NON-LINEAR
VARIABILITY
IN GEOPHYSICS

e gl




MULT:‘I:IRACI' AL ANALYSIS TECHNIQUES AND THE RAIN AND CLOUD FIELDS FROM 103
TO 10

Shaun Lovejoy, Daniel Scherizer®

Department of Physics, McGill University,
3600 University st., Montreal, Qué., H3A 2T8,
CANADA

ABSTRACT, We discuss the scaling properties of the rain and cloud fields over the range of =lmm to
~1000km. We find that these fields are multifractal; i.e. the weak and intense regions scale differently,
involving multiple fractal dimensions. We re-evaluate several early (mono-dimensional) analyses and argue
that failure to account for the multifractal nature of the fields has in several instances lead to spurious breaks
in the scaling symmetry. A related result is that area-perimeter exponents no longer yield the dimension of
the perimeters, and that the interpretation of the distribution of isolated cloud or rain areas must be modified.

Empirically, we use two recent multifractal analysis techniques: Probability Distribution/Multiple
Scaling (PDMS) and Trace Moments to analyse blotting paper traces of rain drop impacts (=~1mm to
128cm), lidar reflectivities from raindrops (=3m to 540m), and satellite data from both 100m to 100km and
8km to 256km. The conclusions support the idea that the atmosphere has a multifractal siructure over this
large fraction of the meteorologically significant length scales.

Applications of the resulis discussed here include resclution independent methods of remote sensing,
anisotropic space/time transformations (generalizations of Taylor's hypothesis of frozen turbulence) which
we show holds in rain, as well as a method of correcting radar for (mono)fractal effects not included in the
standard theory of radar measurements of rain.

1. INTRODUCTION
1.1, The need for systematic stady of the scaling properties of atmospheric fields

In spite of its obvious importance for understanding and predicting the atmosphere, no systematic study of
scale dependence of atmospheric fields has yet been undertaken. The development of new in situ and remote
measurement techniqoes coupled with rapid advances in computing power now provide the impressive
sources of data needed to attempt such a study. What is perhaps most important of all is the equally rapid
series of advances in our understanding of non-linear dynamical systems, scaling and (multi)fractals. In
particular, multifractal measures are much more relevant in geophysical applications than fractal sets since
geophysical quanl:iliés are best described as measures, with empirical data being functional approximations?
to the latter which depend on the resolution of the sensor. Multifractal measures are characterized by their
scale-invariant (co)-dimension function which is an exponent function describing the variation of the
probability distributions with scale2, The geometry of sets and their associated fractal dimensions are
secondary; the scale invariant dynamics (characterized by the generator of the measure) play the primary role.

*EERM/CRMD, Météorologie Nationale, 2 Ave. Rapp, Paris 75007, FRANCE.

1 Since the underlying multifractal measures are singular, the measurements (which are typically spatial
and/for temporal integrals) do not “approximate” the measurements in a simple way.

2Since the codimension is telated to the lof of the probability distribution, it is formally analogous 1o the
entropy - see Schertzer and Lovejoy (1990z) for more on this “flux dynamics™.
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In this paper we describe two fairly new multifractal analysis methods (the “Probability
Distribution/Multiple Scaling” technique and the “Trace Moment” technique), applying these methods to
satellite radiance fields, as well as lidar and blotting paper measurements of rain drops overall, spanning the
range of scales of «1mm to ~1000km. Finally, in appendices, we re-examine some conventional {mono-
dimensional) analysis techniques (such as area-perimeter relations), and show how they can be fit into a
multifractal framework.

The need for new data analysis techniques can be appreciated by considering that virtually the only
commonly used geophysical data analysis technique that enables one to directly compare the small and large
scale statistical properties of fields is Fourier analysis!, In spite of its obvious importance, it should be
recalled that the resulting energy spectra are only second order statistics2, and are not particularly robust (i.e.
whien applied to highly intermittent data, large samples may be needed to obtain good estimates of the
ensemble averaged spectra). If the fields were mono-dimensional fractals, then the scaling of the second
order moments {characterized by the spectral exponents) would provide nearly complete information about
the scaling properties of the field. However, this is generally not the case; multifractal techniques are
required to allow for systematic study of the scaling of moments of all orders (or equivalently of weak and
strong fluctuations separately), over wide ranges of scale.

