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ABSTRACT Thereare two primary approaches to modeling rainfall; stochastic modeling
and dererministic integration of nonlinear pardal differential equations which mods] the
atmaspheric dynamics. The statistical advantages of the former could be combined with the
physical advantages of the larer by =sxploiting cascade models based on scale invariant
symmetries respected by the equations. Carried to its logical conclusion, this approach
involves considering the atmosphere as a space-time multifractal process admitting either a
vector, tensor or even only a nonlinear representation. The process is then defined by two
groups which respectively specify the rule required to change from one scale to another and
the corresponding transforms of fields. Both groups are characterized by their geperatots,
hence by their Lie algebra. We show how 1o extend existing cascades beyond scalar processes,
showing preliminary numerical simulations and data analyscs, as well as indicating how to

characterize and classify the scale invariant interactions of fields.

1. INTRODUCTION

1.1 The limitations of standard deterministic dyoamical
and of phenomenological stochastic modeling of rain

Geophysical fields show abundanl evidence of nonlincar
variahility resulting from strong nonlinear interactions
hetween different scales, different structuras, and different
fields. This variability is quite extreme and is associated with
catastrophic events such as earthquakes, tornadoes, flash
floods, extreme temperatures, volcanic cruptions. Another
fundamental characreristic of this variability is the very large
range of scales involved, which aften cxtends from 10,000 km
to | mm in space, and from geological scales to milliseconds
in time. The scale ratio associated with this variability is at
least 10°, and for geophysical flows the correspanding Rey-
nolds number is typically of the order of 10" - sa Jarge that

without any doubt the dynamics are all turbulent. Recently,
a systemaiic study (Lovejoy et al., 1993) of scaling of clond
radiances at visible and infrared wave lengths {see Fig. 1) has
revegled that as suggested by the unified scaling model of
atmospheric dynamics (Schertzer & Lovejoy, 1982, 1985} —
the scaling holds over at least the range =4000 km o
= 300 m (see alsa recent dynarnics studies (Chigirinskaya ¢t
al., 1994, Luazarev et al., 1994}).

Up until recently, therg have been two primary approaches
to rainfall modeling: phenomenclogical stochastic modeling
favoured by hydrologists, and deterministic dynamical
modcling favoured by meteorologists. The former was
largely based on ad hoc methods designed to mimic a
rhenomenology associated notably with a group at the
University of Washington (e.z. Avstin & Houze, [972) thatis
predicated on the assumption thal rain processes are qualita-
tively different a factor two or so in scale. The scientific
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Fig. 1 Average power spectrum for the satellites” images grouped
accordirg to the satellite and the Frequency range of the mages
(from bottom to tap): LANDSAT (visible) £ =1.7, METEQSAT
(visible) B= 1.4, METEOSAT (icfrared} §= 1,7, NOAA-S (chan-
el 1 to 53 B=1.67, 1.67, 1.49, 1.91, 1.85 ((rom Lovejoy et al..
1593).

outcome of relying on this phenamenology has been 2 series
of very complex cluster processes wherc hierarchies of time
and space scales are each assigned ‘plausible’ variations in
Tain rate and statistical fluctuations. Perhaps the best knewn
madel of this type is the Waymire-Gupra-Rodriguez-Iturbe
1984 (WGR) model which invelves a dozen or so empirical
parameters, and is at best successful only within the parrow
range of time and space scales for which it was calibrated.
The vanability of the smaller scales not explicitly incorpor-
ated into the model yields a behaviour which is unrealistically
smooth. The variability of the larger scales vields a behaviour
which has unreaitstically small vanalion from storm to
storm. A further criticism of this approach that we will
outline here is based on the fact that the rain process is
coupled to other atmospheric fields in a highly nonlinear
way; it cannot be fully treated in isolation. Conzequently,
ruin should really be regarded as a component field of 1
space-time vector proczss where each component of the
vector represents a different interacting field. Phenomen-
olagical stochastic models of the WGR type can be neither
trivially nor naturally extended to include these other inter-
acting fieids.

In contrast, the deterministic modsls were developed
tollowing the usual methods of geophysical fluid dynamics.
They are predicated on the integration of ponlinear partial
differential equations which attempt to represent the com-
plex nonlinear dvnamics including a hopefully appropriate
parametrization of thc ‘physics’. Because of the limited
number of degrees of freedom which can be explicitly

modeled, this approach makes drastic scale truncations
(studying one scale independently of the others), transform.-
ing partial differcntial equations iato ordinary differential
equations. arbitrarily hypothesizing the homogeneity of
subgrid scale fields, and performing ad hoc and unjustified
paramctnizations. In summary, both of these traditional
approaches are therefore fundamentally limited by their
inability to deal adequately with variability spanning many
orders of magnitude in scala.

Even if we ignore these (over-) ‘simplifying’ assumptions,
the consequences of such choices (which have increasingly
weak links with the real world) are ultimarely compigx and
vield unwieldy numerical codes. The relevance of such codes .
obtained after either this long series of butcherings of the
initial equations or after a long series of ad hoc attempts to
mimi the phenomenology, remains highly questionable. For
example, there is an increasing tendency to test deterministic
models by muking intercomparisons with other models! In
contrast, the phenomenological stochastic approach does
make closer contact with the data, but is virtually useless
outside of the narrow range within which il is calibrated.
Moreover, it is not even able to deal with extreme events
within the calibration range. Both of these approaches suffer
from strong limitations due to their inability to come to grips
with the fundamental problem of nonlinear varability. This
problem riust be overcome if we want cventually o under-
stand the very noisy intermittency of the signzals of hydrology
and other geaphysical systerms.

1.2 Cascades and symmetries

An alternative approach to nonlinear vanahility - first
clearly elaborated by Schertzer & Lovejoy (1987) — i3 based
on & fundamental symmetry property of the nonlinear (e.g.
Navier-Stokes) equations: scale invariance. Indeed, the sim-
plest way of understanding how geophysical variability
occurs over 4 very large range of scales is to suppose that the
same type of elementary process acts at each relevant scale
(from the large scale down to the small viscous scale). Atfirst,
this began as a fractai approach {even before the word was
coined, e.g. Richardson's (1922) celehrated poem on self-
simiiar cascades), then (after 1983} it evolved into a multi-
fractal approach.

