
S

Scaling and Scale Invariance

S. Lovejoy
Physics, McGill University, Montreal, Canada

Definition

Scaling is a scale symmetry that relates small and large scales
of a system in scale-free, power law manner: without a char-
acteristic scale. Because it is a symmetry, in systems with
structures/fluctuations over wide ranges of scale, it is the
simplest such relationship.

In one dimension, the notion of scale is usually taken as the
length of an interval, and in two or higher dimensions, the
Euclidean distance is often used. However, the latter is iso-
tropic: It is restricted to “self-similar” fractals, multifractals.
Most geosystems are stratified in the vertical and have other
anisotropies so that the scale notion must be broadened.
“Generalized Scale Invariance” does this with two elements:
a definition of the unit scale (all the unit vectors) defining the
scales of the nonunit vectors with an operator that changes
scale by a given scale ratio. This scale-changing operator
forms a group whose generator is a scale-invariant exponent.

Systems that are symmetric with respect to these scale
changes may be geometric sets of points (fractals) or fields
(multifractals). The relationship between scales is generally
(but not necessarily) statistical and involves additional scaling
relationships and corresponding scale-invariant exponents.
These are often fractal dimensions, or codimensions (sets),
or corresponding dimension, codimension functions
(multifractals).

Scaling Sets: Fractal Dimensions and Codimensions
Geosystems typically display structures spanning huge
ranges of scale in space, in time, and in space-time. The
relationship between small and large, fast and slow processes
is fundamental for characterizing the dynamical regimes – for

example, weather, macroweather, and climate – as well as for
developing corresponding mathematical and numerical
models. Since scaling can be formulated as a symmetry prin-
ciple, the simplest assumption about such relationships is that
they are connected in a scaling manner governed by scale-
invariant exponents.

In general terms, a system is scaling if there exists a “scale
free” (power law) relationship (possibly deterministic, but
usually statistical) between fast and slow (time) or small and
large (space, space-time). If the system is a geometric set of
points – such as the set of meteorological measuring stations
(Lovejoy et al. 1986) – then the set is a fractal set and the
number of points n in a circle radius L varies as:

n Lð Þ / LD ð1Þ

where the (scale invariant) exponent D is the fractal dimen-
sion (Mandelbrot 1977). Consider instead, the density of
points r(L ):

r Lð Þ / n Lð Þ=Ld � L�c; c ¼ d � D ð2Þ

where d is the dimension of space (in this example, stations on
the surface of the Earth, d¼ 2 and empirically,D ≈ 1.75). The
exponent of r characterizes the sparseness of the set; its
exponent c is its fractal codimension. For geometric sets of
points, it is the difference between the dimension of the
embedding space and the fractal dimension of the set. More
generally, codimensions characterize probabilities and there-
fore statistics; they are usually more useful than fractal dimen-
sions (see below). The distinction is important for considering
stochastic processes that are typically defined on infinite
dimensional probability spaces so that d, D!1 even though
c remains finite. Notice that whereas n(L ) and r(L ) are scal-
ing, their exponents D and c are scale invariant; the two
notions are closely linked.
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Scaling Functions, Fluctuations, and the Fluctuation
Exponent H
Geophysically interesting systems are typically not sets of
points but rather scaling fields such as the rock density or
temperature f(r, t) at the space-time point (r, t). (We will
generally use the term “scaling fields,” but for multifractals,
the more precise notion is of singular densities of multifractal
measures). In such a system, some aspect – most often a
suitably defined fluctuation – Δf – has statistics whose small
and large scales are related by a scale-changing operation that
involves only the scale ratios: Over the scaling range, the
system has no characteristic size.

In one dimension – temporal series f(t) or spatial transects,
f(x) – scaling can be expressed as:

Df Dtð Þ ¼d jDtDt
H ð3Þ

where Δf is a fluctuation, Δt is the time interval over which the
fluctuation occurs, H is the fluctuation exponent, and jΔt is a
random variable that itself generally depends on the scale (for

transects, replace Δt by the spatial interval Δx). The sign ¼d is
in the sense of random variables; this means that the random
fluctuation Δf(Δt) has the same probability distribution as the
random variablejΔtΔt

H. In one dimension, the notion of scale
can be taken to be the absolute temporal or spatial interval Δt,
Δx; for processes in two or higher dimensional spaces, the
definition of scale itself is nontrivial and we need Generalized
Scale Invariance (GSI) discussed later.

Although the general framework for defining fluctuations
is wavelets, the most familiar fluctuations are either Δf(Δt)
taken as a scale Δt difference: Δf(Δt) ¼ f(t) � f(t � Δt), or a
scale Δt anomaly f 0Dt which is the average over the interval Δt
of the series f 0 ¼ f � f whose overall mean f has been
removed. We suppress the t dependence of Δf since we con-
sider the case where the statistics are independent of time or
space: They are respectively statistically stationarity or statis-
tically homogeneous. Physically, this is the assumption that
the underlying physical processes are the same at all times and
everywhere in space. Difference fluctuations are typically
useful when average fluctuations increase with scale
(1 > H > 0), whereas anomaly fluctuations are useful when
they decrease with scale �1 < H < 0. A simple type of
fluctuation that covers both ranges (i. e., -1 < H < 1) is the
Haar fluctuation (Lovejoy and Schertzer 2012) that appears to
be adequate for almost all geoprocesses.

