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Multifractals, cloud radiances and rain
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Abstract

The extreme variability of rainfall over huge ranges of space–time scales makes direct rain gauge measurements of areal

rainfall impossible; assumptions about the rainfall scaling—whether trivial (homogeneous), or multifractal (heterogeneous)—

are required even for interpolation. The alternative is to use rain surrogates such as radar reflectivities or those based on visible-

infra red radiances. In this paper, we argue that cloud radiances should be studied to obtain basic information about the range

and type of scaling in the atmosphere. Since, rain and clouds are strongly non-linearly coupled—and since the scaling of the

fields, the scale invariance of the generators/exponents is a symmetry principle—a break in the scaling in one of the fields would

cause a break in the other. Using 909 images from three satellites and six sensors (visible and infra red) collectively spanning

the range of scales 5000–1 km, we demonstrate that power law scaling is respected to within an error of G0.3–0.5%; that an

upper bound on the deviations from the theoretical universal multifractal scaling is 1–2% per octave in scale. We also show that

the outer scale of the cascade is very close to 20,000 km, the largest great circle distance on the earth. Allowing for (one-

parameter) subpower law (logarithmic) scaling corrections we show that universal multifractal cascades starting at this scale

explain the isotropic moments (order %1.6) to within an error of G0.8%. We argue that the scaling of these isotropic statistics

shows that the diversity of cloud morphologies reflects differences in anisotropies which are effectively washed out by the

isotropic statistical methods used. We compare and contrast existing multifractal models showing which can be used as realistic

cloud and rain models. We go on to use continuous in scale, anisotropic, space–time multifractal rain and cloud simulations

(including radiative transfer) to show how diverse cloud, rain and radiance morphologies can be compatible with the observed

isotropic scaling statistics. Finally, we argue that these will be necessary for solving measurement problems including the use of

rain gauge, radar and visible/infra red surrogate fields.

q 2005 Published by Elsevier B.V.
1. Introduction

To the human senses, rain is surely one of the most

extremely variable of atmospheric fields: directly
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palpable temporal variability ranges from fractions of

a second to generations. The simplest assumption

about processes occurring over wide ranges of scale is

that they are scaling; indeed in the past, hydrological

problems directly motivated key scaling advances

including long range dependency (notably the

‘Hurst phenomenon’ (Hurst, 1951)), ‘simple scaling’

(Mandelbrot and Van Ness, 1968) and more recently,
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multifractals (see below for references). In the last

15 years in the fields of hydrology and meteorology,

there has been an explosion of interest in multi-

fractals. This is perhaps not surprising since, going

back to (Richardson, 1922) cascades have been

hypothesized to be a dominant dynamic atmospheric

process and cascade processes generically give rise to

multifractals. More generally, cascades occur in

systems with a large number of degrees of freedom,

where the same basic dynamical mechanism operates

over a wide range of scales (when it is scale invariant

in some very general sense). The main additional

requirements for cascades are that some flux is

conserved from one scale to another, and that the

interactions are mostly between structures at neigh-

bouring scales.

In the turbulence community, there is now a fairly

broad consensus that the dynamic velocity field is

multifractal—at least over some significant range

from the dissipation scale (millimeters) to an outer

bound discussed below. For the velocity field, there is

even a fairly wide consensus about the actual

multiscaling structure function exponent x(q) (see

the review, Anselmet et al., 2001) at least for

statistical moments q in the range 1–7 (Meneveau

and Sreenivasan, 1987a; Schmitt et al., 1992, 1996;

Ruiz Chavarria et al., 1995). Debate is now concen-

trated on the high order moments (do they diverge as

expected for canonical multifractals, or are they

finite?) and low order moments (is x(q) nonanalytic

at the origin as expected by universality arguments?).

At first sight the values of the consensus exponents

appear small. For example, the value of C1, the

codimension of the singularity giving the dominant

contribution to the mean velocity is only z0.07

(compared to 0 for an nonintermittent, space-filling

classical process). If we consider the conserved energy

flux (proportional to the cube of the velocity), then the

corresponding exponent is 0.36, still not enormous.

Over a range of lZ102 in scale (typical of many

conventional numerical models, e.g. GCM’s), this

implies that the corresponding fraction of space

giving a significant contribution to the mean is

lKC1Z100K0:36 z19% which shows that over 80%

of the model grid elements will have fluxes too low to

significantly contribute to the mean energy flux.

Nevertheless, this may well be adequately

modeled; it explains how such standard models can
be ‘adjusted’ by judicious ‘parametrisation’ to give

reasonable looking results over their narrow

scale ranges. However, if this scaling behaviour

is valid over the full range (planetary/dissipation

range z104 km/10K3 mZ1010), then the correspond-

ing fraction is only 0.02% (if we consider the

variance of the flux, the exponent is 1.03 and the

fraction is 5!10K11). This quantitatively

demonstrates the drastic effects of multifractal inter-

mittency even when a relatively ‘calm’ multifractal

process operates over a wide enough range of scales.

Over small enough scale ranges conventional para-

metrisations may be workable; but these will not be

valid outside of the relatively narrow range over which

they were calibrated. We shall see that the same

conclusions hold for clouds radiances—and by impli-

cation—rain, with the same consequences for standard

point process type cluster models (e.g. Waymire and

Gupta, 1981).

Since, rain is strongly coupled with the highly

turbulent wind field, this turbulence consensus is in

itself of fundamental significance to hydrology and

explains the recent finding (Desaulniers-Soucy, 1999;

Lilley et al., in press; Lovejoy et al., 2003) from the

stereophotographic HYDROP experiment that rain is

multifractal down to very small scales only becoming

statistically homogeneous at scales less than a meter.

Indeed, new analyses of this unique data set have

recently directly linked classical turbulence and the

rain liquid water density: the LWC density spectrum

is very nearly kK5/3, i.e. the same as that of a scalar

passively advected by a turbulent wind only becoming

white noise at scales of 50 cm or less (depending

somewhat on meteorological conditions). The rain-

rate—which depends not only on the LWC but also on

the drop fall speed is thus an ‘active’ not passive

turbulent scalar. The turbulent scales are thus a

nonclassical multifractal discontinuum which has

important implications not only for cloud physics

but also for the measurement of rain.

What is the outer limit of scaling in rain? If we

restrict our attention to direct measurements of rain,

many studies over various ranges of space and/or time

scale have been performed but without the emergence

of a consensus: e.g. (Lovejoy, 1981, 1982; Bell, 1987;

Lovejoy et al., 1987; Zawadzki, 1987; Seed, 1989;

Lovejoy and Schertzer, 1990; Gupta and Waymire,

1990; Rosso and Burlando, 1990; Lovejoy
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and Schertzer, 1991; Fraedrich and Larnder, 1993;

Hubert et al., 1993; Kumar and Foufoula-Georgiou,

1993; Ladoy et al., 1993; Gupta and Waymire, 1993;

Olsson et al., 1993; Tessier et al., 1993; Larnder,

1995; Zawadski, 1995; Lovejoy and Schertzer, 1995b;

Hubert et al., 1995; Olsson, 1995; Over and Gupta,

1996b; Fabry, 1996; Harris et al., 1996; Burlando and

Rosso, 1996; Yano et al., 1996; Menabde et al., 1997;

De Lima, 1998; De Lima et al., 2001). One reason for

this lack of consensus is that all the measurement

techniques—including the different varieties of rain

gauge—have their own non-trivial ‘observer’ pro-

blems, see e.g. (Lovejoy et al., 1996). However, if we

consider evidence from other data—notably satellite

cloud radiances, then the measurement problem is

much more straightforward. In addition, visible and

infra red radiances are routinely used—either directly

or indirectly—as rain surrogates in satellite rain

algorithms so that results on radiances have direct

implications for rainfall.

The cloud radiances are relevant since they are

strongly non-linearly coupled to the rain and to the

dynamics, and since scaling (scale invariance of

the generators/exponents) is a dynamical symmetry.

The scaling in the former is therefore an indication of

scaling in the latter. In addition, since due to gravity

the atmosphere is strongly stratified—at least over this

critical range from meso to synoptic scales—this

result effectively rules out the existence of isotropic

turbulence regimes. Indeed, recent results from high

powered lidar of passive scalars (Lilley, 2003; Lilley

et al., 2004), and the discovery of the fractality of at

least some aircraft trajectories (Lovejoy et al., 2004),

has given substantial new and direct support for the

unified scaling model (Schertzer and Lovejoy, 1985b;

Lovejoy et al., 1993). This model involves

the horizontal wind following a Bogliano–Obhukhov

kK11/5 scaling in the vertical and a Kolmogorov kK5/3

spectrum in the horizontal; so that vertical sections of

structures become progressively flatter at larger and

larger scales in a power law way. Although such

differential scaling was demonstrated in rain with

radar data in (Lovejoy et al., 1987) it was over a range

of scales of only 8 in the vertical.

These results suggest that if we generalize the

notion of scale invariance to handle anisotropy which

varies scale by scale in a scaling manner, then we can

start to make sense of the wind spectra and other data.
Going a step further, and generalizing to scaling

position dependent anisotropy (nonlinear GSI), we

can—at least in principle—reconcile the diversity of

cloud types and morphologies with the scaling of the

isotropic cloud statistics analyzed in (Lovejoy et al.,

1993; Tessier et al., 1993).

In the following, we present results from the largest

scaling of the atmosphere to date (involving 909

satellite images); we attempt to quantify the accuracy

with which isotropic scaling statistics are valid and

with the help of multifractal simulations to show how

diverse cloud, rain and radiance morphologies are (at

least in priniciple) compatible with the observations.