These scale invariant multifractal models are superficially
quitc simple phenomenologicat ‘toy models’ {a bit like cellu-
tar automata). They give rise to cascades, avalanches, and
other exotic phenomena (exotic compared to conventional
smooth mathematical descriptions of the real world), but
nevertheless have highly nontrivial consequences! For exam-
ple. as we will see lzter, simple cascade modcls already give
rise {0 a fundamental difference between observables and
truncated processes, and such a difference is a general
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property of the wide class of *hard’ multifractal processes
{(which distinguish between ‘dressed’ and ‘bare’ properties
respectively). These models produce hierarchies of self-
organized random structures, which is also a very general
property of (singular) multifractal measures of singularities
and of Self-Organized Criticality (Bak et al., 1987). In
general, these simple models give us precious hints as to how
to cast order in disorder.

Until now, a basic limitation of these cascade processes is
that they have been limited to positive scalar fields (such as
the energy flux from large to small scales). They are thuseven
capable of dealing with inverse cascades (negative fluxes;
small to large scale transfers), not to mention the more
fundamental problem of vector (e.g. wind) or tensor pro-
cesses (e.g. stress or Strain tensors) necessary to deal fully
with the nonlinear dynamics. Below, we give a brief review of
this scalar cascade theory and then go on to show how itcan
be generalized to vector, tensor or ‘Lie cascades’.

2. THE SCALAR MULTIFRACTAL
FRAMEWORK

2.1 Fractals and multifractals: Fractal geometry

Fractal geometry provides the simplest nontrivial example of
scale invariance, and is useful for characterizing fractal sets.
It can also be useful in producing linear models of rain
produced by additive random processes (which involve
unique fractal dimensions) such as the (monofractal) simple
scaling model of rain tested in Lovejoy (1981) (see also
Lovejoy & Mandelbrot, 1985; Lovejoy & Schertzer, 1985).
Unfortunately in geophysics we are much more interested in
fields and are rarely interested in geometrical sets. However,
fractal dimensions can still be useful in counting the occur-
rences of a given phenomenon overa wide range of scales—as
long as we can properly pose this question. If this is the case
and the phenomenon is scaling, then the number of occur-
rences (N (/) of an event at resolution scale ! (in space
and/or time) follows a power law':

i\~ Pr
NG(E)z(E)

D; being the (unique) fractal dimension, generally not an
integer, and L the (fixed) largest scale. For instance, Fig. 2
shows the records of rain events during the last 45 years in
Dedougou (Hubert & Carbonel, 1990). These authors show
that the occurrence of rainy days duringa certain timescale T
is fractal, having a dimension Dy~ 0.8, which accounts for
the fact that the rain events on the time axis form a Cantor-

o

| Here and below the sign = means equality within slowly varying and
constant factors.

like set. Amusingly, the wet season is often considered to last
7 months per year, and 0.8~Log7 [Logl2 (recall that the
standard Cantor set is obtained by iteratively removing the
(closed) middle section of the unit interval and has a dimen-
sion of Log2/Log3).

Numerous similar (mono-) fractal results can be obtained
on different fields. However, fields having different levels of
intensity do not reduce to the oversimplified binary question
of occurrence or nONOCCUITENce. For instance, in the case of
rain we have to address the fundamental question: what is the
rain rate at different scales? What is a negligible rain rate?
Generalizations of fractal/scale invariance ideas well beyond
geometry were desperately peeded and appeared in 1983
when the dogma of a unique dimension was finally aban-
doned (Henstchel & Procaccia, 1983; Grassberger, 1983;
Schertzer & Lovejoy, 1983).

However, it is already important to note that the notion of
codimension (¢) (usually defined by c¢= D— D, where D is
the dimension of the embedding space) can be considered to
be at least as fundamental as the notion of fractal dimension
D,. Indeed, ¢ can be directly defined as measuring the
fraction of the space occupied by the fractal set 4 of
dimension D;. This can be seen by considering that a ball B,
of size I has the following probability of intersecting A:

N

P(BNA)x——=I

N @

where N({)~["2 is the number of balls size / necessary to
cover a D-dimensional space.

In fact, for multifractal fields, codimensions will be more
fundamental and useful than dimensions, since they give
intrinsic characterizations of the multifractal process. We
will therefore use a codimension formalism (Schertzer &
Lovejoy, 1987, 1992) rather than the more popular dimen-
sion formalism developed for strange attractors (e.g. Halsey
et al., 1986). One may note that recently the need of a
codimension formalism has been implicitly acknowledged in
Mandelbrot (1991).

2.2 The extension to scalar multifractals

One obtains much more information by looking not at the
occurrence of rain, but at the rain rate: a | mm daily rain rate
is negligible compared to a 150 mm daily rain rate! For
instance, Fig. 3 displays the rain rate at Nimes (France)
during a few years, and averaged over varying scales T (from
a day to a year). This figure illustrates the great intermittency
of rain rates: most of the time it is negligible, while sometimes
it reaches 200 mm (228 mm in few hours, for the famous
October 1988 catastrophe!) — in comparison the daily aver-
age is ~2.1 mm. The variability is so significant in this time
series that Ladoy et al. (19%1) found some evidence of the
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Fig. 2 Picture of 45 years of daily rain rates in Dedougou (Burkina Fasso). Each line corresponds to one year of observation, and each
black dot to a rainy day. (Hubert & Carbonnel 1990). The rain events form a Cantor-like set of dimension Dp=0.8 (the standard
Cantor set is of dimension Log(2)/Log(3)).

Fig. 3 Rain rates in Nimes (France) during the years 1978-1988, also averaged over 1 day, 4 days, 16 days, 64 days, 256 days, 1024 days
and 4096 days respectively (after Ladoy et al., 1993). It illustrates the great intermittency of rain rates: some rare but extreme events of
short periods (singularities) gave overwhelming contributions (e.g. the 228 mm which occurred in a few hours) to the October 1988
Nimes catastrophe, which are hardly smoothed over longer periods.
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Fig. 4 A representation of the rate of energy transfer e, computed
from experimental hot wire wind measurements (after Schmitt et
al., 1992b). The intermittent nature of atmospheric turbulence is
obvious.

divergence of moments (a subject we will discuss more
below). Qualitatively this variability seems strikingly analo-
gous to that of the energy flux cascade in turbulence (as
displayed in Fig. 4), an analogy which turns out to be quite
profound.

MULTIPLICATIVE CASCADE PROCESSES

It has become clear that the process transferring energy from
larger to smaller scales in turbulence is a multiplicative
process (Kolmogorov, 1962; Obukhov, 1962; Yaglom, 1966;
Novikov & Stewart, 1964; Mandelbrot, 1974): 2 random
factor determines the fraction of the rate of energy trans-
ferred from one large eddy to one of its subeddies (as shown
on Fig. 5 for a two-dimensional cut). Larger structures are
thus multiplicatively modulated by smaller ones. If we iterate
this construction infinitely (the scale ratio J = L/ where L is
the larger scale and / the smallest resolved scale which
corresponds to the spatial resolution of our field), as * — oo,
we observe singularities: at some points the field diverges (a
singularity), whereas over most of the space it goes to zero (a
regularity; for convenience we collectively call both behav-
iours ‘singularities’).