To see that fluctuations obey the scaling property eq. 3,
consider the simplest case where j is a random variable
independent of resolution. This “simple scaling” (Lamperti
1962) is respected, for example, by regular Brownian motion
in which case H ¼ 1/2, ΔT(Δt) is a difference and j is a
Gaussian random variable. The extensions to cases 0<H< 1
are called “fractional Brownian motions” (fBm, Kolmogorov

1940) and to the first differences (increments) of fBm, “frac-
tional Gaussian noises” (fGn) with �1 < H < 0 (Mandelbrot
and Van Ness 1968). In fGn, Δf(Δt) must be taken as an
anomaly fluctuation f 0Dt, Haar fluctuation, or other appropri-
ate fluctuation definition.

Although Gaussian statistics are commonly assumed, in
scaling processes, they are in fact exceptional. In the more
usual case, at fixed scales, the “tails” (extremes) of the prob-
ability distribution of j is also a power law. Scaling in
probability space means that for large enough thresholds s,
the probability of a random j exceeding s is Pr(j> s) ≈ s-qD.
qD is a critical exponent since statistical moments <jq > of
order q > qD diverge (the notation “Pr” indicates pro-
babiilty, “< >” indicates statistical averaging, and the “D”
subscript is because the value of the critical exponent gener-
ally depends on the dimension of space over which the pro-
cess is averaged). Power law probabilities (with possibly any
qD> 0) are a generic property of multifractal processes; more
classically, they are also a property of stable Levy variables
with Levy index 0< α< 2 (for which qD¼α; the exceptional
α¼ 2 case is the Gaussian, all of whose moments converge so
that qD ¼ 1). Probability distributions with power law
extremes can give rise to events that are far larger than those
predicted from Gaussian models, indeed they can be so strong
that they have sometimes been termed “black swans”
(Adapted from Taleb 2010 who originally termed such
extreme events “grey swans”). Empirical values of qD in the
range 3–7 for geofields ranging from the wind, precipitation,
temperature, and seismicity have been reported in dozens of
papers, (many are reviewed in ch.5 of Lovejoy and Schertzer
2013 that also includes the theory).

To see why Eq. 3 has the scaling property, consider the
simplest case where the fluctuations in a temporal series f(t)
follow eq. 1, but with j a random variable independent of

resolution: jDt ¼d j. If we denote l > 1 as a scale ratio, it is
easy to see that the statistics of large-scale (Δf(lΔt)) and
small-scale (Δf(Δt)) fluctuations are related by a power law:

Df lDtð Þ ¼d lHDf Dtð Þ ð4Þ

Equation 4 directly shows the scaling property relating the
fluctuations differing by a scale ratio l. Since the scaling
exponent H is the same at all scales, it is scale invariant.

Here and below, we treat time series and spatial sections
(transects) without distinction, their scales are simply abso-
lute differences in time Δt, or in space Δx. This ignores the
sometimes important difference that – due to causality – the
sign of Δt (i.e., whether the interval is forward or backward in
time) can be important; whereas in space one usually assumes
left-right symmetry (the sign of Δx is not important), here we
treat both as absolute intervals (see Marsan et al. 1996).
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Equation 4 relates the probabilities of small and large
fluctuations; it is usually easier to deal with the deterministic
equalities that follow by taking qth order statistical moments
of Eq. 3 and then averaging over a statistical ensemble
(indicated by “< >”):

Df Dtð Þð Þqh i ¼ jq
Dt

� �
DtqH ð5Þ

The equality is now a usual, deterministic one. Eq. 5 is the
general case where the resolution Δt is important for the
statistics of j. In general, jΔt is a random function or field
averaged at resolution Δt; if it is scaling, its statistics will
follow:

jq
l

� � ¼ lK qð Þ; l ¼ t=Dt � 1 ð6Þ

where t is the “outer” (largest) scale of the scaling regime
satisfied by the equation, and l is a convenient dimensionless
scale ratio. K(q) is a convex (K00(q) � 0) exponent function;
since the mean fluctuation is independent of scale (hjli ¼
lK(1) ¼ const), we have K(1) ¼ 0.

Equation 6 describes the statistical behavior of cascade
processes; these are the generic multifractal processes. Since
large qmoments are dominated by large, extreme values, and
small q moments by common, typical values, K(q) 6¼ 0
implies a different scaling exponent for each statistical
moment q: “multiscaling.” Fluctuations of various amplitudes
change scale with different exponents, and each realization of
the process is a multifractal: The values that exceed fixed
thresholds are fractal sets. Increasing the threshold defines
sparser and sparser exceedance sets (see the “spikes” in
Figs. 1a and 2); the fractal dimensions of these sets decrease
as the threshold is increased; this is discussed further in the

next section. In general, K(q) 6¼ 0 is associated with intermit-
tency, a topic we treat in more detail in Sect. 2.

Structure Functions and Spectra
Returning to the characterization of scaling series and tran-
sects via their fluctuations, we can combine eqs. 5, 6, to
obtain:

Sq Dtð Þ ¼ Df Dtð Þð Þqh i ¼ jq
Dt

� �
DtqH / Dtx qð Þ;

x qð Þ ¼ qH � K qð Þ ð7Þ

where Sq is the qth order (“generalized”) structure function
and x(q) is its exponent. The structure functions are scaling
since the small and large scales are related by a power law:

Sq lDtð Þ ¼ lx qð ÞSq Dtð Þ ð8Þ

WhenK(q) 6¼ 0, different moments change differently with
scale so that, for example, the root mean square fluctuation
has statistical moment x(2)/2 which can readily be smaller
than the exponent of the first-order moment: x (1) - x(2)/2 ¼
K(2)/2 > 0 (since K(1) ¼ 0 and for all q, K00(q) > 0). This is
shown graphically in Fig. 1a, b. A useful way of quantifying
this deviation is the derivative at the mean: C1 ¼ K0(1) where
C1 � 0 is the codimension of the mean fluctuation (see
below). Typical values of C1 are ≈ 0.05–0.15 for turbulent
quantities (wind, temperature, humidity, and pressure
(Lovejoy and Schertzer 2013) as well as topography, suscep-
tibility, and rock density (Lovejoy and Schertzer 2007). It is
significant that the Martian atmosphere has nearly identical
exponents (H, C1) to Earth (wind, temperature, and pressure,
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Scaling and Scale Invariance,
Fig. 1a A comparison of
temporal and spatial
macroweather series at 2�

resolution. The top are the
absolute first differences of a
temperature time series at monthly
resolution (from 80� E, 10� N,
1880–1996, annual cycle
removed, displaced by 4C for
clarity), and the bottom is the
series of absolute first differences
(“spikes”) of a spatial latitudinal
transect (annually averaged, 1990
from 60� N) as a function of
longitude. One can see that while
the top is noisy, it is not very
“spikey”
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(Chen et al. 2016), and Martian topography is similarly close
to Earth’s (Landais et al. 2019).

Precipitation and seismicity are notably much more
extreme with C1 ≈ 0.4 (Lovejoy et al. 2012), ≈1.3
(Hooge et al. 1994). We could note that whereas the moments
are “scaling,” the exponent functions such as K(q), x(q),
etc. are “scale invariant.”

Equations 7 and 8 are the statistics of (real space) fluctu-
ations; however, it is common to analyze data with Fourier
techniques. These yield the power spectrum:

E oð Þ / ef oð Þ
��� ���2� �

ð9Þ

where ef oð Þ is the Fourier Transform of f(t), and o is the
frequency. Due to “Tauberian theorems” (e.g., Feller 1971),
power laws in real space are transformed into power laws in
Fourier space, hence for scaling processes:

E oð Þ � o�b ð10Þ

where β is the spectral exponent. Due to the Wiener-
Khintchin theorem, the spectrum is the Fourier transform of
the autocorrelation function, itself closely related to S2(Δt).
We therefore obtain the general relation:

b ¼ 1þ x 2ð Þ ¼ 1þ 2H � K 2ð Þ ð11Þ

(Technical note: Scaling is generally only followed over a
finite range of scales, and unless there are cut-offs, there are
generally low- or high-frequency divergences. However, if

the scaling holds over wide enough ranges, then scaling in
real space does imply scaling of the spectrum and vice versa,
and if the scaling holds over a wide enough range, then eq. 11
relates their exponents).

Returning now to the case of simple scaling, we find
hjqi ¼ Bq where Bq is a constant independent of scale (Δt);
hence we have K(q) ¼ 0 and Sq(Δt) / ΔtqH so that:

x qð Þ ¼ qH ð12Þ

i.e., x(q) is a linear function of q. This “linear scaling” with
β¼ 1þ 2H is also sometimes called “simple scaling.” Linear
scaling arises from scaling linear transformations of noises;
the general linear scaling transformation is a power law filter
(multiplication of the Fourier Transform by o-H) which is
equivalently a fractional integral (H > 0) or fractional deriv-
ative (H < 0). Fractional integrals of order H þ 1/2 of
Gaussian white noises yield fBm (1 > H > 0) and fGn
(�1 < H < 0). The analogous Levy motions and noises are
obtained by the filtering of independent Levy noises (in this
case, x(q) is only linear for q< α< 2; for q> α, the moments
diverge so that both x(q) and Sq ! 1).

The more general “nonlinear scaling” case where K(q) is
nonzero is associated with fractional integrals or derivatives
of order H of scaling multiplicative (not additive) random
processes (cascades, multifractals). These fractional integrals
(H > 0) or derivatives (H < 0) filter the Fourier Transform of
j by o-H; this adds the extra term qH in the structure function
exponent: x(q) ¼ qH - K(q).

In the literature, the notation “H” is not used consistently. It
was introduced in honor of Edwin Hurst a pioneer of long

Scaling and Scale Invariance,
Fig. 1b The first order and RMS
Haar fluctuations of the series
transect in Fig. 1a. One can see
that in the spikey transect (space,
top), the first order and RMS
statistics converge at large lags
(Δx), and the rate of the converge
is quantified by the intermittency
parameter C1. The time series
(bottom) is less spikey, and it
converges very little and has low
C1 (see Fig. 1a, top). The break in
the scaling at ≈ 20 years is due to
the dominance of anthropogenic
effects at longer time scales.
Quantitatively, the intermittency
parameters near the mean are
C1 ≈ 0.12 (space), C1 ≈ 0.01 (time)
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memory processes sometimes called “Hurst phenomena”
(Hurst 1951). Hurst introduced the rescaled range exponent
notably in the study of Nile river streamflow records. To
explain Hurst’s findings, Mandelbrot and Van Ness [1968]
developed Gaussian scaling models (fGn, fBm) and intro-
duced the symbol “H.” At first, this represented a “Hurst
exponent,” and they showed that for fGn processes, it was
equal to Hurst’s exponent. However, by the time of the land-
mark “Fractal Geometry of Nature” (Mandelbrot 1982), the
usage was shifting from a scaling exponent to a model spec-
ification: the “Hurst parameter.” In this new usage, the symbol
Hwas used for both fGn and its integral fBm, even though the
fBm-scaling exponent is larger by one. To avoid confusion,
we will call itHM. Subsequently, a mathematical literature has
developed using HMwith 0<HM< 1 to parametrize both the
process (fGn) and its increments (fGn). However, also in the
early 1980s (Grassberger and Procaccia 1983; Hentschel and
Procaccia 1983; Schertzer and Lovejoy 1983), much more
general scaling processes with an infinite hierarchy of expo-
nents –multifractals –were discovered clearly showing that a
single exponent was not enough. Schertzer and Lovejoy
(1987) showed that it was nevertheless possible to keep H in
the role of a mean fluctuation exponent (originally termed a
cascade “conservation exponent”). This is the sense of the
H exponent discussed here. As described above, using appro-
priate definitions of fluctuations (i.e., by the use of an appro-
priate wavelet), H can take on any real value. When the
definition is applied to fBm, it yields the standard fBm value
H ¼ HM, yet when applied to fGn, it yields H ¼ HM-1.

