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ABSTRACT
Current technology is not able to map the topography of rocky exoplanets, simply because the
objects are too faint and far away to resolve them. Nevertheless, indirect effect of topography
should be soon observable thanks to photometry techniques, and the possibility of detecting
specular reflections. In addition, topography may have a strong effect on Earth-like exoplanet
climates because oceans and mountains affect the distribution of clouds. Also topography
is critical for evaluating surface habitability. We propose here a general statistical theory to
describe and generate realistic synthetic topographies of rocky exoplanetary bodies. In the
Solar system, we have examined the best-known bodies: the Earth, Moon, Mars, and Mercury.
It turns out that despite their differences, they all can be described by multifractral statistics,
although with different parameters. Assuming that this property is universal, we propose here
a model to simulate 2D spherical random field that mimics a rocky planetary body in a stellar
system. We also propose to apply this model to estimate the statistics of oceans and continents
to help to better assess the habitability of distant worlds.

Key words: methods: numerical – planets and satellites: general – planets and satellites:
surfaces – planetary systems.

1 IN T RO D U C T I O N

Efforts to detect and study exoplanets in other solar systems
were initially restricted to gas giants (Mayor & Queloz 1995) but
multiple rocky exoplanets have now been discovered (Wordsworth
et al. 2011). Their climates depend mainly on their atmospheric
composition, stellar flux, and orbital parameters (Forget & Leconte
2014; Wang, Tian & Hu 2014). But topography also plays a role in
atmospheric circulation (Blumsack 1971) and is an important trigger
for cloud formation (Houze 2012). Furthermore, the presence of
an ocean filled with volatile compounds at low albedo is of a
prime importance to the climate (Charnay et al. 2013). Last but
not least, surface habitability relies on the presence of the three
elements: the atmosphere, ocean, and land (Dohm & Maruyama
2015). Topography is also the determinant of ocean and land cover.

Thanks to different observations techniques, measurements of
the atmospheres of hot Jupiter planets have been achieved (Sea-
ger & Deming 2010). Significantly, the detection of clouds has
been reported (Demory et al. 2013) indicating strong heterogeneity
in their spatial distribution. The detection of the first atmospheric
transmission spectra of a super-Earth (Bean, Kempton & Homeier
2010) and the discovery of a rocky exoplanet in the habitable zone
around a dwarf star open a new area in exoplanet science (de Wit
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et al. 2016). Such observations are expected to be increasingly
frequent (Tian 2015). Nevertheless, with current technology, direct
imaging of exoplanets is very difficult because the objects are too
faint and too far away. For the moment, the only way to determine
the topography is by statistical models.

In the near future, photometry techniques should improve our
knowledge of exoplanet topography, even if the bodies are not
resolved in ways similar to the small bodies in our Solar system
(see for instance Lowry et al. 2012 for estimates of the shape of
Comet 67P before the Rosetta landing). In addition, if oceans or
lakes are present, their specular reflection should be detectable,
for example, as also observed through the haze of Titan (Stephan
et al. 2010). Even if exoplanets are too far to be resolved, their
topographies should be studied now. We offer here a framework to
prepare and interpret future observations.

Recently, we reported the first unifying statistical similarity
between the topographic fields of the best-known bodies in the
Solar system: the Earth, Moon, Mars, and Mercury (Landais,
Schmidt & Lovejoy 2019). All these topographies seem to be well
described by a mathematical scaling framework called multifrac-
tals. The multifractal model, initially proposed for topography by
Lavallee et al. (1993), describes the distribution and correlation
of slopes at different scales. More precisely, we consider here the
‘universal multifractal’ model developed by Schertzer & Lovejoy
(1987). The accuracy of such a model has been tested in the case
of different available topographic fields on the Earth (Gagnon,
Lovejoy & Schertzer 2006), Mars (Landais, Schmidt & Lovejoy
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Table 1. Estimates of the parameters H, α, and C1.