The simplest multifractal model of this genre is the a-
model (Schertzer & Lovejoy, 1983; Levich & Tzvetkov, 1985;
Bialas & Peschanski, 1986; Levich & Shtilman, 1991)
obtained with a random two-state multiplicative factor: the
only restriction is conservation of the ensemble average. If
after n iterations of the multiplicative process, ¢, is the value

of the field (for example, the energy flux to smaller scales), we
have the relation g,= ue ¢,_,, where pe is a random variable
which can have two values with the probabilities:

Pr(ued’™)=1"°
Pr(uei’ )=1—-3"°

77, ¥7, ¢ are ccnstrained so that the ensemble average
{uey=1 (ensemble average conservation of £). The (mono-
fractal) f-model (Frisch et al., 1978) is obtained when
¥y~ =—c0, ¥ =c: the subeddies are dead or alive, ¢ is the
codimension of the (unique) support of turbulence of dimen-
sion D,=D—c¢.

subeddies (3 * >0
subeddies (y~ <0)

Strong

weak

BARE DRESSED QUANTITIES

Figs. 6 and 7 show examples (in | and 2 dimensions) of an a-
model developed from a large scale to a small homogeneity
scale: the ‘bare’ cascade, which develops singularities when
the homogeneity scale goes to zero. But our sensors (e.g.
satellites) have not such a small resolution (the homogeneity
scale is perhaps of the order of millimeters), and what we
observe is an averaged field; these are the ‘dressed’ quantities
in the sense that the observation hides, dresses the activity
occurring on scales smaller than that of the observation. On
the contrary, in the same sense, a cascade whose development
islimited to the scale /is ‘bare’ on this scale of observation: no
smaller scale activity is hidden. Figs. 6 and 7 show that the
small scale singularities which appear when we develop the
cascade to the homogeneity scale may give overwhelming
contributions to the larger scale fluctuations of the dressed
quantities. These contributions can be so important that as
we will see later, they may imply divergence of higher order
statistical moments, corresponding to ‘hard’ multifractal
behaviour.

MULTIFRACTAL FIELDS
In the a-model, pure singularities y =, y ~ (only when y >0 do
we obtain singularities, otherwise they are rather regularities,
but for convenience all the y are called ‘singularities’) give rise
to an infinite hierarchy of mixed singularities (y " <y<7y7)
(n™ step, &, = step scale ratio):
nTy T +ny”
e
_ =l _ 4
Prin =)= CXi =4 )"
The probability density of the resulting field is given by:
Pre,= () )= )"« (3)

When n> > 1: ¢,(y)=¢(y), a function independent of », and
the probability density of the multifractal turbulent field g,
(the field £ at any scale ratio %) is given by Schertzer &
Lovejoy (1987b):
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CASCADE
LEVELS

v/

Fig. 5 A schematic diagram showing a
eddy is broken up into four subeddies,
large scale multiplicatively modulates the various fluxes at smaller
cascade step (self similarity).

Pr(g,=3")=nr" <)

(6)

When c(y)< d (d being the dimension of space), as already
discussed (eq. (2)), c(y) is the (geometrical) codimension
c(m=d—D() corresponding to the (geometrical) fractal
dimension D(y) of the support of singularities whose order 18
greater than 7.

In the most interesting cases c(y) 24 is associated with a
nonobviously negative (!) dimension D(y) (Mandelbrot,
1991). However the function ¢(y) remains a (finite) codimen-
sion on an (infinite dimensional) probability space (see
below). The multiple scaling behaviour of this field ¢ at scale
ratio . can be also characterized by the correspondinglaw for
the statistical moments (via a Laplace transform):

~ 7 K
(s K@

M

multiplication by

4 independent random
(multiplicative)
increments

multiplication by

16 independent random
(multiplicative)
increments

/A

two-dimensional cascade process at different levels of its construction to smaller scales. Each
transferring a part or all its energy flux to the subeddies. In this process the flux of the field at
scales; the mechanism of flux redistribution is repeated at each

The relations between the turbulent notation used here
and the strange attractor fj(a,) and © »(g) notation (the
subscript D explicitly emphasizes the dependence ofe, fyTon
the dimension of the observing space D) are: fplap)
= D—c(y) and 1,(g)= K(g)— (g~ DD withap=(D —7). The
codimension nofation is necessary when dealing with sto-
chastic processes because y, ¢, K are intrinsic contrary o %p,

f». Tp Which diverge with D — co. It also avoids introducing
negative (‘latent’) dimensions when ¢(y) > D.

Just as f(z) is the Legendre transform (Parisi & Frisch,

1985) of z(g), so c(y) is the transform of K(g):

K@= (qy—cO)) c)=""(gy— K@) @

These relations establish a one-to-one correspondence
between orders of singularities and moments (g=c'(7)
y=K'(9))
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Fig. 6 Illustration (Schertzer and Lovejoy, 1989) of the *bare’ and ‘dressed’ energy flux densities. The left hand side shows the step by
step construction of a ‘bare’ multifractal cascade (the a-model) starting with an initially uniform unit flux density. The vertical axis
represents the density of energy i flux to smaller scale with its ensemble average being conserved {g, > = |. At each step the horizontal
scale is divided by two. The developing spikes are incipient singularities of various orders (characteristic of multifractal processes).

2.3 Some basic properties of multifractal fields

Multifractal fields, contrary to (mono-) fractal geometry,
involve an infinite hierarchy of ys corresponding to the
infinite hierarchy of e(y). Indeed, according to eq. (5), the
hierarchy of codimensions may be obtained by thresholding
the field and computing the fractal codimension of values
greater than this threshold 3.7 (see Fig. 8). The codimension
function c(y) must satisfy only a rather weak constraint (see
Fig. 9): not only should it be obviously an increasing function
of y (if 7>, Pr(g; 24" ) <Pr(g;217), thus c(3,) 2 c(3,)),
but it must also be convex as K(gq) (Feller, 1971).