In Section 2, we concentrate on a spectral analysis of

cloud radiances from six sensors on three satellites

spanning the range of scales 1–5000 km. In Section 3,

we present an overview of multifractal properties,

models and simulation techniques (including for

anisotropic space–time rain modeling). Finally, we

show that deviations from the theoretical multiscaling

statistics are very small (Section 4). The primary data

analysis is a partial summary of work presented in an

MSc thesis (Stanway, 2000).
2. Satellite spectral evidence for wide range scaling

2.1. Discussion

Theoretically, the ideal would be to test the extent

and type of rain scaling directly. However, precipi-

tation is not easy to measure; in addition, due to the

strong intermittency (variability) it is very difficult to

get adequate statistics. Individual raingauges such as

tipping buckets operate with a fixed depth of rain

resolution so that their temporal resolution varies with

the rain rate introducing spurious breaks in the scaling

(De Lima, 1998). When used for estimating areal

rainfall, account must be taken of the sparse fractal

nature of typical networks (Lovejoy et al., 1986;

Tessier et al., 1993, 1994), and non-standard multi-

fractal objective techniques should be used (Salvadori

et al., 2001). Radar data measure the volume

averaged effective radar reflectivity and has a range

dependent resolution which affects the statistics.

Cloud radiances, on the other hand have many

advantages. For example, a single cloud scene

1000 pixels on a side has an information content
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comparable to a year of global daily precipitation data

and uniform quality data sets extending up to (near)

planetary scales are available hourly from geosta-

tionary satellites. Clouds and rain are strongly non-

linearly coupled, so that if the scale invariant

symmetry is broken in the cloud field, it will almost

certainly be broken in rain too (and presumably visa

versa). Note that this argument does not imply the

existence of one-to-one relations between the various

fields, nor—since their types of scalings are expected

to be different—does it even imply that the statistics

are the same. Cloud radiances have the advantage that

unlike in situ gauge data, they are largely unbiased by

network homogeneity or problems of rainrate depen-

dent rain gauge resolution (especially for low rain

rates; see (De Lima, 1998)). In addition, radar can

(and should) be used for studying scaling although it

measures microwave backscatter not rain rate and the

disadvantage that for scales larger than that of a single

radar (z200 km) that radar networks are required.

However, the correct handling of overlapping radar

images is itself non-trivial (due to the range and

resolution dependence of the statistical properties).

Although satellite radar (TRMM) does overcome the

network problem, it measured microwave backscatter

only over a very narrow swath (z10 km) and relied

on visible, infra red and passive microwave radiances

to infer areal rainfall.

2.2. The data

In terms of the information content, the largest

existing scaling cloud study (Lovejoy et al., 1993)

analyzed only 15 cloud scenes (five wavelengths

each) over a period of less than a month—not long

enough to sample the full large scale variability. In

order to extend this study, we obtained data from the

archives of the Atmospheric Radiation Measurement

(ARM) programme from of three satellites each with

infra red and visible channels. These images are

physically quite different since the visible is essen-

tially multiple scattered cloud and surface solar

radiation whereas the infra red data are essentially

unscattered thermal blackbody radiation (for the

channels discussed here, we may neglect direct solar

contributions). The primary data set consisted of

scenes over the ARM Oklahoma test site from the

sun-synchronous NOAA-12 and NOAA-14 satellites’
Advanced Very High Resolution Radiometer

(AVHRR) sensor subscenes centered over Wichita

Kansas (see Table 1). In addition, a smaller set of

geostationary GMS-5 images over the central Pacific

were also used. The GMS data were taken within a

month of each other and so were less representative of

the meteorological variability, but had the advantage

of extending the range of scales to over 5000 km (only

the central 1024!1024 pixel square was used in order

to minimize cartographic distortion).

Since, it is important that the sample of images be

as unbiased as possible, some comments are in order.

To begin with, images were not received every day. In

addition, some scenes were not used because of

artifacts (such as missing lines) or because the sun had

not risen (visible data only; this accounts for most

of the rejections for the winter NOAA 12 data; see

Table 1). Many pictures had isolated pixels with

clearly spurious values; these, however, were gener-

ally corrected by replacing them with the average of

their neighbors. Also, for the visible data, a sun and

satellite angle correction was used. This consisted of

normalizing the raw radiances by the cosines of the

zenith angles of each (this correction would be exact

for a Lambertian reflector). Since, for any individual

image, this correction was taken as a constant, it does

not affect the scaling. However, for the ensemble

spectrum, it gives a more equal weight to each picture

in the ensemble.

2.3. The isotropic scaling

Spectral analysis is a sensitive way of performing

scale by scale analysis and it has the additional

advantage that it is relatively familiar to geophysi-

cists. The isotropic energy spectrum E(k) (k is the

modulus of a wavevector) is defined as the angle

integrated ensemble average of the square fourier

modulus of the data. Isotropic scaling implies: E(k)Z
kKb, where b is the ‘spectral exponent’. Angle

integration is preferred to angle averaging since in

an isotropic system the resulting exponent b will be

the same on subspaces (e.g. on linear sections of the

images; the difference between integration with

respect to averaging is 2pk, 4pk2 in 2D and 3D,

respectively). In addition to the minimal pre-proces-

sing indicated in Section 2.2, we applied standard

Hanning filters. Clearly this standard use of isotropic



Table 1

The characteristics of the data used in this study

Satellite,

channel

Wavelength

(mm)

Resolution, scene

size (km)

Period covered Local time G30 0 Images used/total

NOAA 12, channel 1 0.58–0.68 1.1, 280 30/1/96–20/1/97 19:30, 8:00 134/156

NOAA 12, channel 5 11.5–12.5 1.1, 280 30/1/96–11/2/97 19:30, 8:00 353/354

NOAA 14, channel 1 0.58–0.68 1.1, 280 30/1/96– 4/2/97 14:30, 3:00 150/162

NOAA 14, channel 5 11.5–12.5 1.1, 280 30/1/96–7/10/96 14:30. 3:00 211/214

GMS-5 visible 0.5–0.75 5, 5120 13/3/96–15/4/96 Noon, sub satellite 29/29

GMS-5 IR 10.2–12.5 5, 5120 13/3/96–15/4/96 Noon, sub satellite 29/29

The NOAA images were remapped onto a Mercator projection.

S. Lovejoy, D. Schertzer / Journal of Hydrology xx (2005) 1–30 5

DTD 5 ARTICLE IN PRESS
spectra ‘washes out’ much of the anisotropy; below

we argue that it is precisely this (presumably scaling)

anisotropy which largely accounts for the differences

between different images, different cloud mor-

phologies, different cloud types.

Typical individual spectra are shown in Fig. 1a; the

variation about the log–log linear (power law)

behaviour is small and—as shown by numerical

multifractal simulations (Section 3), is of the order

expected by purely random causes. This is plausible if

we recall that a straight line is only expected on an

ensemble average; on the contrary on any single

realization of a scaling process, the scaling will almost

surely be broken, it can only be approximately linear.

The other sensors, other wavelengths gave compar-

able results. To check for any possible seasonal

variation, we display Fig. 1b which shows that the

scaling is well respected on a monthly basis with little

noticeable systematic change from month to month.

Note that here and in the following, no attempt was

made at an absolute calibration.

Due to the good isotropic scaling, we proceeded to

estimate the ensemble (isotropic) statistics see Fig. 2a

and b for NOAA 14 satellite and Fig. 2c for an

intercomparison of the NOAA 12 with GMS. The

only strong break visible is at the small scale end of

the GMS 12 IR data. Since, none of the other channels

(including the NOAA 12 and 14 at the same scales)

showed this feature, we concluded that this was an

artifact of a slight oversampling on the GMS IR

sensor. For the subsequent analyses we averaged and

resampled this channel by a factor of 2 in order to

minimize this effect. Finally, in Fig. 3 we compare

visible spectra for GMS, NOAA-12, a single SPOT

image (over France) and the average of 38 ground

based photographs discussed in Sachs et al. (2002).
Although the exact slopes differ—we argue below

because of the differing surfaces/backgrounds which

affect radiances—the basic isotropic scaling is

excellent over the entire range of 5000 km down to

1 m. We quantify this statement in Section 4. Note

that over the land, the bidirectional reflection

coefficient and infra emission is also apparently

scaling (e.g. Gaonac’h et al., 1999; Laferrière and

Gaonac’h, 1999) as is the topography (e.g. Gagnon

et al., 2003) so that a priori, the surface features do not

break the scaling.
3. Multifractal models of rain and clouds

3.1. Cascade properties

Non-linear scale invariant processes have dynami-

cal mechanisms that repeat scale after scale from large

to small; they are cascade-like. In the last 20 years, it

has become clear that cascades are the generic scale

invariant multifractal process and can thus generally

serve as multifractal models—at least of conservative

scaling processes (see below). We will illustrate them

using the example of the turbulent energy flux 3.

Since, the 1980s, cascades have been used for rainfall

modeling by many authors including (Veneziano

et al., 1996; Over and Gupta, 1996a; Mazzarella,

1999; Deidda, 2000). Consider a discrete in scale

cascade such as that shown in Fig. 4 developed over

total scale ratio lZL/Ld, L being a large external

scale, Ld the small dissipation scale. The kinetic

energy flux of ‘daughter eddies’ is multiplicatively

modulated by ‘parent’ eddies at each (factor 2)

cascade step, giving rise to potentially huge fluctu-

ations. If each cascade step is over scale ratio l0, after
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Fig. 1. (a) The isotropic spectra of every second NOAA-12

(AVHRR) visible images obtained in May, 1996 are shown

here displaced from each other. The straight reference lines all

have a slope equal to the average spectrum for all 134 images

(ZK1.57). Recall that the isotropic energy spectrum gives the

contribution to the overall variance (integrated over all directions)

due to structures with wavenumbers between k and kCdk. From

top to bottom the dates of the images are 1, 3, 8, 11, 15, 21, and

30 May. The fact that the isotropic spectra are very similar does

not imply that the scenes are necessarily similar since the scale by

scale anisotropies are generally quite different corresponding to

different cloud types. The slopes bZ1KK(2)C2H. Since K(2) is

small and varies little (see the small C1, a and small variations in

Fig. 6), most of the variations in slope are due to variations in H.