Earth Mars Moon Mercury
Low High Low High Low High Low High

H 0.8 0.5 0.7 0.5 0.9 0.2 0.7 0.3
C1 0.001 0.1 0.004 0.11 0.04 0.03 0.004 0.06
α NA 1.9 NA 1.8 NA 1.4 NA 1.9

2015), Mercury, and the Moon (Landais et al. 2019). This model
has the advantage to reproduce closely the statistical properties of
natural topography: the scaling properties, but also the intermittency
(both rough and smooth regions can be found on the planets).
Universal multifractals depend on only three parameters: H controls
how the roughness changes from one scale to another, C1 controls
the spatial heterogeneity of the roughness near the mean, and α

quantifies how rapidly the properties change as we move away from
the mean topographic level. The bodies studied show transitions at
˜10 km and are characterized by specific multifractal parameters
(Landais et al. 2019). The scaling law at large scales (>10 km) is
characterized for the Moon by H = 0.2, Mercury by H = 0.3, and
Mars and Earth by H = 0.5. The α ∼ 1.9 for the Earth, Mars, and
Mercury, but α ∼ 1.4 for the Moon. The C1 ∼ 0.1 for the Earth
and Mars, with lower values C1 ∼ 0.06 for Mercury, and C1 ∼ 0.03
for the Moon. These differences are interpreted to be linked to
dynamical topography and variation of elastic thickness of the crust
(see Table 1).

Assuming that exoplanets are statistically similar to those ob-
served in our own Solar system, we propose here a stochastic
topographic model. Such models will be very useful for investi-
gating the distribution of exoplanet oceans, for studying the effect
of topography on exoplanet climates, and for studying the effect of
topography on their orbital motions or for determining the effect
of topography and roughness on photometry. It can also be used to
study the early climate on the Earth. The purpose of this paper is
to first present our statistical model and its implementation on the
sphere we then discuss the distribution of oceans and land cover.
An introduction to the multifractal formalism can be found in the
next section.

2 ME T H O D

2.1 Universal multifractals

The first application of fractional dimensions on topography was
by B. Mandelbrot in his paper ‘How Long is the Coast of Britain’
(Mandelbrot 1967). Fractals are geometrical sets of points that
have scaling, power law, deterministic, or statistical relations from
one scale to another. This type of behaviour has been observed
in geophysical phenomenon including turbulence – clouds, wind,
ocean gyres – but also faults in rock, geogravity, geomagnetism,
and topography (Lovejoy & Schertzer 2007). The most common
way to test scaling is to study the dependence of various statistics
as functions of scale. Topographic level contours (isoheights) are
fractals if, for example, the length of the contour is a power-law
function of the resolution at which it is measured. In this case, the
level set is ‘scaling’ and the exponent is its fractal dimension. In real
topography, each level set has its own different fractal dimension
so that the topography itself is a multifractal (Lavallee et al. 1993).
Numerous studies haves shown that in several contexts, topography
is scaling over a significant range of scales (see the review in
Lovejoy & Schertzer 2013). If the topography is multifractal,

fractal dimensions measured locally appear to vary from one
location to another. Indeed multifractal fields can be thought as
a hierarchy of singularities whose exponents are random variables.
Modern developments have introduced the notion of multifractal
processes for such fields. For such processes, a local estimate
of a fractal exponent is expected be different from a location to
another without requiring different processes to generate it. With
multifractals, it is possible to interpret the topography of regions
that exhibit completely different slope distributions in a unified
statistical framework. These models suggest global topography
analyses are relevant despite of their diversity and complexity.
Previous studies (Lavallee et al. 1993; Gagnon et al. 2006) have
established the accuracy of multifractal global statistical approach in
the case of Earth’s topography. More precisely, a particular class of
multifractal has been considered: the universal multifractal, a stable
and attractive class (Schertzer & Lovejoy 1987). In our previous
analysis (Landais et al. 2015), we performed the same kind of
global analysis on the topographic data from Mars, from the Mars
Orbiter Laser Altimeter (MOLA; Smith et al. 2001). This analysis
also finds a good agreement with universal multifractal but on a
restricted range of scale (Landais et al. 2015). Indeed the statistical
structure has been found to be different at small scale (monofractal)
and large scale (multifractal) with a transition occurring around
10 km.