THE SAMPLING DIMENSION D,

Here we point out the utility of the notion of sampling
dimension D,. As we are always compelled to analyze finite
samples, it is rather obvious that the highest singularities will
rarely be present in a given sample. More precisely speaking,
some of the singularities will almost surely not be presentina
finite sample. Indeed, when we analyze only one sample/

realization of the field on a dimension D at resolution ., the
largest singularity y, we can reach is given by c(y,)=D. More
generally, if we are studying ¥V samples, we can introduce the
sample dimension D, #0 (at resolution 1) defined as N, ~ ) >
(Schertzer & Lovejoy, 1989; Lavallée, 1991; Lavallée et al.,
1991). This largest singularity increases with D,, since its
order is then given by ¢(y,)= D+ D, (see Fig. 10), it corres-
ponds to a moment order ¢,=¢'(y,) beyond which K(g)
becomes spuriously linear. The sampling dimension D, gives
us a quantitative way to describe how larger samples enable
us to explore more and more of the probability space,
eventually attaining the rare singularities responsible for the
wild behaviour of experimental fields.

CLASSIFICATION OF MULTIFRACTAL
FIELDS

Most of the theoretical and corresponding empirical studies
unfortunately presuppose very restrictive calmness and regu-
larity assumptions on multifractal field. Such a limited view
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Fig. 8 The importance of the threshold to analyze a multifractal
field: if y, <y, D(y,)> D(y,), and e(y,) < ¢(y,), the codimension
function is an increasing function.

N
c(y)
rare q=1
events
c,
Tﬁ-model
/ e
G extreme Y
events —>

Fig. 9 A schematic c(y) diagram. For conservative process, there
is a stationary value (C)).

of multifractals is quite misleading. It is therefore a matter of
some importance to reveal the full diversity of multifractality
and classify the different types of possible multifractal field.
Indeed a purely geometric approach (without any reference
to a stochastic process; Parisi & Frisch, 1985: Paladin &
Vulpiani, 1987) presupposes that the singularities are
bounded by 7,£,, the upper bound of geometrical singulari-
ties, with ¢(y%%, )= D and 8, < D. Stochastic processes are
generally capable of having singularities of all orders (i.c.
¢(y)= D). However, conservation of the flux (e.g. energy flux
in turbulence) may introduce a new constraint, which will
depend on the type of conservation involved. If we assume
microcanonical conservation (i.e. conservation on each reali-
zation, see Benzi et al., 1984; Pietronero & Siebesma, 1986;
Meeveau & Sreenivasan, 1987% Sreenivasan & Meneveau,
1988), then the singularities are bounded above by 3 = D.
The superscript m corresponding to ‘microcanonical’, this

* Their celebrated ‘p model’ is in fact nothing more than a microcanonical
restriction of the x-model discussed earlier.

Ih

Cc
M ib+p, NP

/

D

c,

LY
s

€D v ¥

Fig. 10 With a larger and larger number of samples N,, the
maximum reachable singularity y, increases (N,=%.%; c(y,) =D
+D,; Schertzer & Lovejoy, 1989).

bound is reached only for the extreme case in which for each
step all the density of the flux is concentrated on a single
subeddy (of volume i ™). We may say that singularities
remain ‘calm’ and ‘soft’. As soon as we leave this restricted
framework to canonical conservation (i.e. ensemble conser-
vation) we have some ‘wild’ singularities y >y, which can
even be ‘hard’ in the sense that they are responsible of the
divergence of moments (see below),

DIVERGENCE OF MOMENTS,

MULTIFRACTAL PHASE TRANSITIONS AND
SELF-ORGANIZED CRITICALITY

It is possible to show (Schertzer & Lovejoy, 1987) that the
integration of ¢f over a set of dimension D diverges (for
i — o0) when ¢>gp; g, given by: K(gp)=(g,— 1)D; gp>1.
More precisely, consider the flux over a volume element B,
(scale ratio ):

I1(B,)= J‘ ed®x ©9)
B

£

where e=lim,__ &. If we now consider & p
=TI(B, )/Volume(B,) as a (dressed ) estimate of the (bare) ¢,
over the D-dimensional ball B,; the two will have totally

different statistical properties:

{ef>< oo all g; (efpr=cwgzgy(>1) (10)

This is the fundamental difference between the two quanti-
ties ‘bare’ ¢, and ‘dressed’ ¢, ,. One may note that the singular
statistics (of dressed quantities) has been taken as a basic
feature of self organized criticality (Bak et al., 1987). Diver-
gence of moments of a random variable X (< X¢> = oo for
g>4,) corresponds to a ‘hyperbolic’ (algebraic) fall-off of
the probability distribution:

PriXzs)ms™ (s> 1) = <X =0 forg>q, (11)
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The physical significance of divergence of moments is that
when g< g, the dressed moments are macroscopically deter-
mined whereas for g> ¢, the moments will be microscopi-
cally determined depending crucially on the small scale
details. It is possible to make 2 formal’ analogy between
conventional thermodynamics and multifractals; for exam-
ple, theentropy corresponds to ¢(y) and the temperature to 1/
g, the Massieu potential (the free energy divided by tempera-
ture) to K (g). Therefore, this qualitatively new behaviour for
g>q, (low temperatures) can be considered as discussed in
Schertzer & Lovejoy (1992, 1994) and Schertzer et al. (1993);
this corresponds to a first order multifractal phase transition,
where the thermodynamic potential K(g) has a first order
discontinuity at the critical temperature analog gp ! (Schmitt
et al. 1994; Chigirinskaya et al. 1994 for corresponding
atmospheric data analysis: g5~ 7 for velocity field).

2.4 The three fundamental exponents: HC,a

It is already important to note that three parameters are
sufficient to characterize locally (around the mean singular-
ity) the infinite hierarchy of fractal codimensions c¢(y). Fur-
thermore, this characterization turns out to be global under
certain general hypotheses of universality we discuss in the
next section. The three fundamental exponents are the
following:

_ H describes the deviation from conservation of the flux:
¢e,y~h~H. H=0 for conservative fields (for instance the
energy flux in turbulence, {&,» independent of &) whereas
according to the Kolmogorov relation in real space
Av, =P 7'7 (where 4v; 1S the wind shear amplitude
[v(x+2~1)— v(x)| at scale ratio ), the wind shear is a
nonconservative field (H=1/3).

— C, describes the mean inhomogeneity: it is the codimen-
sion of the mean singularity: C,= ¢(C,— H), in the case
of conservative fluxes it is also the order of the mean
singularity (and simultaneously the fixed point of c(y)).

— arepresents the degree of multifractality measured by the

convexity of ¢(C,) around the mean singularity (C, — H)

measured by the radius of curvature: R(y=C,—H)

=234, which increases with the range of singularities

(starting from zero with the monofractal f-model). As

shown below, in the case of universal multifractals, o is

also the Levy index of the generator and 0<2<2.