In a series of papers - Lovejoy (1981, 1982), Lovejoy and Schertzer (1983, 1985, 1986, 1990a),
Lovejoy and Mandelbrot (1985), Schertzer and Lovejoy (1983, 1984, 1985, 1986, 1987a.b, 1928, 1989,
1990, Lovejoy et al. (1987), and Schertzer and Lovejoy (this volume) -, we have argued that we may expect
the atmosphere to exhibit scaling, fractal structures. Although we do not wish to repeat these arguments in
detail, the basic idea may be simply expressed. If we consider scaling as a symmetry principle (i.e. the
system is unchanged under certain scale changing operations), then in the spirit of modern physics, we may
tentatively assume (a first approximation), that the symmetry is respected gxcept for symmetry breaking
mechanisms.

In the atmosphere, the scaling symmetry is obviously broken at one extreme by the finite size of the
earth, and at the other extreme, at scales of =1mm, by damping due to viscosity. Atmospheric boundary
conditions such as topography (see Lovejoy and Schertzer (1990a) for an analysis) are alse multiply scaling
are are not exqecwd to introduce a characteristic length to break the symmetry. This leaves a wide range of
factor 109-1010 in scale where scaling symmetries might hold. In this context, it is worth recalling that it
has only been in the last few years that the full generality of the scale invariant symmetry principle has
been realized. This has enabled us to go far beyond the qualitative (and very restrictive) ideas of fracials as
self-similar geometric objects with a single fractal dimension. It can now be quantitatively understood as a
system composed of two totally distinct elements unified by the formalism of Generalized Scale Invariance
(see Schertzer and Lovejoy (1983, 1985, 1986), and especially in (1987, b)). The first element is a scale
changing operator Tj, which reduces scales by the factor A21; scaling implies Tjy29=Tx; T and hence
that Ty, has the form Ty = 3G where G the generator of the (semi-group) of scale changing operators (=1
for self-similar, isotropic systems). A power law form of this type ensures that the small and large scales
are related only by (dimensionless) scale ratios; hence that over this range, the system has no characteristic
size. An immediate consequence is that the operation required to go from one scale to another can be far
more complex than simple geometrical magnifications (e.g. self-similarity), hence the rejection of self-
similarity does not imply a rejection of scaling. The standard meteorological argument that since the large
scale is “apparently” two dimensional due to the stratification caused by gravity, and the small scale is
"apparently” three dimensional, is therefore not relevant to the issue of scaling. The second element of a
scale invariant system is a multifractal measure that is invariant under the application of T3, In turbulence,
the basic scale invariant multifractal measnre is presumably the energy flux density, since this quantity is
exactly conserved by the non-linear terms in the Navier-Stokes equation. In the atmosphere, other scale
invariant multifractal measures will be necessary to account for other conserved quantities.

1 Although formally sutocorrelation functions contain the same information, they are usually only used to
obtain the 1/e point, which when combined with the ad hoc ption of exg ial decorrelations (and hence
the absence of scaling), is used to obtain the decorrelation length. When there is scaling the autocorrelations
decay algebraically rather than exponentially and the decorrelation length is no longer the 1/e point, but is rather
the outer scale of the scaling regime which in geophysics can be many orders of magnitude larger.

2 They are simply related to the Fourier transform of the autocorrelation function.
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GSI allows for so much generality, that not only can the stratification of the atmosphere be easily
accounted for in a single scaling regime (intermediate between two and three dimensional wrbulence), but
also, differential rotation (associated for example with cloud “texture™) and even variable Coriolis parameters
can be dealt with. It also provides a natural framework for analysing and modelling the space/time strucutre
of various fields and hence for investigating the issues of prediction and predictability!, We are now faced
with the task of restricting our attention to the sub-classes of scaling appropriate to the atmosphere (for
example by restricting the class of generators G in some way). Ultimately, such restrictions will have to
be derived theoretically from dynamical principles. Unfortunately, the relation between the scale invariant
symmetry and the non-linear atmospheric dynamics is far more difficult to discern than in other areas of
physics (particularly quantum mechanics) where due to the linearity of the equations, the dynamics and
symmetries are synonymous. We therefore give special attention to the empirical characterization of both
scaling and symmetry breaking.