Intermittency

Spikes
Often, scaling systems are modeled by linear stochastic pro-
cesses, leading to linear exponent x(q) ¼ qH, i.e., K(q) is
neglected; the processes are sometimes called “monofractal
processes,” the most common examples being fBm, fGn.
Nonzero K(q) is associated with the physical phenomenon
of “spikiness” or intermittency: Compare the spatial spiky and
temporal nonspiky series in Fig. 1a and their structure func-
tions in Fig. 1b.

Classically, intermittency was first identified in laboratory
flows as “spottiness” (Batchelor and Townsend 1949), in the
atmosphere by the concentration of most of atmospheric
fluxes in tiny, sparse (fractal) regions. In solid Earth geophys-
ics, fields such as concentrations of ore are similarly sparse
and scaling, a fact that notably prompted (de Wijs 1951) to
independently develop a multiplicative (cascade) model for
the distribution of ore. In the 1980s, de Wijs’ model was
rediscovered in statistical physics as the multifractal “p
model” (see also Agterberg 2005).

Early quantitative intermittency definitions were devel-
oped originally for fields (space). These are of the “on-off”
type: When the temperature, wind, or other field exceeds a
threshold, then it is “on,” i.e., in a special state – perhaps of
strong/violent activity. At a specific measurement resolution,
the on-off intermittency can be defined as the fraction of space
that the field is “on” (where it exceeds the threshold). In a
scaling system, for any threshold the “on” region will be a
fractal set (sparseness characterized by c, eq. 2) and threshold
by exponent γ. The resulting function c(γ) describes the
intermittency over all scales and all intensities (thresholds)
and is related to K(q) as described below. In scaling time
series, the same intermittency definition applies (note that
other definitions are sometimes used in deterministic chaos).

Sometimes, the intermittency is obvious, but sometimes it
is hidden and underestimated or overlooked; let us discuss
some examples. In order to vividly display the nonclassical
intermittency, it suffices to introduce a seemingly trivial
tool – a “spike plot.” A spike plot is the series (or transect)
of the absolute first differences Dfnormalized by their means,
Df=Df (for a series f ). Fig. 2 shows examples from the main
atmospheric scaling regimes (temperatures, the middle figure
corresponds to the macroweather data analyzed in Fig. 1a,
1b). Fig. 3 shows examples from solid earth geophysics. The
resolutions have been chosen to be within the corresponding
scaling regimes. In Fig. 2, one immediately notices that with a
single exception – macroweather in time – all of the regimes
are highly “spikey,” exceeding the maximum expected for
Gaussian processes by a large margin (the solid horizontal
line). Indeed, for the five other plots, the maxima corresponds
to (Gaussian) probabilities p< 10�9 (the top dashed line), and
four of the six to p< 10�20. The exception –macroweather in
time – is the only process that is close to Gaussian behavior,
but even macroweather is highly non-Gaussian in space
(bottom, middle). In Fig. 3, we show corresponding examples
from the KTB borehole of density and susceptibility of rocks.
For the susceptibility, the intermittency is so extreme as to be
noticeable in the original series (upper right), but less so for
the rock density (upper left). In both cases, the spike plots
(bottom row) are strongly non-Gaussian with extremes
corresponding to Gaussian probabilities of 10�15, 10�162,
respectively.

Codimensions and Singularities
In order to understand the spike plots, recall that if a process is
scaling, we have eq. 1 where jΔt is the (normalized) flux
driving the process. The normalized spikes DT=DT can thus
be interpreted as estimates of the nondimensional, normalized
driving fluxes:
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DT Dtð Þ=DT Dtð Þ¼ jDt,un=jDt,un ¼ jDt ð13Þ

(where jΔt, un is the raw, unnormalized flux, the overbar
indicates an average over the series). The interpretation in
terms of fluxes comes from turbulence theory and is routinely
used to quantify turbulence. In the weather regime in

respectively time and space, the squares and cubes of the
wind spikes are estimates of the turbulent energy fluxes.
This spikiness is because most of the dynamically important
events are sparse, hierarchically clustered, occurring mostly
in storms and the center of storms.