2.5 Universality by mixing of multifractal processes

The particularities of the discrete models (e.g- x-model)
remain as the cascade proceeds to its small scale limit. If we
simply iterate the model step by step with a fixed ratio of scale
%, for the elementary step, We indefinitely increase the range

3 Formal since we here are considering systems out of equilibrium.
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Fig. 11 Keeping the total range of scale fixed and finite, introduc-
ing intermediate scales and then seeking the limit of an infinite
range of scales leads to universality.

of scales A — co which already poses a nontrivial mathemati-
cal problem (weak limit of random measures, se¢ Kahane,
1985). On the contrary, by keeping the total range of scale
fixed and finite, mixing independent processes of the same type
(by multiplying them, preserving certain characteristics, €.8.
variance of the generator) and then seeking the limit A — o0,
a totally different limiting problem is obtained! For instance,
this may correspond to densifying the excited scales by
introducing more and more intermediate scales (see Fig. 11),
and seeking thus the limit of continuous scales of the cascade
model. Alternatively, we may also consider the limit of
multiplications of i.i.d. discrete cascades models.

In both cases, multiplying processes corresponds 1o
adding generators: &, ~¢' - where g, is the process and T, isthe
generator. If we seek generators which are stable and attract-
ive under addition (using the results on the second Laplace
characteristic function K(q) equivalent to the free energy),
we must consider (Schertzer & Lovejoy, 1987, 198%;
Schertzer et al., 1988; Fan, 1989) stable extremal Lévy noises
with 1/f spectra, which are characterized by a Lévy index a:
Pr(-T=zs)=s " (s> 1) = any g= (=T)>=c0.
Except for the Gaussian exception x=2, « is the order of
divergence of moments of the generator. These generators
yield the following universal expressions for the scaling
function of the moments of the field K(g) and of the
codimension function ¢(y — H):

a 1 o'
cy—H)=C, (—"—,+a) a#l
Co' o
(12)
c("f—H)=C1cxp(—é—!—l) ax=1
(Eoiemm
K(q)+Hq=——I(q ) a1l
i (13)
K(g)+ Hq=C,qLog(q) a=1

where (1/a+1/a"=1, and for g=dc/dy>0) and C, is related
to the coefficient C of the canonical Lévy measure dF by:
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Fig. 12 Universal (bare) singularities codimension ¢(7)/C, corres-
ponding to the five classes; here x=2, 1.5, 1, 0.

C=CT'3-a)a; dF=1,,C2—a)x %dx/x (14)

(here I" is the usual gamma function and should not be
confused with the generator. Figs. 12 and 13 show universal
K(g) and c(y) curves, o varying from 0 to 2.

The two functions K(g) and c(y) are analytic, and depend
only on the three parameters H, C,, and «. The knowledge
(either by measurements or from theoretical considerations)
of these parameters is then enough to compute all the
statistical properties of the field. The implicit hypothesis is
that this field results from a universal process, hence these
parameters are universal. The first, H, is often known
theoretically and experimentally, and is therefore already
recognized to be universal for many fields. The second, Cy,
may perhaps fluctuate slightly with time and location (e.g.
Tessier et al., 1993). In fact the most important parameter,
the Levy index «, which is fundamental for the classification
of the fields (see Tables 1 and 2) is the most likely to be
universal. Some experimental results tend to confirm this
assumption: at least for the temporal rain rate: five different
experiments (Hubert et al., 1993) have (independently) esti-
mated the different time periods, geographical locations, and
for both rain gauge accumulations and radar measurements
the value @ =0.5+0.05 (see also Lovejoy & Schertzer, 1991,
1992, 1995).

2.6 Scaling anisotropy and generalized scale invariance
(GSI)

The standard picture of atmospheric dynamics is that of an
isotropic 2-D large scale and an isotropic 3-D small scale, the
two separated by a ‘meso-scale gap’. Mounting evidence now
suggests that, on the contrary, atmospheric fields, while
strongly anisotropic, are nevertheless scale invariant right
through the meso-scale. The idea of generalized scale invar-

Fig. I3 Universal (bare) singularities codimension ¢(y)/C, corres-
ponding to the five classes; here =2, 1.5, 1, 0.5, 0.

iance (G8I) is to leave the artificial 2-D/3-D dichotomy and
to postulate first scale invariance and then study the
(unusual) remaining symmetries.

The specification of GSI requires a generator (G) which
can be a nonlinear function (varying from point to point):
data sets with very large ranges of scale will be needed, and
even then, some simplifying approximations will be necess-
ary. As a result of these difficulties the first empirical tests
were studies of the compression (stratification) part of GSI
associated with the trace of the generator (the elliptical
dimension d,;). The studies have specifically avoided the
difficult differential rotation problem (see below) by concen-
trating on the vertical stratification Schertzer & Lovejoy
1983, 1985) who estimated D,,=23/9=2.555... for the hori-
zontal wind field, D= 2.22 + 0.07 for the vertical stratifica-
tion of rain, and D, =2.5+0.3 in space/time for the rainfield
(Lovejoy et al., 1987; Lovejoy & Schertzer, 1991).

To go from one scale to another, we only need to specify
the scale ratios (see Fig. 14, which shows anisotropic scale
invariance). We can here define a (semi) group of scale
changing operators T, =1~ (G being the generator) which
reduces the scale of vectors by the scale ratio h: B, = T, (B, ) is
the ball of all vectors at scale A (where the unit ‘ball’ B, defines
all the unit vectors). Virtually the only other restriction on 7T,
is that the B, are strictly decreasing (B, > B, ; . <}'), hence
that the real parts of the (generalized) eigenvalues of G are all

>0.

Approximating G by a matrix leads to linear GSI: when
there are no off-diagonal elements we obtain only differential
stratification, ‘self-affine” (multi-)fractals. Off-diagonal ele-
ments are associated with differential rotation and can be
empirically estimated on scanned cloud satellite images with
the help of the Monte Carlo Differential Rotation Technique
(Pflug et al., 1993) or (better) by the Scale Invariant Genera-
tor Technique (Lewis et al., 1995).
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Table 1. Values of the universal multifractal parameters as estimated by different authors on different data sets.

Gauge, daily Gauge, 6 minutes Gauge, daily Gauge, daily Gauge, 15 minutes
accumulation resolution accumulation accumulation resolution
Location Global network  Réunion Islands Nimes (France) Dédougou Alps (France)
{France) (Burkina Faso)
Stations 4000 1 1 1 28
Duration 1 year 1 year 40 years 45 years 4 years
(scaling regime (scaling regime (scaling regime
up to 16 days) up to 30 days) up to 16 days)
o 0.5 0.5 0.45 0.59 0.50
(] 0.6 0.20 0.6 0.32 0.47
Reference Hubert et al. (1993) Ladoy et al. (1993)  Hubert et al. (1993) Desurosne et al. (1995)

Table 2. The estimated universal multifractal parameters for each group of satellite pictures studied in Tessier et al. (1993).