1.2, Developing Resolution-independent measurement techniques

Below, we restrict our attention to studies of the rain and associated cloud fields. From our perspective -
aside from their intrinsic interest - the rain reflectivity, cloud radiance and lidar? reflectivity fields have the
advantage of being among the best measured meteorological fields: radar, satellites and lidar all provide
excellent remotely sensed data spanning wide ranges of time and space scales. High quality in situ and
aircraft data are also available. Naturally, a full statistical description of either field requires knowledge of
properties of the measures defined by the drop volumes (Vj) and their distribution in space (r;), whereas the
above techniques do not measure these quantities directly. Some reasonably direct information is available
from both the lidar and bloiting paper methods discussed in sections 3,4; however, for investigating the
large scales (-l-lOakm) we rely on the indirect information supplied by radar and satellite data. For
example, the radar measures the ("effective”) reﬂecﬁvity3 (Ze) of the (n) drops in the (microwave) pulse
volume:

n
Zeo | Dvie'kli |2 (w1
i
{where k is the radar wave vector), whereas, the (volume averaged) rainrate (R) is a different measure:

n
R e Zini (12)
i

where wij is vertical velocity of the ith drop. At visible and infra red wavelengths, the relationship between
the rain/cloud measures and the reflected/emitted radiation fields is even more indirect?, however such
measurements still give us valuable information about the scaling symmetries of the rain field, For
example, symmetry breaking in the latter will be evident in the former. More generally, the multiple
scaling of these fields implies that the values of sensor averages depend critically on the sensor resolution,
hence for example, if remotely sensed data are to be used for estimating rain or cloud amounts, then the
resolution dependencies of both the in situ (ground truth) data, and remotely sensed data must be
systematically removed {(e.g. by using the associated scale invariant codimension functions). Such a

1 In geophysical flows, each distance scale has a ing i ing i i
comresponding time scale, hence scaling is expected in
spsf.e—ﬁme. Section 4 'gi\res _qnpirica.l evidence in rain showing that time is “stratified” with respect to the
horizontal space coordinate i.e. space-time transformation should be anisotropic, and appendix E gives a
theoretical discussion.

2 A Yidar is the laser analogue of a radar.

3Normally.ﬂmcnmbmomeadjecﬁve‘eﬁw&ve‘isdmmmdundandthesymbolZisusedrat]mrthmme
more correct Z,. See section 3. for more details.

4 See Davis et al. (this volume) for more discussion of this radiative transfer problem.
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resolution-independent approach to remote sensing will require both careful measurements of the statistical
ieg of the fields over wide ranges in scale, combined with stochastic modelling of the fields
themselves (see e.g. Wilson et al this volume).

2. MULTIFRACTAL MEASURES, CODIMENSION FUNCTIONS AND THE PROBABILITY
DISTRIBUTION / MULTIPLE SCALING (PDMS) TECHNIQUE

2.1. Discussion

Based on studies of certain fractal sets obtained cither as purely geometric constructs, or associated with
certain stochastic processes, Mandelbrot [1982] used these sets as models of the geometry of various natural
gystems, However, few natural systems are sets (they are usually best treated as fields or measures), and it
soon became clear - Hentschel and Proccacia (1983); Grassberger (1983); Schertzer and Lovejoy (1983);
Benzi et al. (1984), Frisch and Parisi (1985) - that such measures are fundamentally characterized not by a
single dimension, but by a dimension function (sometimes called the "spectrum of singularities™).
Furthermore, this dimension function is simply related to the probability distribution. In fractal sets, the
concept of fractal dimension is important because it is invariant under transformations of scale. In fractal
measures, the notions of scaling (or scale invariance) and the generator of the measure are more basic.

| Geophysical sysiems typically have variability extending from a large “external” scale L down to
very small scales 7 (often 1 mm or less) and are therefore usually observed (literally "measured") at scales (/)
with scale ratio Ifm>>1. Itis therefore natural to consider the underlying phenomencn as a fractal measure,
dnd the empirically accessible measurements (e.g., satellite photos) as a series of associated functions
(denoted fi,(r)), whose properties will depend greatly on the averaging scale ratio A = L/l (e.g. ! is the size of
a pixel). Using the external scale to define scale ratios in this way, we find that qualitatively, the
relationship of a series of higher and higher resolution images (i.e. f as A—<) to the underlying
multifractal measure is that as the resolution increases, the structures are increasingly sharply defined, are
found to occupy a decreasing fraction of the image, while simultaneously increasing in value (e.g.,
brightening) to compensate. Since over our range of interest, there is no characteristic scale, this behaviour
is algebraic and can be expressed as follows (algebraic relations are for the moment valid to within
proportionality constants and log corrections; see below)