Scaling and Scale Invariance,
Fig. 3 Density (left), magnetic
susceptibility (right),
nondimensionalized by their
means (top), and corresponding
spike plots (normalized absolute
first differences, bottom). The data
are from the first 2795 points of
the KTB borehole, each point at a
2 m interval; the horizontal axis
indicates the number of points
from the surface. In the spike
plots, the solid line indicates the
maximum expected for a Gaussian
process, the dashed lines
corresponding to (Gaussian)
probability levels of 10�9, 10�12.
The extreme spikes correspond to
Gaussian probabilities of ≈10�15,
10�162, respectively
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Scaling and Scale Invariance,
Fig. 2 Temperature spike plots
for weather, macroweather,
climate (left to right), and time and
space (top and bottom rows). The
solid horizontal black line
indicates the expected maximum
for a Gaussian process with the
same number of points (360 for
each with the exception of the
lower right which had only
180 points); the dashed lines are
the corresponding probability
levels p ¼ 10�6, p ¼ 10�9 for
Gaussian processes; and two of
the spikes exceed 14; p < 10�77.
The upper left is Montreal at 1
hour resolution; upper middle
Montreal at 4 month resolution;
upper right, paleotemperatures
from Greenland ice cores (GRIP)
at 240 year resolution; lower left
aircraft at 280 m resolution; lower
middle one monthly resolution
temperatures at 1o resolution in
space; lower right 140 year
resolution in time, 2o in space at
45oN. Reproduced from [Lovejoy,
2018]
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The spikes visually display the intermittent nature of the
process. As long as H < 1 (true for nearly all geo-processes),
the differencing that yields the spikes acts as a high pass filter,
and the spikes are dominated by the high frequencies. The
Gaussian fGn, fBm processes – or nonscaling processes such
as autoregressive and moving average processes (and the
hybrid fractional versions of these) – will have spikes that
look like the macroweather spikes: In Figs. 2 and 3, they will
be roughly bounded by the (Gaussian) solid horizontal lines.

To go beyond Gaussians to the general multifractal scaling
case, each spike is considered to be a singularity of order γ:

lg ¼ Dfj j= Dfj j ð14Þ

l is the scale ratio: l ¼ (the length of the series) / (the
resolution of the series) ¼ the number of pixels; in Fig. 3,
l¼ 2795. The most extreme spike ( Dfj j= Dfj j) therefore has a
probability ≈1/2795. For Gaussian processes, spikes with this
probability have Dfj j= Dfj j ¼ 4.47; this is shown by the
solid lines in Fig. 3; the line therefore corresponds
to g ¼ log Dfj j= Dfj j

� �
= log l � log 4:47= log 2795 � 0:19.

For comparison, the actual maxima from the spike
plots are γmax ¼ log(34.5)/log(2795) ¼ 0.45 and log(11.6)/
log(2795) ¼ 0.30 (susceptibility, density, respectively). These
values are close to those predicted by multifractal models
for these processes (for more details, see Lovejoy 2018).

To understand the spike probabilities, recall that the statis-
tics of jl were defined above by the moments, and K(q).
However, this is equivalent to specifying them via the
corresponding (multiscaling) probability distributions:

Pr jl > sð Þ � l�c gð Þ; g ¼ log s
log l

ð15Þ

where “≈” indicates equality to within an unimportant pre-
factor and c(γ) is the codimension function that specifies how
the probabilities change with scale (Eq. 2 with l / L�1 and
Pr / r). In scaling systems, the relationship between proba-
bilities and moments is between the corresponding scaling
exponents c(γ), K(q). It turns out that it is given by the simple
Legendre transformation:

c gð Þ ¼ max
q

qg� K qð Þð Þ
K qð Þ ¼ max

g
qg� c gð Þð Þ ð16Þ

(Parisi and Frisch 1985). The Legendre relations are generally
well behaved since K and c are convex, although discontinu-
ities in the first- and second-order derivatives can occur nota-
bly due to the divergence of high-order moments q > qD
(“multifractal phase transitions”). The Legendre transforma-
tion also allows us to interpret c(γ) as the fractal codimension
of the set of points characterized by the singular behavior lγ.

Returning to the spike plots, using Eq. 15 and the estimate
Eq. 14 for the singularities, we can write the probability
distribution of the spikes as:

Pr Dfj j= Dfj j > s
� �

� l�c gð Þ; g ¼ log s
log l

ð17Þ

Pr Dfj j= Dfj j > s
� �

is the probability that a randomly chosen

spike Dfj j= Dfj j exceeds a fixed threshold s (it is equal to one
minus the more usual cumulative distribution function). c(γ)
characterizes sparseness because it quantifies how the proba-
bilities of spikes of different amplitudes change with resolu-
tion l (for example, when they are smoothed out by
averaging). The larger c(γ), the sparser the set of spikes that
exceed the threshold s¼ lγ. A series is intermittent whenever
it has spikes with c > 0. Gaussian series are not intermittent
since c(γ) ¼ 0 for all the spikes.

If there were no constraints on the system beyond scaling,
an empirical specification would require the (unmanageable)
determination of the entire scale-invariant functions c(γ) or
K(q): the equivalent of an infinite number of parameters.
Fortunately, it turns out that stable, attractive “universal”
multifractal processes exist that require only two parameters:

K qð Þ ¼ C1

a� 1ð Þ qa � qð Þ ð18Þ

where 0� α� 2 is the Levy index that characterizes the degree
of multifractality (Schertzer and Lovejoy 1987). Notice that for
any α, the intermittency parameter C1 ¼ K0(1) and in addition
α ¼ K00(1)/K0(1). Together, α and C1 thus characterize the
tangent and curvature of K near the mean (q ¼ 1). For the
universalmultifractal probability exponent, the Legendre trans-
formation of eq. 18 yields:

c gð Þ ¼ C1
g

C1a0
þ 1

a

	 
a0

ð19Þ

where the auxiliary variable α’ is defined by: 1/α0 þ 1/α ¼ 1.
This means that processes, whose moments have exponents
K(q) given by eq. 7, have probabilities with exponents c(γ)
given by eq. 15. Empirically, most geofields have α in the
range 1.5–1.9, not far from the “log-normal” multifractal
(α ¼ 2).