(b) The average spectrum for eight months’ NOAA-12 (AVHRR)

visible data is shown here (1996). The spectra are all displaced

from each other and each month is indicated, along with the

number of images’ spectra used in the average (indicated in the

parentheses), next to the relevant plotted data. Each spectrum is

shown for comparison next to a line of slope K1.57 (Zthe

average slope over all 134 images used).
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Fig. 2. (a) This is the average (isotropic) energy spectrum of 158

NOAA-14 (AVHRR) images, channel 1 (0.58–0.68 mm), taken from

January to September, 1996. As for NOAA-12, the resolution is

1.1 km and the images are 256!256 pixels. The regression slope is

K1.50. All images are taken between 1930 and 2030, GMT, over

the ARM SGP site. (b) This is the average energy spectrum of 209

NOAA-14 infrared images, channel 5, taken from January 1996 to

October 1997. The images were all taken at approximately 2030 or

0900 GMT, over the ARM SGP site. The images were taken using
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Fig. 3. The average spectra obtained for the GMS, NOAA 12, data

discussed in Section 2, as well as a SPOT (20 m resolution) image

over France, are shown here together for comparison (displaced in

the vertical for clarity). The GMS spectrum shows a range of scales

of 5120–10 km, the NOAA 12 spectrum shows a range from 256 to

2 km and the SPOT spectrum shows a range from 10 km to 40 m. At

the far right we also show the average of 38 ground based pictures

(some with resolutions of 50 cm, this is the average of the data

discussed in Sachs et al. (2002)). As indicated in Table 3b, the main

differences are in H, i.e. in the ‘roughness’. This is strongly

influenced by the background; it is not surprising that the largest H

and steepest spectra (smoothest images) are from the ground

looking up with smooth sky background.

3
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n steps we have the following energy flux density 3n:

3n Z
Yn

jZ1

m3j (1)

where m3j is the ‘multiplicative increment’ due to the

jth step (the initial energy injected 30 is assumed unity

for simplicity). After n steps, with lZln
0 (the total

scale ratio (large/small) over which the cascade has
the infrared channel 5 (11.5–12.5 mm) with a resolution of 1.1 km.

All images are 256!256 pixels. The regression slope is K1.88. (c).

Comparison of the average infrared and visible spectra for GMS-5

and NOAA-12. Here, the visible and infrared GMS-5 spectra both

make use of 29 images. The visible NOAA-12 data makes use of

134 images, the infrared of 353 images. The extreme high frequency

ends suffer from noise (flattening) except the GMS IR which dips

down due to oversampling.
been developed), the statistical moments follow:

h3
q
liZ lKðqÞ (2a)

where K(q) is the moment scaling function. The

corresponding probabilities follow:

Prð3lOOlgÞzlKcðgÞ (2b)

(Schertzer and Lovejoy, 1987b), where c(g) is the

statistical codimension of the singularity gZlog 3l/

log l and the ‘z’means equality to within log

corrections (see Section 4 for more discussion of

these). h3
q
li and Pr(3lOOlg) are related by a Mellin

transform (Schertzer and Lovejoy, 1992), the expo-

nents K(q), c(g) via a Legendre transformation, (Parisi

and Frisch, 1985):

KðqÞZmin
g
ðqgKcðgÞÞ;

cðgÞZmin
q
ðqgKKðqÞÞ

(3)

hence there is a one to one relation between

singularities and statistical moments: gZK 0(q),

qZc 0(g) so that for large l, a single g gives the

dominant contribution to each moment order q.

The small scale limit (l/N) of such a cascade is

highly singular. In particular, we note the logarithmic

divergence of the log moments with scale:

logh3
q
lizKðqÞlog l. It is this systematic resolution

dependence which makes the behaviour of mulifrac-

tals very different from that of classical geophysical

fields: the latter are predicated on various assumptions

about the mathematical regularity of the fields which

at first sight appear plausible, but which in fact turn

out to be highly restrictive. In particular, multifractal

measures are singular with respect to the standard

Lebesgue measures. This implies for example that

rain and cloud areas do no converge as they are

measured at finer and finer resolution. In order for any

mathematical convergence properties to exist, con-

straints must be imposed on the cascade. The two

basic alternatives for the energy conservation are that

it does so locally in space—yielding a micro-

canonical cascades or conservation only over

ensemble averages, yielding canonical cascades. In

microcanonical cascades, g!gmax, where gmax is an

upper bound introduced by the microcanonical

constraint; if the latter is imposed on a space of

dimension D, then gmax!D (Schertzer and Lovejoy,
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1992). Using g!gmax in the Legendre transformation

(Eq. (3)) we find the following discontinuity in the

slope of K(q) (‘multifractal phase transition’):

KðqÞZ qgmax KcðgmaxÞ; qRc0ðgmaxÞ (4)

Cast in a slightly different setting (and with the

micro-canonical assumption only implicit), (Novikov,

1970) obtained the corresponding inequalities on the

statistical moments hm3
q
li; these ‘Novikov’ inequalities

therefore do not apply to canonical cascades. Note

that since any finite sample has a largest singularity

(even if the process itself will eventually generate

singularities of all orders), this leads to a linear

asymptote on K(q) called a ‘multifractal phase

transition’ (Schertzer and Lovejoy, 1992).

In comparison, the less restrictive canonical

cascades only impose conservation on ensemble

averages, (i.e. hm3iZ1) and they generally have no

upper bound on the singularities. While the canonical

cascades are more general and (apparently) more
physically appropriate (see below), the small scale

limit is non-trivial. It turns out that there is indeed no

small-scale limit (l/N) in the sense of functions

(i.e. at mathematical points), but only in the weak

sense of measures (i.e. in the neighborhood of points);

only integrals over finite sets of dimension D have any

convergent statistics. In general as first pointed out by

(Mandelbrot, 1974) there will be a critical order of

divergence qD such that:

Prð3lOOsÞzsKqD ; h3
q
li/N; qRqD (5)

See Tables 2a and b for an intercomparison of

various cascade types.

In rain values qD near three have been found (see the

review (Lovejoy and Schertzer, 1995b), also (Tessier

et al., 1996; Bendjoudi et al., 1997; De Lima et al., 2001,

2004); in rivers, there is more variation in qD so that it is

not clear that a unique value can be used (see Turcotte

and Greene, 1993; Tessier et al., 1996; Pandey et al.,

1998; Hubert et al., 2001). In addition, the value qDZ3

is predicted theoretically on the basis of a compound

multifractal Poisson process (Lovejoy and Schertzer in

preparation). Because this extreme algebraic behaviour

is excluded from microcanonical (and also bounded)

cascades, this growing empirical evidence for algebraic

tails of the probabilities is primae facae evidence for

canonical cascades. Note that additive processes with

algebraic probability tails (involving Levy distri-

butions) cannot account for values of qDR2 and are

thus also excluded. Tables 2a and b compares and

contrasts various multifractal models.
3.2. Universality and continuous in scale cascades
3.2.1. Universality

In general, canonical cascades lead to statistics

characterized by a convex K(q); this is equivalent to

knowledge of an infinite number of theoretical or

empirical parameters. Hence, without further assump-

tions, modeling and analysis would be impossible.

This is the problem of ‘universality’ familiar to

physicists. In the case of multifractals, due to the

technical difficulties surrounding the non-trivial

singular small scale limit, the debate about univers-

ality was complicated. It is now clear that in principle

(i.e. mathematically) universal multifractals do exist,

see the debate (Schertzer and Lovejoy, 1997). The key



Table 2a

This table compares and contrasts statistical exponents displayed by various discrete in scale cascade processes, i.e. those that are based on integer scale ratios

c(g) K(q) x(q)

Micro-canonicala g%gmax; gmax%D KðqÞZqgmaxKcðgmaxÞ; qRc0ðgmaxÞ zðqÞZqHKKðqÞ any H

Canonicalb cO0, c is convex K is convex; K(q)/N; qOqD zðqÞZqHKKðqÞ any H

Bounded cascade

and additive trun-

cated cascadec

cbðgÞZ
g

H
; g!H

cbðgÞZN; gRH
HO0

KbðqÞZ0; q!1=H

KbðqÞZqHK1; qO1=H

xðqÞZqH; q!1=H

xðqÞZ1 qR1=H

Iterated function

systemsd
cðgÞZ1Cx log2 xC ð1KxÞlog2ð1KxÞ;

xZ
gKgC

gCKgK

� �
K1!gK!gC!1

KðqÞZq ðgCCgKÞ
2

C log2 cosh q ðgCKgKÞ
2

log 2
� �

zðqÞZqHKKðqÞ; HZKlog2 jdjK
ðgCKgKÞ

2
K

log2 cosh ðgCKgKÞ
2

log 2
� �

jdj!1

Presumably realistic cascades require this ratio to tend to unity, they are continuous in scale (see Table 2b).
a The structure function exponent is given for the Fractionally Integrated Flux model; i.e. after the cascade is fractionally integrated by an order H.
b In general, c(g) becomes linear due to the divergence of moments (Eq. (6)) so that K(q) diverges for qOqD.
c The basic result for the structure function is given in Cahalan (1994); the results from c(g), K(q) follow from it. The truncated additive cascade is obtained by adding rather than

multiplying; when it is truncated so as have only c!1 (implicit in the discrete bounded multiplicative cascade), it has the same exponents.
d The basic result for the structure function is given in Levy-Véhel et al. (1995), here we give the c(g), K(q) which follow from it. Note the restrictions on the parameter ranges.

Table 2b

To our knowledge, these are the only continuous in scale cascades models which have been proposed in the literature

c(g) K(q) x(q)

Universal (log-Levy), fractionally

integrated fluxa cðgÞZC1

g

a0C1

C
1

a

� �1=a0

; g!gD;

cðgÞZqDðgKgDÞCcðgDÞ; gOgD

1

a
C

1

a0
Z1 0%a%2

KðqÞZ
C1

aK1
ðqaKqÞ; q!qD

KðqÞZN; qOqD

zðqÞZqHK

KðqÞ

any H

Poissonb

cðgÞZ 1K
gCKg

cgK
1K log

gCKg

cgK

� �� �
c;g%gC;

cðgÞZN; gOg
C; g

KZ log 1K
gC

c

� �
; cZcðgCÞ

KðqÞZqgCKcC 1K gC

c

� �q

c zðqÞZqHK
KðqÞ

Attenuated cascade (nonscaling)c
KðqÞz C1

aK1
ðqaKqÞ 1KeKkw

kw

� �
kZ log l

log L
%1

Note that only the Universal FIF model has unbounded singularities as required in systems displaying power law tails of probability distributions.
a We give the c(g) corresponding to the divergence of moments (Eq. (5)); gDZK 0(qD). For K(q) we give the result for an infinite ensemble; for finite ensembles, there will be a

discontinuity in the slope of K(q) at qD, after which K(q) is linear with slope dependent on the sample size.
b This was first proposed in She and Levesque (1994) and applied to rain by Deidda (2000). The maximum singularity gC and corresponding codimension cZc(gC) can be

chosen fairly arbitrarily, see the discussion in Schertzer et al. (1995).
c This model is not scaling due to the l dependence in the k parameter; w characterizes the attenuation of the cascade over the range L (Ol) over which the continuous attenuated

cascade is defined.