Fluctuations. In order to interpret topography as a multifractal,
we must quantify its fluctuations. The simplest fluctuation that can
be used to describe topography is the distribution of changes in
altitude �h over horizontal distances �x. There are many other
ways to define fluctuations, the general framework being wavelets.
The simple altitude difference corresponds to the so-called ‘poor
man’s’ wavelet and can be efficiently replaced by the Haar wavelet
that tends to converge faster and is useful over a wider range of
geophysical process. Over an interval �x, the Haar fluctuation is the
average elevation over the first half of the interval minus the average
elevation over the second half (see Lovejoy & Schertzer 2012;
Lovejoy 2014 and paragraph below for a precise definition of Haar
fluctuations). The computation of fluctuations can be performed for
each pair of elevation data in order to accumulate a huge amount
of slope fluctuations. From this, a global planetary average M(�x)
can be performed and will reflect the mean fluctuation of slopes at
the scale �x.

Scaling. By estimating fluctuations at different scales, we can
observe the structure of the statistical dependence of the ensemble
mean fluctuation at scale �x: M(�x). If the topographic field is
fractal, this dependence is a power law corresponding to equa-
tion (1), where H is a power-law exponent (named in honour of Ewin
Hurst and equal to the Hurst exponent in the monofractal, Gaussian
case):

M(�x) ∼ �xH . (1)

Statistical moments. Additionally, instead of simply considering
the average (i.e. the first statistical moment of the fluctuations),
we can compute any statistical moment Mq of order q defined by
Mq = <�hq>; Mq is called the qth-order structure function. If
q = 2, it simply corresponds to the usual (variance based) structure
function. In principle, all orders (including non-integer orders) must
be computed to fully characterize the full variability of the data.

Multifractality. Mq allows us to introduce two distinct statistical
structures of interest: monofractal and multifractal. For a detailed
description of the formalism we apply in this study, the readers can
refer to Lovejoy & Schertzer (2013) briefly summed in Landais
et al. (2015). We quickly recall the main notions here.
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Figure 1. Mean fluctuations of topography of the Earth, Mars, Moon, and Mercury, as a function of scale. All data sets are normalized in order to be equal
to 1 at the scale 10 km. The normalization does not modify the scaling behaviour but emphasize the transition occurring at around 10 km. The error bars are
smaller than the size of the points.

(i) In the monofractal case the parameters H is sufficient to
describe the statistics of all the moments of order q (equation 2). In
this case, no intermittency is expected, meaning that the roughness
of the field is spatially homogenous despite of its fractal variability
regarding to scales. Typically, the value H = 0.5 corresponds to the
classic Brownian motion. This kind of model has been used in many
local and regional analysis of natural surfaces (Orosei et al. 2003;
Rosenburg et al. 2011), but it fails to account for the intermittency
(and strongly non-Gaussian statistics) commonly observed on large
topographic data sets:

Mq ∼ �xqH . (2)

(ii) In the multifractal case, H is no longer sufficient to fully
describe the statistics of the moments of order q. An additional
convex function K(q) depending on q is required:

Mq ∼ �xqH−K(q). (3)

(iii) The moment scaling function K modifies the scaling law of
each moment. The consequence on the corresponding field appears
clearly on simulations: the field exhibits a juxtaposition of rough
and small places that is clearly more realistic in the case of natural
surfaces (Gagnon et al. 2006). Moreover, it is possible to restrain the
generality of the function K(q) by considering universal multifrac-
tals, a stable and attractive class proposed by Schertzer & Lovejoy
(1987) for which the multifractality is completely determined by the

mean intermittency C1 =
(

dK(q)
dq

)
q=1

(codimension of the mean)

and the curvature α of the function K, α = 1
C1

d2K(q)
dq2 evaluated at

q = 1 (the degree of multifractality). In this case the expression of
K is simply given by equation (4):

K(q) = C1

α − 1
(qα − q). (4)

2.2 Spherical multifractal simulation

Simulations in 1D or 2D with multifractal properties and specific
values for α, H, and C1 can be obtained by the procedure defined
by Schertzer & Lovejoy (1987) and Wilson, Schertzer & Lovejoy
(1991). The necessary steps are briefly reminded hereafter.

