγ diverges. These divergences
are statistically significant for γ > C1, since it
corresponds to q > 1 and K(q) > 0, therefore
to 〈ελ〉 = λK(q) → ∞. This singular small-scale
divergence means that if a limit exists, it is not in
the sense of functions. This is similar to the Dirac
δ-“function”, in fact the Dirac δ-measure, which is
not a function at all but a “generalized function”
defined as a limit of functions. The Dirac δ-measure
is indeed only meaningful if we integrate over it. It
is rather obvious that the β-model corresponds to
a (random) generalization of the Dirac δ-measure
for points belonging to a fractal set of codimen-
sion c = D − Ds. Conversely, the Dirac δ-measure
can be understood as the particular (deterministic)
case corresponding to a codimension c = D and
dimension Ds = 0, i.e. to isolated points.

As a consequence, one has to consider the limit
of the corresponding measures Πλ(A) → Π∞(A)
over compact sets A of dimension D, i.e. the D-
dimensional integration of the density ελ over A:

Π∞(A) = lim
λ→∞

Πλ(A) = lim
λ→∞

∫
A

ελdDx. (98)

In agreement with turbulent nomenclature, the
integral Πλ can be termed a “flux” (of energy)
through the scale l = L/λ, whereas ελ can be called
(energy) flux density at this scale. Therefore, we
anticipate that the fluxes (but not the densities)
converge as λ → ∞. Still due to the singular nature
of the limit, we may expect that convergence can
only occur over a limited range of order q of the
statistical moments:

∃ qD > 1, ∀ q ≥ qD : 〈Π∞(A)q〉 = ∞ (99)

whereas:

∀λ < ∞ : 〈Πλ(A)q〉 < ∞. (100)

The subscript D of the critical order q under-
scores its dependence on the dimension of the space
over which it is integrated. This dependence can
be used [Schertzer & Lovejoy, 1984] to demonstrate
that cascade processes are generically multifractals:
the dependence of qD on D defines a hierarchy of
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fractal sets. An important consequence of the diver-
gence of moments [Eq. (99)] is also the exponent of
the power-law fall-off of the probability distribution:

∃ qD > 1, π  1 : Pr(Π∞(A) > π) ≈ π−qD .

(101)

Equations (99)–(101) are equivalent and the
divergence of moments has many practical impli-
cations that we discuss below. The divergence of
moments coupled with fractal structures is often
considered the hallmark of self-organized critical-
ity (SOC; [Bak et al., 1987, 1988]) so that cascade
processes can be considered a nonclassical route to
SOC. In this respect, we could note an important
difference: classical SOC is a cellular-automaton
model (the prototype being the “sandpile” and its
avalanches) that requires a “zero-flux” limit: in the
sandpile each grain must be added one at a time
only after the activity induced by the previous grain
is over. In contrast, the cascades require a quasi-
constant flux, and this is generally more physical.

To graphically appreciate the propensity for
multifractal processes to generate extremes at all
scales, see Fig. 26. In order to make the point that
occasionally very rare events occur, a single value
(the maximum) of the subgenerator was boosted by
a factor N (placed at the centre of the simulation).

9.2. Bare and dressed cascades

The singular limit of the cascade process requires
us to distinguish between the properties of a cas-
cade stopped at a finite resolution λ, (all of whose
positive moments are finite) from those correspond-
ing to integrals (at the same scale) of the process
taken to the small scale limit. Schertzer and Lovejoy
[1987] argued that physically this difference is due
to the effect of the small scale interactions, which
“dress” the former “bare” process. This is remi-
niscent of what happens in renormalization when
higher and higher order interactions are taken into
account. In the same way, we distinguish between
the “bare” cascade quantities obtained after the cas-
cade has proceeded down to a finite resolution λ,
and the corresponding “dressed” quantity obtained
after integrating a completed cascade over the same
scale (l = L/λ; see Fig. 11 for an illustration of
a finite resolution Λ). Due to the group property
of a multiplicative cascade discussed in Sec. 5, a
dressed cascade factors into its bare part and the
hidden part, which corresponds to a flux of a cas-
cade from L to Lλ/Λ rescaled with the help of

the pushback operator T ∗
λλ. For small enough order

moments, the flux prefactor remains finite in the
limit Λ → ∞, the bare and dressed scaling proper-
ties are the same. However for q ≥ qD this prefactor
begins to scale with Λ/λ, so that a drastic change
occurs; it diverges with Λ.