S
.

L
o

vejo
y,

D
.

S
ch

ertzer
/

Jo
u

rn
a

l
o

f
H

yd
ro

lo
g

y
xx

(2
0

0
5

)
1

–
3

0
9

D
T
D

5
A
R
T
IC
L
E
IN

P
R
E
S
S



S. Lovejoy, D. Schertzer / Journal of Hydrology xx (2005) 1–3010

DTD 5 ARTICLE IN PRESS
outstanding issue is the relevance of the proposed

routes to universality in rain. However, one of

the proposed routes is the ‘densification’ of the

cascade spectrum by making the cascade continuous

in scale, i.e. by taking the limit of the step ratio l0/1

(Schertzer and Lovejoy, 1987a). This is presumably

physically realistic—certainly there is no physical

basis for cascades with discrete integer step scale

ratios l0. Mathematically, continuous in scale multi-

fractals have ‘infinitely divisible’ generators.

Universal multifractals are the multiplicative ana-

logues of the (additive) central limit theorem, they lead

to mulitfractals with Levy generators and the exponents:

KðqÞZ
C1

aK1
ðqa KqÞ (6a)

cðgÞZC1

g

a0C1

C
1

a

� �1=a0

;
1

a
C

1

a0
Z 1 (6b)

where C1 is the codimension of the mean and 0%a%2 is

the Levy index of the generator.aZ0 corresponds to the

monofractal ‘beta model’, aZ2 to the ‘log-normal’

multifractal. Note that due to the singular small scale

limit, the above will generally only hold up the a critical

upper limit qD discussed above.

A useful property of universal multifractals which

we will exploit below is the scaling of the normalized

h power:

hð3
h
LÞ

q
liZ lKðq;hÞ (7)

where the notation indicates that the field 3 is taken at

its finest resolution and raised to the h power; the result

is degraded to resolution l and the mean q power is

taken. The exponent K(q,h) depends on both h and q, it

is related to the usual K(q)ZK(q,1) as follows:

Kðq;hÞZKðqhÞKqKðhÞ (8)

This result is quite general, however, in the special

case of universal multifractals (Eq. (6a)), the above

simplifies and we obtain:

Kðq;hÞZ h
aKðq; 1Þ (9)

This means that by comparing the scaling for

various h values with exponent q fixed, we can directly

estimate a (and hence C1) by linear regression of

log K(q,h) vs. log K(q,1). This is the ‘Double Trace

Moment’ (DTM) technique (Lavallée et al., 1993)
which is simpler and more robust than directly

estimating the parameters from K(q) (Eq. (6);

especially since this universal form is only valid for q

below a critical value qD determined by the multi-

fractal phase transitions mentioned above).

3.2.2. Continuous in scale multifractals

The original approach for making continuous in scale

multifractal models with statistics governed by Eq.

(6)—the Fractionally Integrated Flux (FIF) model—

were first described in (Schertzer and Lovejoy, 1987a).

They were later extended to down-scaling in (Wilson,

1991), to linear generalized scale invariance in (Wilson,

1991), (Pecknold et al., 1993) to causal space–time

modeling in (Marsan et al., 1996; Schertzer and

Lovejoy, 1997). The first step in making an isotropic

FIF model in D dimensional space is to make the

continuous in scale, conservative multifractal process.

We start with an (appropriately normalized) noise

subgenerator gðXÞ made by distributing i.i.d extremal

Levy random variables on the simulation grid;

XZ ðx; y; zÞ for a spatial model L;XZ ðx; tÞ for a

space–time model. This is then fractionally integrated to

yield the generator GðXÞ, exponentiated to yield the

conservative cascaded flux 3ðXÞ and again fractionally

integrated again to yield the rain rate R:

GðXÞfC1=a
1 gð

�
XÞ*jX jKðDK1=aÞ; 3ðXÞZ e

Gð
�
XÞ

(10)

where ‘*’ indicates ‘convolution’.

‘Weakly universal’ multifractals have been pro-

posed based on Log-Poisson generators (She and

Levesque, 1994). They have been recently been

applied to rain (Deidda, 2000); see Table 2 for the

statistics). However, while log Poisson processes are

continuous in scale, they are neither stable nor

attractive, hence they are at best ‘weakly universal’.

In addition, they have an intrinsic upper bound on the

singularities they can generate so that qD is generally

infinite, a restriction that seems incompatible with the

finite qD observed in rain rate distributions; see also

(Schertzer et al., 1995) for an empirical assessment of

Log-Levy vs. Log-Poisson distributions in turbulence.

3.3. Nonconservative multifractals

So far the multifractals we have described are the

direct outcome of multiplicative cascades; they have
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non-linear scaling exponents with K(1)Z0 due to

the conservation constraint. In general, the observable

fields have additional (linear) scalings, the proto-

typical example being the turbulent velocity field v:

DvðDxÞZ 3aDxH (11)

In turbulence, the Kolmogorov values are aZHZ
1/3, and taking absolute values and averaging, we

obtain the ‘qth order structure function’:

hjDvðDxÞjqiZDxzðqÞ; DvðDxÞZvðxCDxÞKvðxÞ

(12)

where z(q) is the structure function exponent (the

statistics are assumed to be translationally invariant

i.e. independent of x). Taking for simplicity aZ1, and

using DxflK1 we obtain:

zðqÞZqHKKðqÞ (13)

when z(q) is linear, K(q) is either zero or is itself

linear; in either case, the system is ‘monofractal’

otherwise it is concave, and the system is multifractal.

A final result useful below for estimating H, is the

relation with the spectrum; using the Wiener–

Khintchin theorem (which relates the autocorrelation

to the spectrum via a fourier transform), we find:

bZ 1Czð2ÞZ 1C2H KKð2Þ (14)

Since, K(2)R0, this shows that for conservative

cascades (HZ0), b%1.
3.4. Models of nonconservative multifractals
3.4.1. Fractionally integrated flux model (FIF)

There are several ways of modeling a nonconser-

vative multifractal field (sometimes called ‘synthetic

turbulence’; see Table 2). The first and still most

general is the FIF model which simply uses fractional

integration of order H of a conservative flux 3, we

have (see e.g. Schertzer and Lovejoy, 1987a, 1997):

vðXÞZ 3ðXÞ!jxjHKD (15)

where D is the dimension of space. The resulting field

v satisfies Eqs. (11) and (12). In the above, the space–

time vector norm j
�
Xj is isotropic; the result is a self-

similar multifractal.
3.4.2. Additive cascade

A number of proposals have been made in

order to directly model a nonconservative field

without first modeling a conservative multifractal.

Although—unlike the cascade models and FIF—no

serious attempt has been made to give them a physical

basis, they have been applied to rain and turbulence

modeling. In order to understand some of these, we

first discuss the simple additive cascade which—when

truncated—turns out to be essentially identical to

the multiplicative bounded cascade (Section 3.4.3)

only it is much simpler to analyze.

In analogy to Eq. (1), consider the following

additive cascade over a hierarchical 1D grid with

cascade step l0Z2:

3n Z
Xn

jZ1

d3j (16)

where the additive increments are:

d3j ZGfcj (17)

and 0!c%1, 0!f%1 are model constants and the G
signs are taken randomly with equal probability so

that !d3jOZ0. This is very similar to the midpoint

displacement algorithm (Fournier et al., 1982), close

to a fractional Brownian motion with parameter

HZK(log c/log 2), It results in a linear structure

function exponent. When the process is truncated so

that c(g)!1, it yields piecewise linear exponents

(Table 2a) identical to the bounded cascade discussed

below.
3.4.3. Bounded cascade

We start with a two-state, one-dimensional model,

with elementary cascade steps of ratio l0Z2. In the

model there are only two possible states per cascade

step and the energy flux is exactly conserved at each

step (it is microcanonical) with multiplicative incre-

ment:

m3j Z 1Gfcj (18)

with again 0%f%1, 0%c%1. The energy flux is

multiplicative following Eq. (1).

This ‘bounded cascade’ was inspired by (Bell,

1987) who weakened the cascade at small scales (but

in a somewhat different way) in order to avoid



S. Lovejoy, D. Schertzer / Journal of Hydrology xx (2005) 1–3012

DTD 5 ARTICLE IN PRESS
the singular small scale limit. Although (Schertzer and

Lovejoy, 1987a) showed how this limit could be

tamed without any kind of bounding, (Cahalan, 1994)

nevertheless proposed the above bounded cascade

(it was applied to rainfall by (Menabde et al., 1997)).

Note that if cZ1 we retrieve the microcanonical ‘p

model’ (Meneveau and Sreenivasan, 1987b), itself a

microcanonical restriction of the canonical two-state

‘a model’ (Schertzer and Lovejoy, 1985a). The

statistics are shown in Table 2a; in the small scale

limit they are identical to the truncated additive

cascade so that its multiplicative construction is

somewhat misleading (they are a bit different at the

largest scales). For comparison with a continuous

cascade, in Table 2b we give the exponents for a

continuous in scale ‘attenuated’ cascade whose

singularities are algebraically reduced per cascade

step.