(i) Step 1. Generation of an uncorrelated Levy noise γ α(r). When
α = 2, it simplifies to a Gaussian white noise whereas α < 2
corresponds to an extremal Levy variable with negative extreme
values.

(ii) Step 2. Convolution of γ α(r) with a singularity gα(r) defined
by equation (5) to obtain a Levy generator �α(r), by using a
convolution denoted by ‘�’:

gα(r) = |r|−2/α, (5)

�(r) = C
1/α

1 g(r) � γα(r). (6)

(iii) Step 3. Exponentiation of the generator to obtain the multi-
fractal noise ε:

ε = e�. (7)

(iv) Step 4. The final field is then obtained by fractional integra-
tion of order H (another convolution similar to Step 2).

Whereas the convolutions required for Steps 2 and 4 can easily be
performed in Fourier space for the Cartesian case, the generalization
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Figure 2. Several example of synthetic spherical topographic fields by varying H and C1. (a) Spherical simulations at 0.◦1 resolution for different values of H
(α = 1.9 and C1 = 0.1). H varies from 0.2 to 0.99. Synthetic bodies with low H values have little large-scale altitude fluctuations and are rough at small scales.
As a result, their shape is similar to a regular sphere but with a rough texture. When H increases, this behaviour tends to be reversed: large altitude variations
appear at large scales deforming the body, which has a smoother texture. (b) Spherical simulations at 0.◦1 resolution for two values of C1 (α = 1.9 and H = 0.5
constant). From left to right C1 is 0 and 0.1. The left-hand simulation (C1 = 0) is characterized by a spatially homogeneous roughness. On the contrary, the
multifractal simulation on the right shows alternating smooth and rough areas.

to spherical case is not straightforward, but as shown in appendix
5D of Lovejoy & Schertzer (2013), it can be done using spherical
harmonics. Let θ and ϕ being, respectively, the colatitude and
longitude angle, the singularity can be expressed by equation (8).
As it is symmetric by rotation along ϕ, gα(θ , ϕ) only depend on θ :

gα(θ, ϕ) = θ−2/α. (8)

Let the spherical harmonic expansion of gα(θ , ϕ) be given by
equation (9), where Ylm is the spherical harmonic of order m and l.
As gα(θ , ϕ) does not depend on ϕ, all the Ylm for m �= 0 are equal
to 0:

gα(θ, ϕ) =
∑

σlYl,0. (9)

Let the spherical harmonic expansion of γ α(θ , ϕ) be given by

γα(θ, ϕ) =
∑

ulmYl,m(θ, ϕ). (10)

Then the convolution C of gα(θ , ϕ) and γ α(θ , ϕ) is given by

C =
∑
l,m

σl

√
4π

2l + 1
ulmYl,m(θ, ϕ). (11)

3 R ESULTS

3.1 Solar system

In this section, we recall the main results of the planetary bodies of
the Solar system. In Fig. 1, we have plotted the mean normalized
fluctuations of altitude as a function of scale on a log–log plot. The
easiest way to define fluctuations at a given scale �x is to take the
simple difference of altitude between two points separated by the
distance �x. We average all of these fluctuations over the whole
planetary body. As we are focussing on statistical properties, the
results in Fig. 1 have been normalized in order to emphasize the
transition between two distinct ranges of scales. The global average
have been normalized in order to be similar around 10 km. As a
consequence of this normalization, it is not possible to compare the
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Figure 3. Synthetic multifractal topography at 0.◦1 resolution as a function of sea level. The fraction of the planet’s surface covered by ocean is noted s. The
simulation is set for the Earth/Mars-like planet (H = 0.5, α = 1.9, and C1 = 0.1). Low-altitude regions are smoother than high-altitude ones. See also Video 2
in Supplementary Material.

absolute altitude and roughness values on this plot, only the scaling
laws. One can see the similarity between curves at lower scales
(<10 km) and distinct scaling behaviours at higher scales (>10 km).
Still in each case, the dependence towards scales remains roughly
linear on a log–log plot revealing a simple power-law behaviour.
The parameters H is taken as a function of the linear coefficient
of the fit and thus control how the mean fluctuations of elevations
behave towards scales. This kind of linear behaviour is called fractal
or monofractal.