The accuracy on the values of the parameters is about +£0.1.

Satellite Sensor Wavelength Scaling range o C, H

NOAA 9 AVHRR channel 1 0.5t00.7 ym 1to 512 km 1.13 0.09 04
NOAA 9 AVHRR channel 2 0.7 to 1.0 ym 1to 512 km 1.10 0.09 0.4
NOAA 9 AVHRR channel 3 3.6103.9 um 1to 512 km 1.11 0.07 0.3
NOAA9 AVHRR channel 4 10.4to 11.1 ym 1to 512 km 1.35 0.10 0.5
NOAA 9 AVHRR channel 5 11.5t0 12.2 um 1t0 512 km 1.35 0.10 0.5
METEOSAT VIS 0.4to 1.1 um 8 km to 4000 km 1.35 0.10 0.3
METEOSAT IR 10.5t0 12.5 ym 8 km to 4000 km 121 0.09 0.4
LANDSAT MSS 0.49 to 0.61 ym 166 m to 83 km 1.23 0.07 0.4

3. BEYOND SCALAR MODELING
3.1 Motivations

Until now the multifractal modeling of rain has relied on the
simplifying hypothesis that the interaction between rain and
the dynamics can be reduced to a scalar relationship (namely
between their respective fluxes). This is fundamentally the
reason why until now, multifractal results have always been
expressed in terms of scalar fields. Theoretically, however,
even in the simplest case of passive advection this relation is
vectorial (the velocity field coupled with the concentration
field via the gradient of the latter*). This situation is in a way
paradoxical: classical methods, such as those used in GCM
modeling, deal easily with this vectorial interaction but on a
very limited range of scales, whereas scaling models deal
easily with an infinite range of scales but avoid treating this
vectorial interaction.

* And not by a scalar relationship between their respective fluxes, as
simplified in multifractal scalar cloud modeling (Wilson et al., 1991;
Pecknold et al., 1993).

Below, we develop a rather general framework of ‘Lie
cascades’ in order to analyze and generate multiplicative
processes for vectorial and tensorial fields. More generally
we study the rather abstract fields admitting a Lie group of
symmetries. This framework opens a scaling and vectorial
alternative to GCM techniques, since then we may consider
the generator of the joint field (v, R, /,....), (= velocity, rain
rate, radiance, etc.) which generates not only each com-
ponent field, but also their (vectorial, tensorial, etc.)
interrelations.

Are the scalar cascade processes in fact restricted to
positive scalar fields? If such was the case, then their rele-
vance to turbulence could be quite questionable. Indeed, the
energy flux density ¢, (from larger to smaller scales L/fI,
»=[1,00]) in turbulence is not always positive. Using analyti-
cal closure schemes (Lesieur & Schertzer, 1976), or the
Renormalization Group approach (Forster et al., 1977;
Herring et al., 1982), the essential backwards contribution of
the flux has been shown to result in a ‘beating term’ or
‘renormalized forces’ due to nonlocal interactions. Turbu-
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Fig. 14 An illustration of a self-invariant operator giving isotropy as compared to a generalized scale-invariant operator giving

anisotropy.

lence clearly cannot be reduced to an eddy-viscosity and a
one-way downward energy flux, the balance is somewhat
more subtle.

Another fundamental reason to look for extensions of
cascade processes is that turbulence is fundamentally vector-
ial as recalled by Kraichnan (1958). Even more generally
mechanics is at least tensorial! This is clearly seen by con-
sidering the fundamental continua mechanics equation relat-
ing the acceleration a to the stress-tensor ¢ and the field of
forces F:

pa=div(e)+ F (15)

The relationship between the strain tensor D and a generally
involves the fourth order tensor of elasticity. And if we want
to investigate the similarities and differences between (fluid)
turbulence and seismicity understood as the ‘turbulence of
solids’ (Kagan, 1992), tensorial cascades will be
indispensable.

Before solving the problem, let us point out the difficulty.
The main problem with a real cascade with alternating signs
is that the set of real numbers is not algebraically closed, i.e. it
doesn’t satisfy d’Alembert’s theorem; in particular positive
numbers have 2 square roots, negatives none. A rule related
to this is the sign of products: products of the same sign give
positive numbers, while products of two opposite signs give

negative results. As a consequence there are obviously some
nontrivial problems in renormalizing a discrete real cascade
by a factor 2 and conversely to introducing intermediate
scales. More fundamentally, and especially when one
considers a continuous process, a series of multiplications
corresponds to an exponentiation of a sum, unfortunately an
exponential of any real number is a positive number!

3.2 Complexification of a cascade as an example

By considering the algebraic closure of the real numbers (i.e.
the set C of the complex numbers) we should already be able
to solve the above mentioned difficulties. For instance, the
image of C under exponentiation is C itself. On the other
hand, complex multiplication (with v(=x,+ix,)) corre-
sponds to a particular linear transformation on %2 i.e. the
conformal transformation which is a particular subgroup of
L(#%, &) (the set of all linear transf ormations on %#°) which
can be identified with the product of rotation (angle €) and
dilation (ratio r) (v=re'¥).

v.=exp(l5)v, where v, veCTl,eC (16)

The significance of I'y; =Re(I',) and I';;=Im(T}) is
obvious: I, generates a nonnegative cascade process which
modulates the amplitude of the modulus of v,, whereas 1B
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gives the rotation of v;, hence the sign ofits real part. We may
focus ourselves on the special case where I'g; and iI';; are
independent stochastic processes with corresponding
characteristic functions K(9), K,{(g):

(> = Coxp(gT ;) )<exp(iqT ;)Y <vf > =hHOAKO =3 KO
an

The characteristic function K (g) of the complex process 18
therefore simply:

K(g)=Kn(9)+ K, (9) (18)

It is important to note that whereas K 2(q) is real for any
real g, K,;(g) is complex, being in general neither real nor pure
imaginary. The condition of conservation ({v,>=1) still
corresponds to K(1)=0, but not to K;(1)= 0, i.e. I'p gener-
ates a nonconservative process for the vector modulus. Letus
consider as an example (Brethenoux et al., 1992) and as an
illustration the discrete lognormal case (Gaussian generator;
A, being the fixed step scale ratio). The real and imaginary
exponential increments Troand I respectively will be a
Gaussian variable of variance o and mean m (resp. o} and
m;) which lead to a generalization of the scalar universal
scaling function (eq. (13) with 2=2):

Kn(?)=cn.g(4’2"4)—qu; Cl.nchiﬂ; Hp=C, Mg

K(9= _CI.J(QZAQ)—HKF; C.= CHES H=C —im

K(@=C\g*°— 9 —Hy C,=Cyx~C.p H=HztH;
(19)

A conservative field is obtained withmg = — C, (i.e. # = Cy »,
as required to obtain a conservative cascade of modulus),
m;=0.Fig. 1 5(a)—(e) gives the first steps of the corresponding
complex cascade.