3.4.4. Iterated function systems (IFS) multifractals

An approach originally developed for modeling

geometrical fractal sets is the Iterated Function

System (IFS) approach proposed by (Barnsley,

1993), developed by (Levy-Véhel et al., 1995) and

applied to turbulent systems by (Basu et al., 2004). To

produce an IFS system one starts with one or more

initiators and (self affine) linear transformations. By

iteratively transforming and taking unions of the

resulting sets one can produce a huge range of

geometric fractal sets. In order to use the method to

produce 1D fractal functions (e.g. R(t)), one produces

a set and interprets the result as the graph of a

function. For this to provide a useful model, special

parameter values must be used so that the result is

single valued. (Levy-Véhel et al., 1995) and (Basu

et al., 2004) propose a specialization of the IFS

process based on factor of l0 discrete scale ratios that

results in the statistical exponents shown in Table 2.

The IFS and bounded cascades only give very special

types of c(g), K(q), x(q)’s and their discrete in scale

construction implies the unrealistic feature of being

only exactly scaling for integer powers of l0.

3.5. Numerical simulations of FIF

3.5.1. The parameters for rain and clouds

There have been a number of empirical estimates

of the parameters C1, H, a for rain (Lovejoy and
Schertzer, 1990; Tessier et al., 1993, 1996; De Lima,

1998; see the review Lovejoy and Schertzer, 1995b).

The primary difficulty is undoubtedly the extreme,

nonclassical variability discussed in Section 3.5.2;

however, there is an additional problem which is

important in modeling and analysis; the problem of

the zeroes. Empirically, the zeroes greatly affect the

low rain rate statistics, hence methods for estimating

the multifractal index a which typically exploit the

nonanalyticity of K(q) near qZ0) will be sensitive to

the way the measuring instrument handles the

problem. This may explain the various published

estimates with a in the range from 0.5 to 0.8 (time,

Ladoy et al., 1993; De Lima, 1998; Labat et al., 2002)

and 1.35–2 for the horizontal direction in space

(Tessier et al., 1993; Chigirinskaya et al., 2002; Biao,

2003; Duncan, 1993). Theoretically, there are basi-

cally two ways to handle the zeroes: (a) by using two

processes; the first to determine the support (i.e. the

nonzero regions), the second, the rainrate on the

support, (b) by using a single process to determine

rain rates everywhere, but to introduce a threshold

below which the rain rate is set to zero. Although the

difference between the approaches may seem to be

somewhat academic, it is not: in general, method (b)

introduces a characteristic length/time in rain. In the

compound multifractal Poisson rain model the issue is

taken care of in a more physical way via the drop

number density field (Lovejoy and Schertzer in

preparation). In what follows, for simplicity—and

because the basic issue is unresolved—we use the

threshold method which can be derived as an

approximation to the multifractal compound Poisson

model. Note that since most measuring devices have

minimum detectable signals, they can introduce

spurious length scales and may account for a number

of otherwise contradictory observations.

Fig. 5a and b shows an example of FIF cloud and

rain simulations the result using parameters esti-

mated for rain (5a), clouds (5b). Fig. 5c shows how

three dimensional simulations of liquid water

density with realistic differential stratification in

the vertical can be used to simulate radiation fields

in the visible, infra red. In this way they can

simulate satellite rain algorithms (e.g. RAINSAT,

Lovejoy and Austin, 1979; Bellon et al., 1980)

which use infra red radiances to distinguish high

(cold) and low (warm) cloud tops, and visible
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radiances to distinguish thin and thick clouds; the

two are used to estimate the probability of rain (as

determined by radar). For more examples of multi-

fractal simulations, see http://www.physics.mcgill.

ca/~gang/multifrac/index.htm.
Fig. 5. (a) This figure shows the effect of varying the anisotropy on 512!5

scale so as to mimick a radar representation the parameters are close to thos

isotropic generators (GZidentity) and all scales are isotropic. At the top righ

retain the isotropic generator, but allow the unit scale to be deformed; howeve

are thus ‘self-similar’ multifractals, the anisotropy is ‘trivial’, i.e. the same at

G has real eigenvalues) with G Z Z

 
0:7K0:1

0:1 1:3

!
. The sphero-scale (i.e. th

the right is a rotation dominant case (i.e. G has complex eigenvalues) with G

scales, they are due to a difference in the notion of scale itself. Our hypothesis

modify the scale function while retaining the basic statistical multifractal exp

except that is cloud parameters aZ1.9, C1Z0.075, HZ0.36, have been used

dimensional cloud simulations (on 256!256!128 point grids) with liquid w

0.1, HZ0.33). Upper left is a false colour view of the cloud top, the top righ

with a mean optical thickness 50 (false colours), linear temperature gradient (

sun at 458, (single scattering only, mean optical thicknessZ50). The statist
3.5.2. Extensions to anisotropy, causality

Since, scaling in real systems is never exactly

isotropic (self-similar), for applications we must

extend the FIF to anistropic scaling. In the above,

�
XZ ðx; y; z; tÞ, i.e. we consider at the outset the
12 pixel rain simulations (aZ1.5, C1Z0.2, HZ0.1; note this is a log

e estimated in (Tessier et al., 1996)). At the top left we have both an

t (with same random seed so that the structures can be compared), we

r, the deformation (anisotropy) is the same at all scales these two cases

all scales, on the lower left we have a stratification dominant case (i.e.

e scale at which structures are roughly isotropic) is lsZ256 pixels. On

Z

 
0:7K1

1 1:3

!
. Note that the differences in the simulations are at all

is that effects of convection and other meteorological processes would

onents (a, C1, H). (b). This is identical to (a) (including random seed)

and the colouring scale is linear (from blue to bright white). (c). Three

ater density (LWC) close to those observed in aircraft (aZ1.8, C1Z
t is a side view. Lower left shows simulated Infra Red radiation field

from 300 to 220 K). The lower right is top view of the visible radiance,

ics of the radiances are very close to those observed.

http://www.physics.mcgill.ca/~gang/multifrac/index.htm
http://www.physics.mcgill.ca/~gang/multifrac/index.htm
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overall space–time scaling. In addition, the above

assumes that the statistics are translationally

invariant (i.e. the dynamical mechanisms are the

same everywhere in space–time). Tl is a scale

changing operator; this, combined with a definition

of the unit ‘ball’ (upon whose boundary lie all the

unit vectors) defines the scale (l) of all the vectors.

Since, the system is scale invariant, Tl must have

group properties; in particular it is defined by an

operator called a ‘generator’ G:

Tl Z lKG (19)

Tl is a generalized reduction by factor l. When G is a

matrix, then we have linear Generalized Scale

Invariance (GSI).
With the aid of Tl the extension of isotropic self-

similar multifractals to realistic anisotropic modeling

is conceptually straightforward, the vector norm j
�
Xj

must be replaced by a ‘scale function’ satisfying

jjlKG

�
XjjZlK1jj

�
Xjj, and D by the ‘elliptical dimen-

sion’ZTrace G. Note that the scale function is not

generally a metric. If G is the identity, then we recover

isotropic (self-similar) multifractals (i.e.kXk/ jX j).

In general G will be non-linear so that the anisotropy

will depend not only on scale, but also on location.

The overall scaling of an anisotropic FIF field RðXÞ

is thus given by:

DRðDXÞZRðDX C
�
XÞKRð

�
XÞ;

hjDRðTlDXÞjqiZ lKxðqÞhjDRðDXÞjqi ð20Þ

where x(q) is the scaling moment function.
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Finally, a comment is in order on space–time

processes, where causality must be satisfied. Along a

spatial axis, it is quite reasonable (although not in fact

necessary) to assume left–right symmetry. On the

contrary, along the time axis, there must be a complete

asymmetry so that the future does not statistically

influence the past. The appropriate additional con-

ditions which are necessary in order to ensure that the

future does not influence the past are given in (Marsan

et al., 1996); we must use causal fractional inte-

grations obtained by using Heaviside functions to cut-

off the past in the Green’s function in the fractional

integral kernel (the powers of jj
�
X
�

jj in Eqs. (10) and

(15)).

Although numerous numerical implementations

of the above were made in the last 15 years, they
suffered from certain problems of stability linked to

the numerical approximation of the power law

convolutions (fractional integrations). The key to

stable numerics is to use appropriately (smoothly)

truncated power laws: in 1D this can be achieved with

‘Cauchy wavelets’ (Schertzer et al., 2001). The non-

trivial anisotropic extensions to higher dimensional

spaces will be described in a forthcoming paper. See

Fig. 5a–c for a comparison of anistropic and isotropic

simulations showing how cloud and rain mor-

phologies can change by changing the definition of

scale. All the simulations will have very similar

isotropic statistics. These simulations attempt to

graphically show that different cloud types are—at

least in principle—compatible with fixed values of a,

C1, H and how both infra red and visible radiances can
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Fig. 6. AVHRR14: for 161 visible images. (a). (top left): scatterplot of a vs. average albedo estimated with cosine corrections as discussed in the

text. The plot shows a wider scatter of a values for the low intensity images, with the value settling down to around 1.87 for the bright images.

Note that values of aO2 are not theoretically possible, they are artifacts diue to inadequate statistics and/or small deviations from theory. (b). C1

vs. albedo. Again, a wider scatter of C1 values for low intensity images, with the values settling down to 0.07 for the brighter images. (c). H vs.

albedo. The H values tend to be more highly variable and lower for the dimmer images. The higher albedo cases generally correspond to more

cloud coverage, thicker clouds. Note that the H values of cloud-free land surfaces are typically small; the albedo being affected by the local

topography gradients. This explains why the low albedo cases tend to have low H values.
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be simulated from 3D stratified liquid water cloud

density fields. Recently even more diversity and

realism has been achieved using a wave-like frac-

tional integration in Eq. (15).
4. Universal multiscaling

4.1. Isotropic multiscaling on an image by image

basis

In Section 2, we showed—without yet quantify-

ing it precisely—that cloud radiances had isotropic
spectra that were accurately scaling; the spectrum is

a second order statistic so that this characterizes a

single value of the structure function: z(2)ZbK1

(Eq. (14)). In order to fully characterize the scaling,

we need to characterize z(q); this is only practical

with some parametric fit; following the arguments in

Section 3.2, we shall therefore estimate C1, a, H.