Moreover the multifractal model includes two other parameters
(C1 and α) that control the spatial distribution of roughness.
Thanks to C1 and α, it is possible to have a global description,

in a common statistical framework, including regions with het-
erogeneous roughness at a given scales. Global measures of H,
C1, and α in the case of the Earth, Mars, Moon, and Mercury
have produced satisfying results (see Table 1 and Landais et al.
2019).

We analysed the generated random field and show that the
estimated H, C1, and α are in agreement with the expected values
for a large range of parameter space.

3.2 Exoplanets

Given its simplicity and its accuracy in the case of several real
topographies, the multifractal model should be a good candidate
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Figure 4. The ccean/continent relationship. The size (as proportion of the total planet surface) of the largest continent (blue) and ocean (green)) for different
values of sea level s. The diamonds indicate the mean size with one standard deviation bars, whereas the circles indicate the minimum and maximum value in
each case. The blue and green lines correspond to proportions of the remaining area covered by continents and ocean. These results are based on 500 synthetic
topography simulations of an Earth-like planet (H = 0.5, α = 1.9, and C1 = 0.1). The red diamonds are for the Earth.

for producing artificial topographies of (exo)planets. Fig. 2 pro-
vides several examples of spherical topography obtained by our
simulation model for varying values of C1 and H. One can see
the interesting multifractal features. In the case of non-zero C1,
the roughness level is highly heterogeneous with an alternation
of smooth and rough terrains depending on the altitude. This
feature makes the multifractal simulations much more realistic by
(implicitly) taking into account the possible occurrence of oceans
or large smooth volcanic plains that are statistically different from
deeply cratered terrains or mountainous areas where the level of
roughness is high. Whereas the value of H controls the rate at
which the roughness changes with scale (see Fig. 2a), the value
of C1 = 0.1 controls the proportion of rough and smooth places
(see Fig. 2b). A high value increases the roughness discrepancies
between locations. One has to remember that only the scaling laws
are simulated here, neither the absolute height nor the radius of
the planet. Vertical exaggeration has been set arbitrarily in order
to maximize the visual impression. Nevertheless, the variety of
shapes and roughnesses produced is astonishing and in addition to
terrestrial planets, could potentially even be realistically applied to
small bodies including asteroids and comets.

To estimate the properties of potential exoplanet surfaces, we
conducted a statistical analysis of oceans and continents obtained
from 500 simulated multifractal topography fields at 1◦ spatial
resolution with the set of parameters obtained for the global
estimates on the Earth (H = 0.5, α = 1.9, and C1 = 0.1). In order to
deal with the notion of oceans and continents, one must first define
the sea/land cover. We define the sea level s, as a quantile of the
global topographic distribution. This definition simply means that
at quantile s, the sea level is such as s is also the surface proportion
of the sea. For instance, (i) s = 0.5 is the median altitude and half
of the planet is ocean covered, half by land; (ii) s = 0.9 means that

90 per cent of the planet area is ocean covered and 10 per cent is land.
Oceans and continents are, respectively, defined as disconnected
areas located beneath or above the sea level s. We plotted in Fig.
3, an example of synthetic multifractal topographies with varying
ratio s.

In Fig. 4, we plotted the size of the largest continent and
largest ocean as functions of s. We summarized the 500 exper-
iments by computing the average, standard deviation and mini-
mum/maximum. As one can see, the simulations produce typically
one large ocean or one large continent with a size close to the
maximum available area indicating that it is highly improbable to
obtain two disconnected large areas. However, at, respectively, very
small or very large values of s, the available area is split between
several small oceans (conversely, large s and small continents).
Finally, we apply the same analysis on the particular case of the
Earth based on ETOPO1 (Amante & Eakins 2009) and use red
diamonds to indicate the size of the largest ocean and continents
as functions of the terrestrial value of s (s ≈ 0.66). The points
are satisfyingly close to those obtained by multifractal simulations
supporting the accuracy of the model.