Pr(f), > AT) = A<(1) @1

where Pr means probability, ¥ is the order of singularity associated with the (nondimensionalized, see
below) pixel value 3, and c(y) is the associated codimension (the dimension of the underlying space (d}
minys the corresponding dimension d(y)). Equation (2.1) is the general characterization of multifractal
fields and is the generic result of multiplicative cascade processes (Schertzer and Lovejoy (1987a,b)). This
equation shows that c(y) is directly related to the probability distribution. This fact will be used below as
the basis for empirically estimating ¢(y). Qualitatively, y is the resolution-independent characterization of
the intensity of the feature with brightness f),, whereas, ¢(y) is the resolution independent characterization of
the image fraction occupied by features with brightness f}.

For those who are familiar with multifractals, it is worth noting here that we have denoted the orders
of singularities by the symbol ¥ becanse the atmospheric quantities of interest are modelled by densities of
muliifractal measures (such as f) and y gives the orders of these singularities directly. In other systems such
as phase space portraits of strange attractors (e.g., Halsey et al. (1986)), it is more usual to treat the
singularities of the measures (rather than their densities) usually denoted by the symbol o; the relation
between o and y being y=d-o where d is the dimension of space in which the process occurs. Furthermore,
we use the codimension function c(y) rather than a dimension function since we are really interested in a
family of measures each identical except for the dimension of the space in which it is embedded (in some
applications it is even useful to 1ake the latter as a fractal set, e.g. the global meterological measuring
network), and the codimensions specify the probabilities independently of the latter. In contrast, in studying
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strange attractors, d is usually kept fixed and the dimension is denoted usually f(o:). We therefore havel
f{o)=d-c(d-).

We can now appreciate some of the difficulties encountered in many of the early studies, where
multifractal phenomena were analyzed with methods originally designed for studying sets (e.g.,
area-perimeter relations, distribution of areas, dimensions of graphs, box counting: see appendices A and B).
Even before the analysis begins, experimental measuring devices integrate the underlying measure scale ratio
A, converting it into a (spatially or temporally discretized) function. This function is then converted into a
set with the same resolution, typically with the help of thresholds. Finally the geometric properties of the
resulting set are characterized by (at most) a few exponents (e.g., dimensions, area-perimeter exponents)
essentially by degrading the resclution of these sets. Although careful and systematic study of the
properties of the sets as functions of scale and threshold (such as with "functional box counting” - Lovejoy
et al., 1987; Gabriel et al., 1988) can be used to estimate ¢(y), such methods are indirect and are less
satisfactory than other methods such as trace moments (Schertzer and Lovejoy, 1987a) or the PDMS method
(Lavallée et al., this volume). For comparison, functional box-counting exploits (2.1) by transforming the
function f), into an exceedance set (sce Appendices A, B) and covering the latter with larger and larger boxes.
The fraction of the scene covered by boxes of scale A is the probability in (2.1). The method works by
degrading the resolution of the exceedance sets, rather than of the measures themselves. The approach
described below is more straightforward and statistically robust, since it is defined directly by the measures
£, rather than via associated sets. In contrast, the use of what might be termed "monofractal” analysis
techniques (i.¢., techniques designed primarily for analyzing sets) can easily lead to seemingly contradictory
results, and even to spurious breaks in the scaling (see appendices).