Once again, before ensemble averaging, we first

estimate the parameters on an image by image basis

to see if there is are systematic variations, to

examine the possibility that there might be several

different ensembles present. The method we used

was to first estimate a (scale by scale) conservative
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quantity analogous to the energy flux which we

denote by f. We then raise it to the h power, and

systematically degrade its resolution (by averaging,

‘coarse graining’ or equivalently by using wavelets)

to obtain ðf
h
LÞl. For each moment q, we can then

perform a linear regression of loghðf
h
LÞil against

log l to determine the slope K(q,h) (Eq. (7)) and

then from K(q,h) we can perform a final log–log

regression to determine a and K(q,1) (and hence C1)

using Eq. (9); this is the DTM technique. Once a,

C1 are determined in this way, we can estimate

the theoretical K(2,1) (Eq. (6a)) and finally the

last basic parameter H from the spectral exponent b

(Eq. (14)).
The qualitative effects of varying the basic

universal multifractal parameters can be described

as follows. Visually, the effect of decreasing H is

the increase the ‘roughness’ whereas C1 varies

the ‘sparseness (which increases with C1). Finally,

the tendency of the image to be dominated by holes

increases as a is decreased. One way to get a better

feel for this is via multifractal simulations; see the a,

C1, H space images in the multifractal explorer

website (http://www.physics.mcgill.ca/~gang/multi-

frac/multifractals/isotropic.htm).

Fig. 6 shows a scatter plot for NOAA 14 visible

channel (the NOAA 12 is very similar) of the

parameters as functions of nominal albedo (estimated

http://www.physics.mcgill.ca/~gang/multifrac/multifractals/isotropic.htm
http://www.physics.mcgill.ca/~gang/multifrac/multifractals/isotropic.htm
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by using cosine corrections to sun and satellite angles

as described in Section 2). We notice very little (if

any) systematic dependence although the scatter is

much higher for the low albedo cases which

correspond to the low cloud cover images. Closer

inspection shows that a, C1 are still relatively stable

and not far from the ensemble mean values (see

below) whereas H varies considerably. This is in

accord with results of radiative transfer on multi-

fractal clouds (Naud et al., 1996; Schertzer et al.,

1997) showing that radiation can be thought of as a

(fractal) path integral through the cloud. This is

effectively a fractional integration which therefore

simply increases H without affecting a, C1 in accord

with this interpretation of Fig. 6. Indeed in situ
(aircraft) measurements of cloud liquid water yield

aZ2, C1Z0.078, HZ0.29 (Lovejoy and Schertzer,

1995a; Davis et al., 1996) so that the a, C1 values are

indeed very similar. We also plotted the variation of

parameters as functions of solar angle; this showed no

systematic change. In Fig. 7 we turn to the infra red

channel which we have plotted as functions of

nominal temperature (deduced from the radiances by

assuming perfect black body emission). With the

exception of a single outlier for a, C1, we again see

that scatter in a, C1 is fairly small although it

increases with temperature (again corresponding to

lower cloud cover since the ground is relatively warm

compared to the cloud). In this case, the a, C1 values

are pretty close to those observed in the visible while
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the H values are a bit larger. Fig. 8 shows the

corresponding results for the visible channel of the

GMS. For all parameters we note a much lower GMS

variability. This lower variability is to be expected if

only because the GMS scales are larger (5000–10 km;

l is smaller) so that the cascade mechanism has had a

smaller range over which to act. The fact that the data

were all taken within a month also lead to a slightly

lower variability as evidenced in the reduced effective

outer scales discussed below. In addition, the back-

ground field (the Pacific ocean) is more homogenous
than the AVHRR background which were taken over

land (the Oklahoma ARM site). As deduced from the

mean reflection, there is also a slight tendency for the

C1 values to decrease with cloudiness (note that for

the GMS data satellite and sun angles were nearly the

same for each image). Also note that the H values are

systematically much lower than the AVHRR values

which is consistent with the difference in background.

The corresponding figure for the GMS IR channel is

not shown since it is qualitatively similar to Fig. 8.

Finally, we show Fig. 9a which is an inter-

comparison of a, C1 for various visible channels

(and 9b for the corresponding the C1, H scatter). On

this figure we have also shown the results from 15

NOAA 9 visible scenes taken over the ocean off the

coast of Florida analyzed in (Tessier et al., 1993). The

method used in the latter paper did not carefully take

into account the effect of spurious zero gradients so

that the (reanalyzed) values here are somewhat

different. This comparison is particularly interesting

since the ocean (GMS, NOAA 9) data give results

very close to each other for all parameters and close to

the land (NOAA 14) values for a, C1. The wide

dispersion of H values for the land is thus presumably

a consequence of seasonal land albedo changes

(which include snow cover in some cases). Note that

the cloud-free albedo is largely affected by local

topography gradients so that the a, C1 values are close

to those of the topography (c.f. the values aZ1.78,

C1Z0.l2, Gagnon et al., 2003). Since, for topography

H!1 (Gagnon et al., 2003 find that it is in the range

0.45!H!0.75) the absolute gradient (i.e. a deriva-

tive of order OH) is approximately a conservative

multi-fractal (with HZ0); this could explain the

correlation of low albedo and low H in Fig. 6c.

4.2. The ensemble statistics

In the previous section we saw that the main

difference between different images (and even wave-

lengths, satellites) was the H value; this was consistent

with a simple radiative transfer model. We therefore

only computed ensemble statistics for the conservative

fluxes (which have HZ0) and small scatters in a, C1

values. Before doing this we mention a technical point.

The DTM method applies to conservative fields; we

must therefore (fractionally) differentiate the radiances

so that HZ0. The standard way is to use finite
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Fig. 10. DTM for visible imagery from each satellite for qZ0.5. The deviations from the line at large h indicate multifractal phase transitions.
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difference approximations to the derivatives, either the

finite difference Laplacian or the modulus of the

gradient vector. In both cases, there is a problem that

due to the low number of bits of dynamical range

(e.g. 10 bits for the NOAA data), neighbouring pixels

can be nominally identical so that we often obtain

spurious zero gradients. While these will not greatly

affect the large singularity, large q statistics, they give a

large bias for the low q values which are critical for

estimating a in the DTM technique. In order to avoid

this problem, the data were first fractionally integrated

by order HZ0.1; the resulting fields were thus 32 bit

and had essentially no spurious zero gradients. The
absolute value of the finite difference Laplacian was

then taken to obtain an estimate off. Fig. 10 shows the

DTM results for qZ0.5 for the visible channels of all

three satellites. We see that up to a critical power h

the scaling of the exponent is very good; this shows that

universality is well obeyed; as expected at large

enough h, the scaling breaks down (see below).

Table 3a and b shows the overall inter-comparison of

parameters. We see that the a values for all three

satellites are roughly within the standard errors of the

common value 1.93, whereas the C1 values are a little

different for visible (roughly 0.077) and IR (roughly

0.083). However, the H values are somewhat more



Table 3b

This is an intercomparison of various published universal multifractal parameters for visible channel cloud images

Arneodo et al. (1999) and

Arneodo et al. (1999)

Lewis et al.

(2004)

Lewis et al.

(2004)

Tessier et al. (1993)) GMS-5

visible

Sachs et al.

(2002)

Lovejoy and

Schertzer

(1995a))

Descrip-

tion

A completely cloudy 15!
15 km section of marine

LANDSAT data (30 m resol-

ution), the data were assumed

log normal.

12 LANDSAT scenes 28.5 m

resolution (58.5!58.5 km),

cloudy. A values in the range

1.5–2 gave about the same

quality of regression (using

structure functions.

13 LANDSAT

scenes (58.5!

58.5 km)

partly cloudy.

15 NOAA 9 marine images at

1.1 km resolution (512!512

pixel images). The data were

reanalyzed here (Fig. 10) after

eliminating spurious zero

gradients (see text).

From

Table 2a.

38 ground photo-

graphs (looking

up), resolution

roughly 1 m, 1000–

2000 pixels in size.

Aircraft

cloud liquid

water density

(10 m resol-

ution)

a 2 2 1.37 1.87 1.88 1.77 2

C1 0.035 0.029 0.089 0.081 0.078 0.061 0.078

H 0.38 0.354 0.18 0.22 0.234 0.61 0.29

Note that only the H value seems sensitive to the difference between land, ocean and sky backgrounds (AVHRR, GMS, respectively), see also Fig. 10. The far right column

compares this to in situ liquid water content; the a, C1 values are very close to the radiative values as expected by simple arguments about radiative transfer.

Table 3a

Intercomparison of the universal multifractal parameters; the errors are standard estimates obtained from the DTM ensemble regressions, not estimates of the ‘spread’ from one

image to another

NOAA-12 visible NOAA-14 visible GMS-5 visible NOAA-12 Infra red NOAA-14 Infra red GMS-5 Infra red

a 1.935G.005 1.924G.003 1.88G0.05 1.937G.005 1.910G.003 1.86G.04

C1 0.0780G.0005 0.0749G,0007 0.078G0.03 0.0826G,0002 0.079G.002 0.092G0.005

H 0.361G0.001 0.323G0.001 0.234G0.003 0.476G0.001 0.363G0.003 0.32G0.01
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Fig. 11. lZL/Leff with LeffZ20,000 km for the NOAA 14 IR data,

moments qZ0.2, 0.4,.,1.6. The solid lines shown are the

theoretical lines with C1Z0.079, aZ1.91, (using Eqs. (6) and

(9)) the dashed lines are the best linear regressions. All lines were

forced to go through the external scale (the origin here). If this

constraint is dropped, the regression lines are quite close to the

dashed lines but do not quite go through the origin; the intersection

points with the horizontal axis are given in Table 4.
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variable—as expected from our image by image

analysis.

The values are close to those found in infra red

and visible in (Tessier et al., 1993), (see Fig. 10 for

a reanalysis of the visible data using the above

technique for avoiding spurious zeroes). Other

comparable visible studies spanning the range

1 m–550 km are compared in Table 3b. Only the H

value seemed sensitive to the differences in the

background (land, ocean or sky) while being quite

constant (roughly 0.2) for all the marine data except

for those small scale scenes deliberately selected to be

mostly ‘cloudy’ (these were close to the ensemble

mean NOAA 12, 14 values over land).