In a real system, the scaling is cutoff by dissi-
pation so that while the moments q < qD depend
on the large scales in contrast, the value of the
moments q > qD will depend on the small scale
details. Since it is this small scale activity that
causes the divergence, in analogy with the classical
(chaotic) metaphor for sensitive dependence, this
has been called the “multifractal butterfly effect”
[Lovejoy & Schertzer, 1998].

9.3. Scale dependence and
divergence of the flux : The
heuristic argument

Let us first consider some simple heuristics whose
main interest is that they are model independent.
They are based on the fact that a D-dimensional
integration of a singularity γ just corresponds to
shifting the latter by −D, which corresponds to
the scaling exponent of the elementary volume of
integration. As a consequence, all singularities of
order γ < D will be smoothed out. This already
explains why the question of statistical divergences
is beyond the scope of deterministic multifractal
formalisms (see Sec. 4.3). On the contrary, diver-
gences arising from γ ≥ D will not be smoothed
out and therefore the scale of observation is irrel-
evant: the flux will scale with the inner scale of
activity of the cascade and therefore will diverge
as Λ → ∞. However due to its low statistical
weight, this divergence may remain statistically
insignificant. Nevertheless, one may reach a critical
γD ≥ D where it becomes significant. Above γD,
the observed dressed codimension function cd(γ) no
longer corresponds to c(γ): the dressed quantities
will have much larger fluctuations than the bare
quantities. cd(γ) can therefore be estimated by con-
sidering that it should maximize the occurrences of
high singularities, while nevertheless respecting the
convexity constraint. This means that cd(γ) should
follow the tangency of c(γ) at γD:

γ ≤ γD : cd(γ) = c(γ)

γ ≥ γD : cd(γ) = c(γD) + qD(γ − γD)
(102)

Since qD = c′(γD) is the critical order corre-
sponding to γD in the framework of the Legendre
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(a) (b)

Fig. 26. This shows two realizations (a) of a random multifractal process with a single value of the maximum of the subgen-

erator (at the centre of a 512 × 512 grid) boosted by factors of N from 16 to 64 (increasing by 2(1/2) from top to bottom) in
order to simulate very rare events. The scaling is anisotropic with complex eigenvalues of G, the scale function is shown in (b).

duality (Sec. 4.2), we see that the divergence of the
statistical moments for q ≥ qD is a consequence
of the fact that a straight line is singular for the
Legendre transform. We therefore obtain:

q < qD: Kd(q) = K(q); q ≥ qD: Kd(q) = ∞
(103)

Kd(q) = K(q); q < qD

Kd(q) = ∞; q ≥ qD.
(104)

This heuristic argument can be made rigor-
ous by introducing [Schertzer & Lovejoy, 1987]
the Trace Moments of the flux which are sim-
pler to handle than the statistical moments of the
flux.

9.4. Finite sample size effects

In practice, we are only able to examine finite sam-
ples, hence instead of computing the theoretical
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moments:

〈Xq〉 =
∫

xqdPX (105)

we only deal with estimates, the most usual ones
being an average over the Ns independent samples:

{Xq}s =
1

Ns

Ns∑
i=1

Xq
i . (106)

As long as the law of large numbers applies,
these estimates converge towards the theoretical
moments:

〈Xq〉 = lim
Ns→∞

{Xq}s. (107)

One may also consider space/time averages and
ergodicity assumptions. In our case, we must con-
sider a combination of statistical and space/time
averaging. A first consequence of finite Ns is that
only a limited range of q’s can in fact be safely
explored: as we now show, estimates of moments
of higher order give no real information about the
process and may lead to erroneous interpretations,
e.g. there had been speculations on the significance
of the q → ∞ limit on the basis of finite empirical
samples of turbulence data.