The c(γ), K(q) codimension multifractal formalism is
appropriate for stochastic multifractals (Schertzer and
Lovejoy 1987). Another commonly used multifractal formal-
ism (often used in solid earth geophysics (Cheng and
Agterberg 1996) is the dimension formalism of (Halsey
et al. 1986) that was developed for characterizing phase
spaces in deterministic chaos with notation fd(αd), αd, td (q).
In a finite dimensional space of dimension d, fd(αd) ¼ d - c(γ)

Scaling and Scale Invariance 7



where αd¼d - γ, and td(q)¼ (q-1)d -K(q) where the subscript
“d” (the dimension of the space) has been added to emphasize
that unlike c, γ, K, in the dimension formalism, the basic
quantities depend on both the statistics as well as d. For
example, whereas c, γ, and K are the same for 1-D transects,
2-D sections, or 3-D spaces, fd, αd, and td are different for
each subspace.

Scaling in Two or Higher Dimensional Spaces:
Generalized Scale Invariance

Scale Functions and Scale-Changing Operators: From
Self-Similarity to Self-Affinity
If we only consider scaling in 1-D (series and transects), the
notion of scale itself can be taken simply as an interval (space,
Δx) or lag (time, Δt), and large scales are simply obtained
from small ones by multiplying by their scale ratio l. More
general geoscience series and transects are only 1-D sub-
spaces of (r, t) space-time geoprocesses. In both the atmo-
sphere and the solid earth, an obvious issue arises due to
vertical/horizontal stratification: We do not expect the scaling
relationship between small and large to be the same in hori-
zontal and in vertical directions. Unsurprisingly, the
corresponding transects generally have different exponents
(x(q), H, K(q), c(γ)). In general, the degree of stratification
of structures systematically changes with scale. To deal with
this fundamental issue, we need an anisotropic definition of
the notion of scale itself.

The simplest scaling stratification is called “self-affinity”:
The squashing is along orthogonal directions whose direc-
tions are the same everywhere in space, for example, along
the x and z axes in an x-z space, e.g., a vertical section of the
atmosphere or solid earth. More generally, even horizontal
sections will not be self-similar: As the scale changes, struc-
tures will be both squashed and rotated with scale. A final
complication is that the anisotropy can depend not only on
scale but also on position. Both cases can be dealt with by
using the formalism of Generalized Scale Invariance (GSI;
Schertzer and Lovejoy 1985b), corresponding respectively to
linear (scale only) and nonlinear GSI (scale and position)
(Lovejoy and Schertzer 2013, ch. 7; Lovejoy 2019, ch. 3).

The problem is to define the notion of scale in a system
where there is no characteristic size. Often, the simplest (but
usually unrealistic) “self-similar” system is simply assumed
without question: The notion of scale is taken to be
isotropic. In this case, it is sufficient to define the scale of a
vector r by the usual vector norm (the length of the vector r

denoted by rj j ¼ x2 þ z2ð Þ1=2. rj jsatisfies the following ele-
mentary scaling rule:

l�1r
�� �� ¼ l�1 rj j ð20Þ

where again, l is a scale ratio. When l>1, this equation says
that the scale (here, length) of the reduced, shrunken vector
l�1r is simply reduced by the factor l�1, a statement that
holds for any orientation of r.

To generalize this, we introduce a more general scale
function rk k as well as a more general scale-changing oper-
ator Tl; together they satisfy the analogous equation:

Tlrk k ¼ l�1 rk k ð21Þ

For the system to be scaling, a reduction by scale ratio l1
followed by a reduction l2 should be equal to first reduction
by l2 and then by l1, and both should be equivalent to a single
reduction by factor l ¼ l1 l2. The scale-changing operator
therefore satisfies group properties, so Tl is a one-parameter
Lie group with generator G:

Tl ¼ l�G ð22Þ

When G is the identity operator (I ), then Tlr ¼ l�Ir ¼
l�1Ir ¼ l�1r so that the scale reduction is the same in all
directions (an isotropic reduction): l�1r

�� �� ¼ l�1 rk k. How-
ever, a scale function that is symmetric with respect to such
isotropic changes is not necessarily equal to the usual norm rj j
since the vectors with unit scale (i.e., those that satisfy
rk k ¼ 1) may be any (nonconstant, hence anisotropic) func-

tion of the polar angle – they are not necessarily circles
(2D) or spheres (3D). Indeed, in order to complete the scale
function definition, we must specify all the vectors whose
scale is unity – the “unit ball.” If in addition to G¼ I, the unit
scale is a circle (sphere), then the two conditions imply

Scaling and Scale Invariance, Fig. 4 A series of ellipses each sepa-
rated by a factor of 1.26 in scale, red indicating the unit scale (here, a
circle, thick lines). Upper left to lower right, Hz increasing from 2/5, 3/5,
4/5 (top), 1, 6/5, 7/5 (bottom, left to right). Note that when Hz > 1, the
stratification at large scales is in the vertical rather than the horizontal
direction (this is required for modeling the earth’s geological strata).
Reproduced from Lovejoy (2019)
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rk k ¼ rj j and we recover Eq. 20. In the more general – but
still linear case where G is a linear operator (a matrix) – Tl
depends on scale but is independent of location; more gener-
ally – nonlinear GSI – G also depends on location and scale;
Figs. 4, 5, 6a, 6b and 7 give some examples of scale functions,
and Figs. 8a, 8b, 9 and 10 show some of the corresponding
multifractal cloud, magnetization, and topography
simulations.