One may note that K (g) remains of the standard universal
form even for complex g. Similar properties hold for Lévy
processes when 'z, and I';; are independently identically
distributed. However, I'y, and I, do not necessarily need to
have the same « and there is no longer the requirement that
I',, should correspond to an extremal Lévy process, since
K,(g) for real g is the Fourier characteristic function of T';;
whereas K (g) remains the Laplace characteristic function of
T 4;, and admits the usual scalar universal form (eq. (13),
with respectively Hg, C, g o instead of H, C,, «). The rather
more general universal form® of K,(g) is defined for all ¢ (the
+ is the sign of g). Note that f is the asymmetry parameter of
the Lévy process I',,, and f=—1 for an extremal Lévy
process such as T'g;:

=1.f

C i
K;(‘?)+Hﬁ=—a—_—l(€l“ —a) (x#1)

5 Which can be obtained with the help of Appendix A of Schertzer & Lovejoy
(1991).

K,(g)+Hg=—C., glLoggl (@=1) (0)
Co = C,{cos(m,r’Z}:I:iﬁsin(ncsz)}l“(S—-ac,)a, (£ =sgn(q))

with C, being the coefficient of the canonical Lévy measure
dF (cf. eq. (14)) defining I';;. Fig. 16 displays the complex
scaling analysis for a visible and infrared satellite image pair
(v=1I,+ il I, and I ; being the visible and infrared radiances
respectively).

3.3 Vectorial processes

In the previous subsection, we extended scalar cascades to
two component vector cascades by complexifying the cas-
cade. More generally, we may consider nonpositive cascades
as being components of more or less straightforward vector-
ial extensions of positive real processes:

v, v,e #% T, e L(Z, %)

the vs being vectorial fields from #¢ to &, v, being a
homogeneous vectorial field (e.g. in the strictest sense:
Yy e &%, (x+ y)= v, (x)). Just as in the positive scalar case, in
order to obtain multiple scaling of the moments I'; should be
some band limited 1/f noise although now we have a tensor
scaling function K(g):

v, =exp(l’;, Jvis 21

vi>1:¢exp(gl, ) =259 K(@e L@, &) (22)

Introducing furthermore the vectorial singularities y and
their codimensions c(y):

Vye R, S, ()= e v217  PriveS)~i T (23)

For conservative processes, we still have the same type of
conservation law®:

py=Cn); ie. K1)=0 (24)

3.4 Lie groups and their Lie algebra of generators

In fact, independently of the representation of the v field and
of the B, balls (as discussed above), we are only using the
(multiplicative) group properties related to the basic fact that
scale ratios simply multiply. Using /=11, we obtain:

r.=T,T.; ©%=°T (25)

PR YL

2

T, 1, prescribe the group transformations respectively of the
space transformation acting on the balls B, and of the

cascade process acting on the fields v;:

B,=T,B; (26)

BETY
Such one-parameter groups can be obtained as the result

of stochastic flows obtained from stochastic integrations

& Which is a consequence of the martingale property of the process (the
conditional expectation at resolution scale A of v. (R">h) is v,) (see
Kahane, 1985).
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Fig. 15 Anexample ofa complex cascade

complex singularities.

(more precisely from Stratatovich integrations as discussed’
in Schertzer & Lovejoy 1995) over infinitesimal (random)
generators dI and dG:

de,=g,dl; dT,=T.dG, @7

Originally (Schertzer & Lovejoy, 1991) suchan integration
was proposed onlyon T, in the case of the so-called nonlinear

7 Contrary to the most popular stochastic integration, i.e. the Ito integ-
ration, the Stratatovich integration corresponds to a centred integration
(e.g. Kunita, 1990).

with a Gaussian generator (2=2). (a) Initial homogeneous complex field, (b) the bare field
obtained at the first step, (c) the corresponding complex singularities, (d) the bare field obtained

at the third step, (¢) the corresponding

(random) GSI ( generalized scale invariance). The solutions
of the above equations will be denoted as e" and %
respectively.

Corresponding to the group property of the transforma-
tion of the field or of the space, thereisa Lie algebra structure
for the generators, ie. there is a skew and distributive
product [.], called the Lie bracket. The group properties of
the statistical moments of the field or scale transformations
correspond to the fact that the second characteristic function
(cumulant generating function) K, (g) generates (for the



170

FROM SCALAR TO LIE CASCADES

6.5 -
@
* 4
L] +
5.5+ * +
+
* 3 o+
. -+
4.5+ @ +
o =
£ = v + +
3.54 A L4 " £
= ®
s 1. e
[ 2.5 o +
== L = ReK(q)
3 Y i
o 3 + ® RekK(q) of visible
1.54 ok + ReK(q)of IR
*+
® b b
e o oy —
-0.5 T T T
0 2 3 4
q

Fig. 16 The moment scaling functions are shown for a visible and infrared satellite image pair (K,,(g). K,(g) respectively) at 8 km
resolution taken over the Montreal area as part of the RAINSAT automated satellite rain algorithm (each image is 256 x 256 pixels).
Also shown is the K(g) function described in the text which is obtained by considering the multiscaling of the modulus of the vector
(visible, infrared). This gives partial information about the scaling interrelation between the two fields. Using the double trace moment
(Lavallee, 1991; Lavallée et al., 1991, 1993), we obtain &, = 1.7, u,p=1.75, a5 =1.73, C, ,=0.22, C, ;r=0.20, C, ,=0.25 (accuracy of the

estimates is about £0.2).

different values of g) a Lie subalgebra, e.g. for the v field:

dviy={vi¥dK. (q) or (vfy=eh@ (28)
We are now able to give a precise notion of scaling:
dK,~Kdifi. or eNai* (29)

This already shows that the characteristic function K,
should be log divergent in the scale ratio % just as in the
framework of the scalar cascade. It can further be shown
(Schertzer & Lovejoy, 1993) that the log divergence of X still
corresponds to the fact that the generator is a ‘pink noise’, i.e.
having a (generalized) spectrum being exactly inverse to the
wave number.