The limits imposed by finite sample sizes can
best be understood with the help of the sampling
dimension Ds [Eq. (19) and Sec. 4.1]. As we increase
Ds (i.e. the number Ns of samples), we gradually
explore the entire probability space encountering
extreme but rare events that would almost surely
be missed on any finite sample (Fig. 27), i.e. larger

A

N 
s

Ds

Independent 
Realizations

Physical 
space

Physical 
space

Probability 
Space

~ λ

Fig. 27. Illustration showing how in random processes the
effective dimension of space (D) can be augmented by con-
sidering many independent realizations Ns. As Ns → ∞, the
entire (infinite dimensional) probability space is more and
more explored. From [Schertzer & Lovejoy, 1993].

and larger sampling singularity γs [Eq. (19) and
Fig. 8(b) for illustration].

The Legendre transform of cs(γ) = c(γs) with
γ ≥ γs leads to a spurious linear estimate Ks

instead of the nonlinear K for q > qs where qs =
c′(γs) is the maximum moment that can accurately
be estimated:

q ≥ qs : Ks(q) = γs(q − qs) + K(qs);

q < qs; Ks(q) = K(q).
(108)

In Sec. 9.5.2 we show that this linear behavior
corresponds to the multifractal analogue of a sec-
ond order phase transition and therefore is rather
model-independent.

9.5. Multifractal phase transitions

9.5.1. Flux dynamics and thermodynamics

As discussed by various authors [Schuster, 1988;
Tel, 1988; Schertzer & Lovejoy, 1992, 1994;
Schertzer et al., 1993], there are formal analogies
between multifractal exponents and standard ther-
modynamic variables. However, depending on the
multifractal framework there are notable differences
of appreciation. For the codimension multifractal
formalism, Table 1 displays the analogues between
what can be called (statistical) “fluxdynamics”
[Schertzer & Lovejoy, 1991] and classical thermody-
namics. The expression “flux dynamics” comes from
the fact that the main quantity of interest is the
energy flux for systems out of equilibrium instead
of the energy for systems in thermodynamic equi-
librium. Since the analogies are based on the expo-
nents of the probability and number densities these
analogues are more easily and naturally obtained
in the codimension framework, which define respec-
tively the codimension c(γ) of a singularity γ and
the D−S(E) entropy of a state energy E. The Leg-
endre conjugate variables of the singularity and the
energy are respectively the moment of order q and
the (reciprocal) temperature β = 1/T . Similarly,
the scaling moment function K(q) is the analogue
of a (Massieu) potential (= the free energy/T ).

Discontinuities in the analogues of the free
energy (the dual codimension function C(q) =
K(q)/(q − 1)) and the thermodynamic potential
(K(q)) correspond to multifractal phase transitions
(see Fig. 28 for illustrations). However, thermody-
namics applies to systems in equilibrium and with-
out dissipation, whereas flux dynamics applies to
systems far from thermodynamic equilibrium which
are strongly dissipative. A practical consequence is
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Table 1. Correspondence between fluxdynamics and thermodynamics (setting for notation simplicity kB = 1 for
the Boltzman’s constant kB): Σ(β) being the Massieu potential, F (β) the Helmhotz free energy. From [Schertzer &
Lovejoy, 1993].