Scaling Stratification in the Earth and Atmosphere
GSI is exploited in modeling and analyzing the earth’s density
and magnetic susceptibility fields (the review Lovejoy and
Schertzer 2007), and in many atmospheric fields (wind, tem-
perature, humidity, precipitation, cloud density, and aerosol
concentrations; see the monograph Lovejoy and Schertzer
2013). To give the idea, we can define the “canonical” scale
function for the simplest stratified system representing a ver-
tical (x,z) section in the atmosphere or solid earth:

x, zð Þk k ¼ ls
x
ls

	 

, sign zð Þ z

ls

���� ����1=Hz

�����
�����

¼ ls
x
ls

	 
2

þ z
ls

���� ����2=Hz

" #1=2
ð23Þ

Hz characterizes the degree of stratification (see below),
and ls is the “sphero-scale,” so-called because it defines the
scale at which horizontal and vertical extents of structures are
equal (although they are generally not exactly circular):

ls, 0ð Þk k ¼ 0, lsð Þk k ¼ ls ð24Þ

It can be seen by inspection that k(x, z)ksatisfies:

Tl x, zð Þk k ¼ l�1 x, zð Þk k; Tl ¼ l�G; G ¼
1 0

0 Hz

 !
ð25Þ

(note that matrix exponentiation is simple only for diagonal

matrices – here Tl ¼ l�1 0

0 l�Hz

 !
– but when G is not

diagonal, it can be calculated by expanding the series: l�G ¼

Scaling and Scale Invariance, Fig. 5 Blowups and reductions by
factors of 1.26 starting at circles (thick lines). The upper left shows the
isotropic case, the upper right shows the self-affine (pure stratification
case), the lower left example is stratified but along oblique directions,
and the lower right example has structures that rotate continuously with
scale while becoming increasingly stratified. The matrices used are:

, , , and – (upper left to lower

right). Reproduced from Lovejoy (2019)

Scaling and Scale Invariance, Fig. 6a The theoretical shapes of
average vertical cross sections using the empirical parameters estimated
from CloudSat – derived mean parameters: Hz ¼ 5/9, with sphero-scales
1 km (top), 100 m (middle), 10 m (bottom), roughly corresponding to the
geometric mean and one-standard-deviation fluctuations. In each of the
three, the distance from left to right horizontally is 100 km, from top to
bottom vertically is 20 km. It uses the canonical scale function. The top
figure in particular shows that structures 100 km wide will be about
10 km thick whenever the sphero-scale is somewhat larger than average
(Lovejoy et al. 2009)

Scaling and Scale Invariance,
Fig. 6b Vertical cross-section of
the magnetization scale function
assuming Hz ¼ 2 and a sphero-
scale of 40,000 km. The scale is in
kilometers and the aspect ratio is
¼ (Lovejoy et al. 2001)

Scaling and Scale Invariance 9



e�G log l ¼ 1 � G log l þ (G log l)2/2 � . . .). Notice that in
this case, the ratios of the horizontal/vertical statistical expo-
nents (i.e., x(q), H, K(q), and c(γ)) are equal to Hz. We could
also note that linear transects taken any direction other than
horizontal or vertical will have two scaling regimes (with a
break near the sphero-scale). However, the break is spurious;
it is a consequence of using the wrong notion of scale.

Equipped with a scale function, the general anisotropic
generalization of the 1-D scaling law (Eq. 1) may now be
expressed by using the scale Drk k:

Df Drð Þ ¼d j Drk k Drk kH ð26Þ

This shows that the full scaling model or full characteriza-
tion of scaling requires the specification of the notion of scale
via the scale-invariant generator G and unit ball (hence the
scale function), the fluctuation exponent H, as well the statis-
tics of j Drk k specified via K(q), c(γ) or – for universal

multifractals, C1, α. In many practical cases – e.g., vertical
stratification – the direction of the anisotropy is fairly obvi-
ous, but in horizontal sections, where there can easily be
significant rotation of structures with scale, the empirical
determination of G and the scale function is a difficult, gen-
erally unsolved problem.

In the atmosphere, it appears that the dynamics are domi-
nated by Kolmogorov scaling in the horizontal (Hh¼1/3) and
Bolgiano-Obhukhov scaling in the vertical (Hv ¼ 3/5) so that
Hz ¼ Hh/Hv ¼ 5/9 ¼ 0.555... Assuming that the horizontal
directions have the same scaling, then typical structures of
size LxL in the horizontal have vertical extents of LHz, hence
their volumes are LDel with “elliptical dimension” Del ¼ 2 þ
Hz ¼ 2.555. . .; the “23/9D model” (Schertzer and Lovejoy
1985a). This model is very close to the empirical data, and it
contradicts the “standard model” that is based on isotropic

symmetries and that attempts to combine a small-scale isotro-
pic 3D regime and a large-scale isotropic (flat) 2D regime
with a transition supposedly near the atmospheric scale height
of 10 km. The requisite transition has never been observed,
and claims of large-scale 2D “geostrophic” turbulence have
been shown to be spurious (reviewed in ch. 2 of Lovejoy and
Schertzer 2013).

Since Hz < 1, the atmosphere becomes increasingly strat-
ified at large scales. In solid earth applications, it was found
that Hz ≈ 2–3 (rock density, susceptibility, and hydraulic
conductivity (Lovejoy and Schertzer 2007)) i.e., Hz > 1
implying on the contrary that the earth’s strata are typically
more horizontally stratified at the smallest scales (Figs. 6a, 6b
and 7).

Conclusions

Geosystems typically involve structures spanning wide
ranges of scale: from the size of the planet down to millimetric
dissipations scales (the atmosphere) or micrometric scales
(solid earth). Classical approaches stem from the outdated
belief that complex behavior requires complicated models.
The result is a complicated “scalebound” paradigm involving
hierarchies of phenomenological models / mechanisms each
spanning small ranges of scale. For example, conventionally,
the atmosphere was already divided into synoptic, meso- and
microscales when Orlanski (1975) proposed further divisions
implying new mechanisms every factor of two or so in scale.
Ironically, this still popular paradigm arose at the same time
that scale-free numerical weather and climate models were
being developed that were based on the scaling dynamical
equations and now known to display scaling meteorological
fields.