The breakdown of linear behaviour of log K (2,h)

at large h occurs because Eq. (9) is only valid for

‘bare’ ensemble moments. We have already men-

tioned that it breaks down for qOqD due to the

divergence of the ‘dressed’ moments. For finite

samples, it will also breakdown since there will be a

finite maximum order of singularity gs; according to

the Legendre result (Eq. (3)) this will yield a linear

K(q) whose slopeZgs (Schertzer and Lovejoy,

1992). This is investigated in more detail in

Stanway (2000) and Lovejoy et al. (2001); we find

that for the visible data there is only a second order

transition, whereas for the infra red data, there is a

first order transition (divergence of moments) at

qDZ1.9.

We now consider the quality of the multiscaling,

with respect to a series of more and more demanding

hypotheses. Since, the four AVHRR data sets had

very similar statistical behaviours, let us illustrate this

using the AVHRR14 IR set (see Fig. 11). First,

consider the least demanding multiscaling hypothesis:

that for each moment, we have a pure unconstrained

power law, i.e. we fit the best straight line on a log–log

plot. This leads to an overall (average over all

moments up to qZ1.6 and all scales) standard

deviation of residues (of the log10 moments) of

sresZG0.0012, i.e. a G0.28% deviation. This is

considered further in Section 4.3. If alternatively, we

constrain the fit by imposing the external scale of

20,000 km for all the moments, we obtain the dashed

lines in Fig. 11 with a corresponding sresZG0.0022

(ZG0.51%). Finally, we can consider theoretical

lines with slopes theoretically determined by

the ensemble universal multifractal parameters
C1Z0.079, aZ1.91 and by the constraint that

they pass through the origin (corresponding to an

outer scale of 20,000 km). In this case, we obtain

sresZG0.012 (ZG2.8%). If we consider only

the first two cases (i.e. multiscaling without the

universality constraint), then the residuals are so

small that no systematic deviation of scaling can be

detected above random fluctuations. However, we

shall see in Section 4.4 that in the case of universal

multifractals (with 5–10 times larger residuals) much

of the deviations from pure (isotropic) universal

multifractal power law scaling can in fact be

accounted for by nonpower law ‘subscaling’ correc-

tions; in fact a single extra subscaling parameter

reduces the standard deviation of the residues to

sresZG0.0025 (ZG0.58%) so that theoretical uni-

versal multifractals with a single extra subscaling

exponent yields residuals comparable to the dashed

lines in Fig. 11.

Fig. 11 and others like it for the other channels and

satellites, were obtained with a fairly simple isotropic

analysis technique using a large quantity of the data

and lead to remarkable agreement with the predictions
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of cascade theories. This agreement includes the

existence of multifractal universality classes and

multifractal phase transitions which are discussed in

Stanway (2000) and Lovejoy et al. (2001). But how is

it possible for the diverse morphology of atmospheric

structures to be compatible with wide range scaling?

We have already attempted to answer this with the

help of anisotropic simulations in Section 3: although

each having different morphologies/textures they

would all give nearly the same isotropic exponents.

More generally, we must consider the two parts of a

scaling system, each of which corresponds to a

(mathematical) group and generator. The first charac-

terizes the statistics, the second defines the scale

changing operator and hence the notion of scale itself.

The statistical moments shown in Fig. 11 are thus only

half the picture. Implicit in the figure is the use of the

naı̈ve Euclidean notion of scale, i.e. standard distances

and standard isotropic scale changes. The analyses are

isotropic since in order to estimate the data at lower

and lower resolutions, averaging was performed over

squares whose shape was independent of scale (large

and small squares are related by a TlZlKG with G,

dentity, see Section 3). These isotropic analyses

‘wash out’ all but the strongest anisotropies. On the

contrary, the general formalism for scale invariance

discussed in Section 3 shows that very general

anisotropies/morphologies are compatible with the

scaling in Fig. 11.

4.3. The cascade model and the outer scale

Up until now, we have only considered the

scaling exponents—the slopes on the log moment

vs. log scale plots, we have not considered the

question of the outer scale of the multiscaling

regime. The ‘effective outer scale’ Leff is where a

cascade must start in order to be able to generate the

observed variability and requires study of the

intercepts. To see this, recall:

hf
q
liZ lKðqÞ; lZ

Leff

l
(21)

when LZLeff, we have lZ1 and h3
q
1iZ1 implying

that 31 is a ‘sure’ (nonrandom) value; Leff is

therefore the outer scale of a scale invariant

(unbounded) cascade which would yield all the

observed variability (see Fig. 12 for a schematic).
Since, the true cascade process has variable input

flux at the largest scale, not all the variability is due

to the cascade hence if a true (infinite) ensemble

were used to estimate the moments, Leff would be an

upper bound on the outer scale here however the

finiteness of the ensemble tends to counter this, it

lowers Leff.

Using a linear regression of loghf
q
li against

log L/Leff, (i.e. without constraining the lines to pass

through the origin in Fig. 11), log Leff can be

estimated from the intercept of the regression line

(the extrapolated value of log Leff such that

loghf
q
liZ0). The results for various statistical

moments and satellites and channels are shown in

Table 4 which show that for the NOAA data, the lines

for the different moments point quite accurately to the

same outer scale Leff. Indeed, for the NOAA data sets,

Leff is very close to the largest great circle distance

(20,000 km).

By considering the means for each satellite over

the different moments (q values), we see that

even when extrapolating over nearly a factor of

100 (20,000/280 km) in scale that the mean

log10(Leff/Lref)Z0.015G0.06 corresponding to

Leffz20,700G3,000 km (this is the exponential of

the mean; the mean of the exponentials gives a very

similar result). The limited GMS-5 sampling leads to

an underestimate of the ensemble variability so

that the GMS-5 data have a lower mean

Leff : log10ðLeff =20; 000 kmÞZK0:63G0:13, i.e. Leff

z4700G1500 km. Although this difference of factor

l 0Z20,700/4700Z4.4 may seem large, it actually

implies only a very small underestimate of

the variability by the GMS-5 data: for example,

since we find K(2)Z0.16, we see that if the

standard deviations were increased by a factor of

only l 0K(2)/2Z1.1 then the two Leff estimates would

agree. Note that this direct confirmation of Eq. (2) on

the GMS data shows that 4700 km is a lower bound on

the true outer scale.

4.4. Quantifying the deviations of the average

isotropic statistics from universal multifractal scaling

Although the scaling with outer scale LeffZ
20,000 km fits quite well, we shall quantify this

statement. We have mentioned that the residues

to scaling with unconstrained slopes were of



Table 4

The numbers are log10 Leff/Lref, where Leff is the scale ratio of the scale where the variability disappears (where the extrapolated lines in Fig. 12

cross below the horizontal axis) and LeffZ20,000 km is the reference scale (taken as the largest great circle distance on the earth)

q NOAA12 vis NOAA12 IR NOAA14 vis NOAA14 IR GMS vis GMS IR

Number of pic-

tures

134 354 153 214 29 29

0.2 0.13 0.34 0.18 0.34 K0.77 K0.52

0.4 0.08 0.30 0.10 0.24 K0.76 K0.51

0.6 0.02 0.22 0.02 0.12 K0.76 K0.48

0.8 K0.01 0.07 0.00 K0.10 K0.76 K0.51

1.2 K0.07 K0.14 K0.14 0.29 K0.75 K0.49

1.4 K0.10 K0.27 K0.18 0.02 K0.75 K0.49

1.6 K0.12 K0.51 K0.22 K0.23 K0.74 K0.50

Average K0.01 0.00 K0.03 0.10 K0.76 K0.50

Moments higher than 1.6, where not used due to 1st and 2nd order multifractal phase transitions in the IR, vis. data, respectively. Note that for

the NOAA data, the mean of the means is 0.015 corresponding to an outer scale of LeffZ20,700 km. The mean of the GMS data is K0.63

corresponding to LeffZ4700 km, but the data are from a single month therefore underestimate the climatological variability.

Fig. 12. Cascade outer scale estimation from climatological ensemble. At the top left, the limited area satellite data sets are shown at scale Ls;

this is substantially smaller than the planetary scale L0. Top left; the same except with a flat earth in order to clearly show the scales, the scale

ratio L0/LsZls. On the bottom left, we see that within each satellite picture there are resolution elements of scale Lp so that over the satellite

image we have another ratio Ls/LpZl 0. The overall scale ratio from the planetary scale to a pixel is lZl 0ls. Since, the moments factorize:

h3
q

lsl
0 iZl

KðqÞ
s l0KðqÞ we see that a plot of logh3

q
li vs. log l 0 will cross the axis at the outer scale (bottom right).
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the order sresZG0.002 which is so small that

systematic deviations could not be established above

random fluctuations. However, if we consider resi-

dues with respect to universal multifractal scaling,

then sresZG0.02 which is large enough to show

some systematic deviation.

In order to study these small deviations, we may

consider the following perturbed scaling behavior:

hf
q
lizlKðq;l;LÞ; 1%l%L;

Kðq; l;LÞZKðqÞ 1K
w

2

� � log l

log L

� �� � (22)

where the constant w/2, may be obtained by a second

order regression of Loghf
q
li vs. Log l and L is the total

range of scales over which the cascade develops (e.g.

planetary scales to dissipation scales yields Lz1010).

This may be considered as simply the first two terms

in an infinite series of corrections. Such a series could

arise either from scaling (log(log) corrections; see

below), or from nonscaling corrections. An example

of the latter is given by the continuous in scale limit of

a discrete cascade model in which the singularities are

attenuated algebraically at each step (see the moment

exponent in Table 2b).

Whatever its origin, it can be quantified by defining

the ratio of the quadratic term by the linear term of the

second order regression (Eq. (20)):

de Zw=ð2 Log LÞ (23a)

which is the relative linear deviation of Loghf
q
liZ

Kðq; l;LÞLog l with respect to its linear trend

K(q)log l per factor factor e in scale. It is perhaps

more convenient to consider the corresponding
Table 5

Estimates of the relative linear deviation d2 per octave (Eqs. (22)–(24)) obt

d2 is directly determined from the ratio of the quadratic to linear terms, u

NOAA12 vis NOAA12 IR NOAA14 v

No. of pictures 134 354 153

d2 0.016 0.045 K0.008

Correction factor

(per 103)

0.7 2.8 1.2

The values quoted are the means over the moments qZ0.2, 0.4,.,1.6. Sin

they are due to a combination of some systematic effects and some rando

deviation from multifractal universality. The outer scale for the AVHRR d

size it was taken as 4700 km (see text).
relative linear deviation d2 per octave:

d2 Z de Log 2 (23b)

The second order regressions yield the following

empirical estimates of d2 (Table 5).