Flux Dynamics Thermodynamics

Probability space Phase space

Moment order: q (Reciprocal) Temperature: β = T−1

Singularity order: γ (Negative) Energy: −E

Generator (Negative) Hamiltonian

Singularity codimension: c(γ) Codimension of entropy: D − S(E)

Scaling moment function: K(q) = max
γ

(qγ − c(γ)) (Negative) Massieu potential: −Σ(β) = −min
E

(βE − S(E))

Dual codimension function: C(q) = K(q)/(q − 1) (Negative) Free energy −F (β) = −Σ(β)/β

Dimension of integration: D External field: h

Ratio of scales: λ Correlation length: ξ

that in order to define its statistics, a multifractal
process fundamentally requires an infinite hierarchy
of temperatures, rather than a single temperature.
Therefore observing (i.e. with a finite Ns,Ds) a mul-
tifractal process at a given temperature (i.e. q) only
gives very limited information about the process.
Similarly, a multifractal phase transition is associ-
ated with a qualitative change of observation of the
same system when one changes the observation tem-
perature (i.e. changes q), whereas a thermodynamic
phase transition corresponds to a qualitative change
of the behavior of the system under observation.

9.5.2. Second order phase transition

Finite sample size effects (Sec. 9.4) can be now
understood as corresponding to a phase transition
of second order and in fact a “frozen free energy”
transition which has been discussed in various con-
texts [Derrida & Gardner, 1986; Mesard et al., 1987;
Brax & Pechanski, 1991]. Indeed, we saw that the
almost sure highest order singularity (γs) which can
be observed on Ns realizations, yields with the help
of the Legendre transform a linear behavior of the
observed Ks [Eq. (108)] for q > qs, whereas it is
nonlinear as K(q) for q < qs. Therefore, Ks has
a discontinuity of second order at γs (see Fig. 28
for an illustration). On the other hand, this linear
behavior implies that the observed analogue of the
free energy Cs(q) seems to be “frozen” for low tem-
perature (q → ∞), since we have:

Cs(q) ≡ Ks(q)
q − 1

≈ γs

(
1 + q−1

(
1 − qs

γs

))
. (109)

Further to the heuristics derivation we have
presented here, some exact mathematical results
have been obtained, which are however restricted

to discrete cascades and furthermore to Ds = 1.
On the other hand, the notion of second order
phase transition is interesting, because it is rather
model-independent as it is based on the analogies of
the statistical exponents of the cascade. Indeed, it
should occur as soon as there are no bounds on the
singularities or their range exceeds the critical γs.

9.5.3. First order phase transition

We can now revisit the question of the divergence
of moments (Sec. 9.3) taking care of the sample
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Fig. 28. A numerical simulation of multifractal phase tran-
sitions for a universal multifractal (α = 2, C1 = 0.9, Λ =
210, 29 realizations): K(q) (theoretical, parabola), Ks(q)
(observed second order transition — along a tangency to
K(q) for large q’s — corresponding to the finite size of
the sample at the highest resolution, bare, open triangles),
Kd,s(q) (observed first order transition, partially dressed

(λ = 27) above K(q) for large q’s, closed triangles), Kd,s(q)
(theoretical first order transition, fully dressed, straight line).
Reproduced from [Schertzer et al., 1993].
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size finite effects, in the heuristic and very general
framework we discussed in Sec. 4. We pointed out
that above a critical singularity γD, the dressed
codimension cd(γ) becomes linear [Eq. (102)]. Due
to the definition of the codimension [Eq. (16)],
this corresponds to a power-law for the probabil-
ity distribution [Eq. (101)], and by consequence
to a divergence of statistical moments [Eq. (99)].
However, due to the finite size of the samples, one
obviously cannot observe with the help of the sta-
tistical moment estimates this divergence, but in
fact only a first order transition, instead of the sec-
ond order transition discussed above (Sec. 9.5.2).
Indeed, following the argument for Eq. (19), the
maximum observable dressed singularity γd,s is the
solution of:

cd(γd,s) = ∆s. (110)