Following Dohm & Maruyama (2015), we investigate the inter-
face between ocean, atmosphere, and land. From our results, on
average the size of the largest ocean or continent is always close
to the maximum available size (near the 90 per cent line). The
congruent part of the surface covered by ocean (or land) is split up
into smaller but more numerous islands (or lakes), as also observed
on the Earth (Downing et al. 2006). There are some extreme cases,
where the largest continent is very small. Interestingly, this case
happens more for small sea levels. If s = 0.1, the extreme case
can even reach 25 per cent, meaning that the largest ocean only
covers 25 per cent of the ocean surface, 75 per cent are thus covered
by smaller lakes. The symmetric situation occurs for s = 0.9: the
largest continent only covers 25 per cent of the land, 75 per cent
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are thus covered by small islands. Regarding the Earth, 70 per
cent of the planet’s surface is covered by ocean and 30 per cent
of continent, but the largest continent reaches on average 75 per
cent of the land surface (between 25 per cent and 90 per cent), as
opposed to 55 per cent of the actual Earth’s surface. This study
shows that the configuration of the Earth is more likely with larger
connected continents as today. This situation took place 300 million
years ago, when the Earth was in a form of a single supercontinent
called “Pangea”. The Earth’s ocean corresponds to the average
situation since all the major oceans are connected through the
thermohaline circulation. From this study, we can exclude the
situation of two large unconnected oceans, representing a global
sea surface >50 per cent. The same for two large unconnected
continents, representing a global sea surface >50 per cent. As
a summary, the interface between land and sea, so important for
habitability, can be statistically constrained by this model.

4 C O N C L U S I O N

Multifractal simulations on spheres are able to statistically repro-
duce the morphology of planetary bodies, and even potentially small
bodies such asteroids and comets. In addition, it offers a wide
field of investigation for evaluating the role of the topography in
exoplanet signals, thanks to photometry and specular reflection, this
is especially true for transiting objects. The simulations will serve as
a starting point for future studies aimed at characterizing the overall
photometric response of unresolved rotating bodies. Our synthetic
numerical topographies can be integrated into the development
of realistic exoplanet climate simulations in different contexts by
integrating the roles of clouds and surface/atmosphere interactions.
In particular, exoplanets in gravitational lock are subjected to
climatic instabilities (Kite, Gaidos & Manga 2011). In particular,
our results suggest that it is statistically highly unlikely to have two
major united oceans on either side of the globe. If the dark side is
too cold and the sunny side too hot to allow the presence of liquid
water, the topography could contribute to creating to a global glacier,
continually moving the volatile elements from the illuminated side
to the dark side. This dynamic state should significantly increase
the presence of liquid water at the terminator with consequences for
habitability.

By construction the statistical properties of all our simulations
are isotropic. The procedure used can be modified to generate
anisotropic topographies but poses a number of technical problems
that have not yet been addressed. Anisotropy adds degrees of
freedom that make the problem more complex not only in generation
but also in determining parameters on real data. To deal with
this question, we should consider implementing the formalism of
generalized scale invariance (GSI; Schertzer 2011) as a future work.

We provide a 3D visualization of some examples with varying
parameters (https://data.ipsl.fr/exotopo/). In addition, a data set of
synthetic spherical topographies can be downloaded by the reader
(http://dx.doi.org/10.14768/20181024001.1)

AC K N OW L E D G E M E N T S

We acknowledge support from the ‘Institut National des Sciences
de l’Univers’ (INSU), the ‘Centre National de la Recherche Scien-
tifique’ (CNRS), and ‘Centre National d’Etudes Spatiales’ (CNES)
through the ‘Programme National de Planétologie’ and the ‘Pro-
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