At the same time as the scale-bound paradigm was ossify-
ing, the “Fractal Geometry of Nature” (Mandelbrot 1977,
1982) proposed an opposite approach based on sets that
respected an isotropic scaling symmetry: self-similar fractals.
These have scale-free power law number-size relationships
whose exponents are scale-invariant geo-applications already
included topography and clouds. However, geosystems are
rarely geometric sets of points but rather fields (i.e., with
values, e.g., temperature, rock density) varying in space and
in time. In addition, these fields are typically highly aniso-
tropic notably with highly stratified vertical sections. In the
1980s, the necessary generalizations to scaling fields
(multifractals) and to anisotropic scaling (Generalized Scale
Invariance, GSI) were achieved.

GSI clarifies the significance of scaling in geoscience since
it shows that scaling is a rather general symmetry principle: It
is thus the simplest relation between scales. Just as the clas-
sical symmetries (temporal, spatial invariance, and directional
invariance) are equivalent (Noether’s theorem) to

Scaling and Scale Invariance, Fig. 7 The unity of geoscience illus-
trated via a comparison of typical (average) vertical sections in the
atmosphere (top), and in the solid earth (bottom), an aspect ratio of 1/5
was used. The key points are as follows: Hz < 1, ls small (atmosphere,
stratification increasing at larger scales) and Hz > 1, ls large (solid earth,
stratification increasing at smaller scales). The sphero-scale (ls) varies in
space and in time (see Fig. 6a, 6b)
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Scaling and Scale Invariance, Fig. 8a Simulations of the liquid water
density field. The top is a horizontal section, to the right the
corresponding central horizontal cross section of the scale function.
The stratification is determined by Hz ¼ 0.555 with ls ¼ 32. The bottom

shows side views. There is also horizontal anisotropy with rotation.
Statistical (multifractal) parameters: α ¼ 1.8, C1 ¼ 0.1, and H ¼ 0.333,
on a 512x512x64 grid (Lovejoy and Schertzer 2013)

Scaling and Scale Invariance, Fig. 8b The top is the visible radiation
field (corresponding to Fig. 8a), looking up (sun at 45� from the right);
the bottom is a side radiation field (one of the 512x64 pixel sides)
(Lovejoy and Schertzer 2013)

Scaling and Scale Invariance, Fig. 9 Numerical simulation of a
multifractal rock magnetization field (vertical, component Mz) with
parameters deduced from rock samples and near surface magnetic anom-
alies (Pecknold et al. 2001). The simulation was horizontally isotropic
with vertical stratification specified byHz¼1.7, ls¼2500 km; the region
is 32x32x16 km, resolution 0.25 km. The statistical parameters specify-
ing the horizontal multifractal statistics are H ¼ 0.2, α ¼1.98, and C1 ¼
0.08. This is a reasonably realistic crustal section, although the
spheroscale was taken to be a bit too small in order that strata may be
easily visible. Notice that the structures becomemore stratified at smaller
scales. The direction of M is assumed to be fixed in the z direction
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conservation laws (energy, momentum, and angular momen-
tum), the (nonclassical) scaling symmetry conserves the scal-
ing functions G, K, and c. Symmetries are fundamental since
they embody the simplest possible assumption, model: Under
a system change, there is an invariant. In physics, initial

assumptions about a system are that it respects symmetries.
Symmetry breaking is only introduced on the basis of strong
evidence or theoretical justification: in the case of scale sym-
metries, they are broken by the introduction. of characteristic
space or time scales.

Scaling and Scale Invariance, Fig. 10 Comparison of isotropic ver-
sus anisotropic simulations for three different scaling models. Top row
shows the scale functions. From left to right, we change the type of
anisotropy: The left column is self-similar (isotropic) while the middle
and right columns are anisotropic and symmetric with respect to

G ¼ 0:8 �0:5

0:05 1:2

	 

. The middle column has unit ball circular at

1 pixel, while for the right one the unit ball is also anisotropic. The
second, third, and fourth rows show the corresponding fBm
(with H ¼ 0.7), the analogous fractional Levy motion (fLm α ¼
1.8, H ¼ 0.7), and multifractal (α ¼1.8, C1 ¼ 0.12, H ¼ 0.7)
simulations. We note that in the case of fBm, one mainly perceives

textures; there are no very extreme mountains or other morphol-
ogies evident. One can see that the fLm is too extreme; the shape
of the singularity (particularly visible in the far right) is quite
visible in the highest mountain shapes. The multifractal simula-
tions are more realistic in that there is a more subtle hierarchy of
mountains. When the contour lines of the scale functions are close,
the scale rk k changes rapidly over short distances. For a given
order of singularity γ, lγ will therefore be larger. This explains the
strong variability depending on direction (middle bottom row) and
on shape of unit ball (right bottom row). Indeed, spectral exponents
will be different along the different eigenvectors of G (Lovejoy and
Schertzer 2007).
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Theoretically, scaling is a unifying geophysical principle
that has already shown its realism in numerous
geoapplications both on Earth and Mars proving the perti-
nence of anisotropic scaling models and analyses. It is unfor-
tunate that in geoscience, scale-bound models and analyses
continue to be justified on superficial phenomenological
grounds. Geoapplications of scaling are therefore still in
their infancy.
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