By taking the Legendre transform of cd with
the restriction γd ≤ γd,s, we no longer obtain the
theoretical Kd(q) = ∞ for q > qD [Eq. (103)], but
then obtain the finite sample dressed Kd,s(q):

q ≤ qD : Kd,s(q) = K(q);

q ≥ qD : Kd,s(q) = γd,s(q − qD) + K(qD).
(111)

As expected, Eq. (103) is recovered for Ns →
∞, due to the fact that γd,s → ∞. For Ns large
but finite, there will be a high q (low tempera-
ture) first order phase transition, whereas the scale
breaking mechanism proposed for phase transitions
in strange attractors [Szépfalusy et al., 1987; Csor-
das & Szépfalusy, 1989; Barkley & Cumming, 1990]
is fundamentally limited to high or negative tem-
peratures (small or negative q). This transition cor-
responds to a jump in the first derivative K ′(q) of
the potential analogue [Schertzer et al., 1993]:

∆K ′(qD) ≡ K ′
d,s(qD) − K ′(qD)

= γd,s − γD =
∆s − c(γD)

qD
. (112)

On small sample size (∆s ≈ c(γD)), this transi-
tion will be missed, the free energy simply becomes
frozen and we obtain: Kd,s(q) ≈ (q−1)D, which was
already discussed with the help of some empirical
data [Schertzer & Lovejoy, 1984], whereas Eq. (111)
corresponds to an improvement of earlier works
on “pseudo scaling” [Schertzer & Lovejoy, 1984,
1987]. The above relations, especially Eq. (112),
were tested numerically with the help of lognormal
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Fig. 29. The empirical scaling exponent moment function
Kd,s(q) of the atmospheric turbulence energy flux using
respectively 4 (crosses) and 704 (dots) 10 Hz time series,
compared to the (bare) K(q) (continuous line) with univer-
sal multifractal parameters α = 1.45 and C1 = 0.24. All
these curves collapse together until qD ≈ 2.4, whereas for
larger moment orders q’s the empirical estimates become lin-
ear. The curve Kd,s(q) corresponding to an average of 704
realizations is clearly above Kd,s(q), which is only possible
for a first order multifractal transition, whereas a second
order transition curve would correspond to a tangent to K(q).
Reproduced from [Schmitt et al., 1994].

universal multifractals (see Fig. 28), as well on
atmospheric data (see Fig. 29).

10. Future Directions

The goal of this paper was to present the main
theoretical developments of multifractals and gen-
eralized scale invariance during the two and a half
decades of their explicit existence, including numer-
ical simulations and data analysis. We hope that it
reveals the awesome simplification that multifrac-
tals can bring to complex systems by reducing their
complexity with the help of a quite diverse and
widely applicable scale symmetries.

Although multifractals are increasingly under-
stood as a basic framework for analyzing and
simulating extremely variable processes, in many
scientific disciplines and in particular in geophysics,
there is still a wide gap between their potential
and their actual use. Beyond the familiar slow
and inhomogeneous pace of the diffusion of scien-
tific knowledge, an additional reason for this could
be obstacles inherited from older, preexisting and
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highly restrictive concepts of scaling: for example
that they are only geometrical descriptors or that
they are inherently isotropic. The latter had been
a particularly important obstacle for the develop-
ment of multifractals in geophysics due to privileged
directions generated by gravity and the Earth’s
rotation: a generalization of the scale notion was
necessary to overcome it.