3.5 A quaternion-like representation of L (#*,%) as a
preliminary example

Considering the linear transformations of the plane, we need
not restrict our attention to conformal ones, which corre-
spond to complex multiplications. Indeed. one basis {¥,} of
the matrix representation of L(#>, #°) is given by the 4
following matrices:

10 0 -1
1=Y,=  I=Y,= ;
01 1 0
01 I |o
J=Y,= s K=Y,= ;
10 0 -1

which satisfy the following anti-commutation relations (the
anticommutator is defined as {A,B}=(AB + BA):

(30)

{¥,.Y,}=0, {Y.Y,}=0, {Y,Y,}=0 (31)

Compared to the complexification example (Section 3.2) this
has a richer structure due to the addition of the ‘parity’
operator J and the ‘conjugation’ operator K. With real and
independent pink noises I'', ' =I"'Y is a scaling tensor field
(satisfying eq. 29). Its characteristic function K (g) will be
simply the sum of the characteristic functions K,(g) of the I"".
Below we see that when quaternions and Clifford algebra are
considered an even richer structure is obtained.

3.6 Classification and factorization of the Lie processes

Bearing in mind the very general Lie framework, we now can
study a system which is invariant under different symmetries,
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not only scaling symmetries. We are naturally led to look for
a kind of classification of the possible algebra. The answer is
rather classical and half-positive: any Lie algebra can be
decomposed® into a (semi-direct’) sum into 2 ‘semi-simple
algebra’ ¢ and its radical R. Whereas there exists a universal
Cartan classification (e.g. Sattinger & Weaver, 1985) of the
(real or complex) semi-simple algebra (e.g. the celebrated
so(n)...), no such result exists for radicals, which not only are
totally different from semi-simple algebras, but correspond,
as pointed out below, to scale symmetries. It means we are
entering a particular world of symmetries which has not yet
been explored. Indeed, whereas a semi-simple algebra is one
having no abelian ideals'® (other than 0), the radical R
contains abelian ideals being defined as the maximal solvable
.deal'!. A trivial but fundamental example of an abelian ideal
is the ideal generated by the identity {.1]heZ or e C1, hence
the trivial scaling, it corresponds to the stronger property of
nilpotency'.

On the one hand, the solvability of the radical prevents it
respecting a simple universal classification, on the other
hand, it yields a simple generalization of factorization.
Indeed, for a generator defined onan abelian ideal s, then the
field merely factorizes as a product of fields generated by a
element of the basis X, (T =T"X,) of s (X}, Xp,..., X, ] span-
ning $):

(32)

where the T, are pink noises. Such a factorization can be
extended to the whole radical of the algebra thanks to the Lie
theorem on solvable algebra and a Yamato-Kunita theorem
(Kunita, 1990). Indeed, the factorization still holds in the
following sense: {X;, X5, .-, X} which spans the increasing
ideals g,([R.gi-\)=8: R=8,>8n-1>" .og,20, dim(g;)
=i.), then the I are replacedineq. (32) by N i which are sums,
or products, orintegrals, or exponentials of the I'Y. In the case
of nilpotency'?, which may be relevant for scaling, exponen-
tials do not intervene, hence we are back to a rather simple
factorization.

3.7 Quaternions and Clifford algebra as examples

Quaternions (for the dimension 4) and Clifford algebra C,
(for the dimensions 2", n>2) are the real linear Lie algebra (a

% Via a Levi decomposition.

% The sum of of 1wo subalgebras a and & is direct when the two commute
([a.B]=0), it is semi-direct when a=[a,b].

19 A subalgebra s is an ideal of g if s2[s,g] (i.e. not only [s.s]).

1! Je the largest ideal leading by a nested sequence of ideals to an abelian
ideal.

12 The limit of a nested sequence of ideals is not only an abelian ideal. but it
commutes with the whole algebra.

3 Nilpotency is a slightly stronger property than solvability.

subalgebra of L(C",C")) defined by the following anti-
commutators relations corresponding to a (Pauli) factoriza-

tion of the Laplacian'*:
{o*, 0" }=26"" (33)

This algebra is generated by I, &;,..., %, and all their products

a;.0;...0 (which can be always be ordered. since o.2;
= —x,.a,a2=1), thus contains 2 elements. For the
quaternions:

(34)

WHPNEH

and they can be expressed with the help of the Pauli matrices

G

0, =t; O s T E: el N

0 -—ioy
a -
o 0

(36)

For n=4, we have:

g 0 g, 0 0 o,
w0 = ; = L= 5
0 o 0 o, o, 0

More generally n=2m or 2m+ 1, and for any j<m; the «;
can be expressed on (C%)®" (the spinors space) and for
n=2m+1; oy, =o3®2”‘+]. Not only do these well-known
examples allow us to generalize rather straightforwardly the
result of complex cascades to n>1 (simulations as well as
data analysis, e.g. multichannel radiance field will be devel-
oped in subsequent works) but also, as mentioned earlier
they correspond in a given representation to well-defined
equations. This shows that the Lie algebra of the generators
of symmetries might well be the indispensable tool necessary
to bridge the gap conclusively between stochastic models and
deterministic equations.

4. CONCLUSIONS

In Schertzer & Lovejoy (1987), it was proposed that in many
geophysical applications scaling symmetries can be used as
dynamical constraints instead of coupled nonlinear partial
differential equations. This is the usual physics notion thata
system is totally determined once all its symmetries are
known. Since scaling arguments are so general it has become
urgent to develop a formalism for handling scaling for
coupled multifractal processes (e.g. vector cascades) as well
as for restricting the generator of the scaling symmetries
using additional symmetries. Both goals require the f ormal-
ism of the Lie cascades developed here.

Mo =
(z r#} o
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We have not only shown there is no fundamental reason to
restrict cascade processes to positive (real) quantities, but
there are also very wide possible generalizations to rather
abstract processes. As a consequence, a potentially wider
unity of geophysics is restated in a new way. At the same time
a quantitative way to classify the wide diversity of phenom-
ena which occur on a large range of scales is pointed out with
the help of the classification of the corresponding Lie
algebra. This classification will also enable us to discover new
types of nonlinear interactions.

Immediate applications of the ideas discussed here include
the simulation of vector multifractals and the scale invariant
characterization of the interrelations of rain, cloud radiance
and other fields. We gave a first example of the latter by
analyzing the multiscaling of the vector moments of the joint
visible and infrared cloud radiance fields from GOES satel-
lite data. When this is extended to radar reflectivities of rain
and rain gauge measurements, the resolution independent
characterization of their interrelation can form the basis of
resolution independent satellite rain algorithms, as well as
for the resolution independent calibration of radars from
rain gauges.
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