Before interpreting these values further, it should

be stressed that these small quadratic terms result

from a combination of random fluctuations and small

systematic deviations; they are thus upper bounds on

true deviations from universal mulifractality per

octave in scale. With this in mind, taking the mean

d2 of the values in Table 5 we obtain d2z0.016, using

this figure we can estimate the upper bound of the

cumulative effect over 30 octaves (109zplanetary

scale/dissipation scale) is a factor of 0.33. We could

note that in two of the six cases the sign is negative

implying that the cascade becomes a little more

violent—not less—at smaller scales (although for

both negative cases, the values are very small). In any

case, it is interesting to compare these results with

those of (Sachs et al., 2002) (Table 2b) who found at

scales of 1 m–1 km (a factor of about 1000 smaller

than the AVHRR), that az1.77, C1z0.061 so that a

was very close to those measured here and C1 had

only decreased by about 0.078–0.061. Analysis shows

that this implies a more stringent bound on the

amplitude of systematic effects; d2!0.011. Note that

(Sachs et al., 2002) used ground based photography

and looked up at the sky obtaining a somewhat higher

value of HZ0.61.

We now consider the possibility that deviations

from pure power law and universal multifractal

behaviour are nevertheless scale invariant (we do

not consider here variations due to anisotropy which

in principle could be larger). To understand this, recall
ained by second order regression of Loghf
q
li vs. Log l, for each q the

sing the theoretical universal K(q) with C1 and a as in Table 3a

is NOAA14 IR GMS vis GMS IR

214 29 29

0.033 0.014 K0.0042

2.1 0.7 1.1

ce, these values are simply derived from the small quadratic terms,

m fluctuations; they are hence upper bounds on any real systematic

ata was taken as 20,000 km, for the GMS, due to the smaller sample
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that the usual discrete in scale multiplicative cascade

obeys Eq. (2) exactly, variations in the details of the

cascade could introduce slowly varying corrections.

Indeed, these cascades have been specifically

designed so that the moments have exact power law

scaling. However, power laws are not the only

functions which are scale free; logarithms and iterated

logarithms are also scaling so that if scaling is the only

a priori restriction we place on our process, we may

anticipate empirical scaling fields to have statistics of

the form:

h3
q
liZlKðqÞð1ClogðlÞÞD1ðqÞð1Clogð1Clog lÞÞD2ðqÞ;.

(24)

where the D’s are ‘sub’ scaling exponents (the ‘1’s’

are included so that the limit l/1 is correct; in the

small scale, large l limit they are negligible). These

subscaling behaviors could arise because—like power

laws—the iterated logarithm functions are also scale

invariant.

To test this possibility, we now can consider

scaling and log (but not log–log) corrections:

logðlKðC1=aK1ÞðqaKqÞh4
q
liÞZD1ðqÞlogð1C log lÞ (25)

i.e. by plotting the residuals of power law scaling

against log(log l) we can estimate D(q) and determine

how well the subscaling quantifies the deviations.
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Fig. 13. NOAA 14 IR residuals for theory with C1Z0.079, aZ1.91.

The lines are regressions; from top to bottom they correspond to

qZ1.6, 1.4,.0.4, 0.2.
Note that to be consistent, we should use lZL/Leff

with LeffZ20,000 km as argued above. In addition,

note that the residuals are determined with respect to

the universal form for K(q) (they are the difference

between the data and the lines in Fig. 11) so that for all

moments and scales they are determined by just two

regression parameters. Fig. 13 shows the comparison

for the NOAA 14 Infra Red data, showing that the

subscaling is reasonable. This can be quantified either

with respect to an arbitrary D(q) function (as in

the figure), or with respect to a theoretical D(q). From

the figure, we can see that an arbitrary D1(q) can

explain the moments up to qZ1.4 to within an error of

sresZG0.0025 (ZG0.58%). If we take D1ðqÞZ
ðCD=ðaK1ÞÞðqaKqÞ we can see that the form Eq. (25)

can be expanded as a series of the form Eq. (22) if

CDZC1w/log L. From regression, we find that CDZ
0.040 yields a fit to within sresG0.0035 (ZG0.81%)

implying that w/log Lz0.040/0.079Z0.51. In sum-

mary, using three parameters a, C1, CD with Leff taken

as the size of the planet (i.e. not fit), we can explain the

observed moments up to order qZ1.6 to with an error

of log10 (moment)ZG0.0035 (ZG0.81%). The

results for the other AVHRR data are quantitatively

similar.

4.5. The global significance of our results

We have used data from Oklahoma, the Atlantic

Ocean near Florida and the central Pacific ocean in

order to make broad quantitative conclusions about

the spatial variability of atmospheric dynamics. The

basic reason that we have confidence in the generality

of our exponent estimates is because they are of a

sufficiently fundamental nature that they are unlikely

to be affected by purely local conditions. For example,

one is used to the idea that in turbulent wind fields, the

Kolmogorov exponent 1/3 is the same in vastly

different climatological regimes (it has even been

observed in Jupiter, and in intergalactic jets). Indeed,

the main reason for suspecting genuine variation is

that we observe radiation fields which are determined

not only by the properties of the turbulent cloud fields,

but also by the variability of the underlying back-

ground (e.g. ocean or land surface, or when looking

up, the sky). Since, we argued that the latter mostly

affects H, this explains the robustness of the a, C1

estimates.
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5. Conclusions

There is a growing consensus that precipitation and

other atmospheric fields are scaling (they have scale

invariant generators/exponents)—at least over limited

ranges. Unfortunately, it is very difficult to measure

space–time rainfall; surrogates are usually used

instead. For example, radar does have good spatio-

temporal resolution but the interpretation of the

microwave backscatter in terms of rain itself requires

various hypotheses about the sub pulse scale. Rain

gauges do measure point rainfall but kriging and other

techniques for obtaining spatial rainfall involve their

own scaling (trivial or otherwise) assumptions. In

addition, the gauges have severe problems measuring

low rain rates, a problem whose importance has been

underestimated but which can indeed lead to spurious

breaks in the scaling. Visible and infra red satellite

data have also been used to estimate rain; this data has

the advantage of potentially covering huge scale

ranges. Due to these and other difficulties, caused by

the extreme intermittency/variability over huge scale

ranges, it seems inevitable that multifractal models

will be required for modeling rain and the correspond-

ing visible, infra red or microwave fields. In the case

of rain gauges, they will be necessary to model the

effect of small scale variability and low rain rates.

Before directly tackling this problem it is necessary

to determine the scaling ranges and types as well as to

consider plausible models. The usual satellite rain

surrogates are obtained by judiciously combining

visible, infra red, passive microwave or other data sets

at various resolutions. Rather than study the complex

scale dependence of these surrogates, we directly

examine the scaling of the visible and infra red

radiances, using (primarily) 909 satellite images from

three satellites and six sensors. The idea is to exploit

the fact that scale invariance is a symmetry principle

and that the cloud density, cloud radiances and rain

fields are all strongly non-linearly coupled. This

means that although clearly the cloud radiances

cannot be directly interpreted in terms of rain, that

nevertheless that a break in the scaling in any of the

radiances will likely show up in the others as well as

in rain (even if the exact type of scaling is not

expected to be the same). In Section 2 we considered

the familiar (isotropic) spectra directly indicating

scaling of cloud radiances over the range 5000–1 km
(down to 1 m if we take into account ground based

photography). Since, the spectrum is a second order

moment (whose is exponent is simply one of an

infinite multifractal hierarchy), this justifies

the consideration of detailed multifractal models; we

concentrated on those with the most physical

justification: the (strong) universal Log-Levy model

showing how these can be extended to nonconserva-

tive multifractals by fractional integration. We also

gave a quick overview of various multifractal models

pointing out their limitations; only the Fractionally

Integrated Flux model featured both continuous in

scale generators and unbounded singularities which

are required for realism. We gave examples of cloud,

and rain fields comparing isotropic (self-similar) and

anisotropic cases showing how these processes can be

used for simulating visible, infra red satellite imagery

which are the basis of satellite rain algorithms such as

RAINSAT.

We then considered the multiscaling of the

radiances; first on an image by image basis. We

showed that for a, C1, there were no clear trends

with albedo, sun angle, mean cloud temperature or

wavelength with values for a narrowly varying

around 1.9, and C1 mostly between 0.03 and 0.15

concentrated near 0.08. However, the H values did

have a tendency to increase with cloud cover (as

estimated by albedo) and were also sensitive to the

background (ocean, land or sky). This is in rough

accord with simple radiative transfer arguments to

the effect that in the visible the photons effectively

fractionally integrate the liquid water field changing

H but not a, C1.

Finally, we considered the multiscaling of the

ensemble radiance statistics. We showed how a

climatologically significant sample could be used to

estimate the effective outer scale of the cascade. When

we did this, we found values very consistent between

satellites and sensors varying with little scatter around

20,000 km, the largest great circle distance on the

earth. This is direct evidence that the cloud dynamics

could be explained by planetary scale cascade

processes. In addition, we showed that the standard

deviation of residues from pure power law behaviour

were in the range G0.3–0.5%; the upper bound on the

possible systematic deviations from the more restric-

tive, theoretical universal multifractal behaviour

were 1–2%/octave in scale. We then considered



S. Lovejoy, D. Schertzer / Journal of Hydrology xx (2005) 1–3028

DTD 5 ARTICLE IN PRESS
the hypothesis that the deviations from pure universal

multifractal cascade starting at exactly 20,000 km

could be explained as ‘sub power law’ (logarithmic)

but still scaling corrections. We showed that we only

three parameters (two for the power law, one for the

corrections), we could account for the moments to

within G0.8%.
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