We therefore expect that future developments
of multifractals will build upon their most recent
advances so as to better tackle issues arising in geo-
physical systems. This should include new advances
on model independent characteristics, such as uni-
versality classes and multifractal phase transitions
(beyond the scalar case), to substantially improving
existing statistical estimators of multifractal param-
eters, as well as their related uncertainties. Another
axis concerns the notion of scale itself: the fur-
ther exploration of possible features of generalized
(space-time) scales in particular in dynamical multi-
fractal processes. This raises the questions of multi-
fractal predictability and prediction that we did not
address here, although we may expect a rapid devel-
opment of multifractal forecast techniques, as well
as the discovery of stimulating connections with the
theory of random dynamical systems. Our current
understanding of multifractal extremes points out
the necessity — as well as the possibility — of devel-
oping a new extreme value theory that could deal
with processes having long-range dependencies. At
the same time, there remains the fundamental ques-
tion of establishing a more direct connection, i.e.
well beyond the present arguments based on numer-
ics, phenomenology or on a too formal symme-
try, between multifractals and the deterministic-like
nonlinear equations that are supposed to generate
them, in particular the Navier–Stokes equations. We
pointed out current developments in this direction.
This would have many fundamental consequences
such as opening the road to new renormalization
techniques able to grasp intermittency as well as to
a better knowledge of the mathematical properties
of the solutions of these equations.
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porelle des observations pluviometriques a n̂ımes,”
Comptes Rendus de l’Académie des Sciences de Paris,
in press.

Lamperti, J. [1962] “Semi-stable stochastic processes,”
Trans. Amer. Math. Soc. 104, 62–78.

Lavallée, D., Lovejoy, S. & Schertzer, D. [1991] “On
the determination of the codimension function,”
Non-Linear Variability in Geophysics: Scaling and
Fractals, eds. Schertzer, D. & Lovejoy, S. (Kluwer),
pp. 99–110.

Lazarev, A., Schertzer, D., Lovejoy, S. & Chigirin-
skaya, Y. [1994] “Unified multifractal atmospheric
dynamics tested in the tropics: Part II, vertical
scaling and generalized scale invariance,” Nonlin. Pro-
cess. Geophys. 1, 115–123.

Lilley, M., Lovejoy, S., Strawbridge, K. & Schertzer, D.
[2004] “23/9 dimensional anisotropic scaling of passive
admixtures using lidar data of aerosols,” Phys. Rev.
E 70, 036307-1-7.

Lopez, R. E. [1979] “The log-normal distribution and
cumulus cloud populations,” Mon. Wea. Rev. 105,
865–872.

Lorenz, E. N. [1963] “Deterministic nonpereodic flow,”
J. Atmos. Sci. 20, 130–141.

Lorenz, E. N. [1969] “The predictability of a flow which
possesses many scales of motion,” Tellus 21, 289–307.

Lovejoy, S. & Schertzer, D. [1998] “Stochastic chaos,
symmetry and scale invariance: From art to the
weather and back again,” Eco-tec: Architecture of the
in-Between, ed. Marras, A. (Storefront Book series,
copublished with Princeton Architectural Press),
pp. 80–99.

Lovejoy, S. & Schertzer, D. [2007] “Scale, scaling and
multifractals in geophysics twenty years on,” Nonlin-
ear Dynamics in Geosciences, eds. Tsonis, A. A. &
Elsner, J. (Springer, NY).

Lovejoy, S., Tuck, A. F., Hovde, S. J. & Schertzer, D.
[2007] “Is isotropic turbulence relevant in the atmo-
sphere?” Geophys. Res. Lett. 34, L14802.

Lovejoy, S., Schertzer, D. & Allaire, V. [2008a] “The
remarkable wide range spatial scaling of TRMM pre-
cipitation,” J. Atmos. Res. 90, 10–32.

Lovejoy, S., Schertzer, D., Lilley, M., Strawbridge, K. &
Radkevich, A. [2008b] “Scaling turbulent atmospheric
stratification, Part I: Turbulence and waves,” Q. J.
Meteorol. Soc. 134, 277–300.

Lovejoy & Schertzer [2010] “Towards a new synthesis for
atmospheric dynamics: Space–time cascades,” Atmo-
spheric Research 96, 1–52.

Lovejoy, S. & Schertzer, D. [2012] Multifractal Cas-
cades and the Emergence of Atmospheric Dynamics
(Cambridge Univeristy Press, Cambridge, U.K.), in
press.
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