2.2. The Probability Distribution Multiple Scaling (PDMS) technique

We seck to directly apply (2.1) to determining the scale invariant codimension function c(y). We have
already introduced the dimensionless scale ratio ) to nondimensionalize the scales, we must now discuss
how to nondimensionalize f. This is conveniently done by using the large-scale average f1, as a reference
value for the measure since A=1 implies /=L, the external scale of the image2. Using an overbar to denote
the values of the function normalized in this way, we write: f), = f)/f; Theoretically, the latter should
really be the ensemble (i.e., climatological) average of the random process at scale ratio A =1; the sample
average being an approximation to the latter®. We therefore obtain

Pr( ) > AT ) =Fa—<( Q@z1) 2.2)

where F is a prefactor which is only a function of v and log) (for example, if F contains a (logh)d
dependency, A is called a “sub-codimenison™). Taking logs and rearranging, we obtain

log Pr((log £3)/(log 1)>¥) logF
: log A " logh

c(y) = (2.3)

Hence, plotting the normalized log probability distribution (-logPr/flog A} against the normalized log
intensity (log f3/log A) we obtain the resolution (A) independent function c(y). To empirically test this
multiple scaling behavior, we therefore take our empirical field-and successively degrade it by averaging,
obtaining a series of functions 2 (r), fan(r), fay(r), which with decreasing A simulates the results of
sensors with successively lower resolutions with Lifm>As2hn>1, with A the ratio of external scale to the
sensor scale (if we define L as the external scale of the image, then this is the largest ratio accessible from

! Do not confuse this function f or the value o (which we cite here purely for reference) with the quite
different f, o used in this paper. )

2 In Lovejoy and Schertzer (1990c), a slightly different normalization was used.

3 In two dimensions, f1= Ilf<J er;> where "< >" indicates ensemble averaging, L is the entire image
size,
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the data sef). Successive factors of 2 can be easily implemented recursivelyl. Note that we must not
nonlinearly transform our radiance field (e.g., by transforming from radiances to equivalent blackbody
temperatures), since this does not simulate the result of a lower resolution sensor. Furthermore, the
normalization based on f at scale ratio A=1 implicitly assumes that the probability distribution in (2.2) is
either from a single scene or from several independent scenes. If single scenes are used, then we cannot
obtain information on the codimension for values of c>d(A), since the corresponding structures would have
negative dimensions. However, when many realizations are available, the effective dimension of the sample
can be larger, and higher values of ¢(y) can be determined; see Lavallée et al. (this volume) for discussion of
this "sampling dimension." Finally, if many dependent samples are used as in the use of time series of
images in A. Seed et al. (manuscript in preparation, 1990), then an "effective” external scale L can be
determined from regression (as can f1).

The Probability Distribution/Multiple Scaling (PDMS) technique refers to the direct exploitation of
(2.2, 2.3) to obtain c(y). This direct method has a number of advantages when compared to the
conventional reute (via the moments K(h) followed by Legendre transformation; see for example Halsey et
al. (1986)) not the least of which is that it avoids the problem of estimating high order moments which
may in fact diverge. The PDMS method can be implemented in various ways. In Lavallée et al. (this
volume), histograms of all the values of f)/f) at the various resolutions A were produced, taking for the
value of ) the mean of all the sample spatial averages at scale A=1 (the number of "scenes” / satellite
pictures, etc.). From the histogram, the largest to smallest values were summed to yield the probability
distribution. Finally, c(y) was determined as the absolute slope of plots of log Pr against log A for given
values of v. This method has the advantage of readily taking into account the slowly varying prefactor F,
since Log F is simply the intercept at log A=0. See Lavallée et al. (this volume) for a much more
complete discussion of this method including theoretical considerations and numerical simulations.

In this paper, we used a slightly different method inspired by “functional box-counting” (Lovejoy et
al, (1987)), in which the probability distributions at various scales A was determined differently. The data at
highest resolution (As) was covered with a series of lower resolution grids (the “boxes”) as explained above.
However, rather than using the average value over each box (and create histograms of these averages), we
used the maximum value in each box scale A (denoted maxj(f)5)). Since the function was not averaged, the
singnlarity corresponding to each maximum value was simply estimated as y=log(maxy(fas))/loghs. The
comresponding c(y) for each reselution A was then estimated as -logPr/logh (we assumed logh>>logF,
ignoring the prefactor in (2.2)). Finally, we took the average c(y) function over a series of resolutions A,
indicating the scatter with one standard deviation ecror bars,

Figures 1a, 1b show the results when this technique is applied to five visible and five infrared
GOES? pictures over Montreal, respectively. The original (raw) satellite pictures were first resampled on a
regular 8 x 8 km grid over a region of 1024 x 1024 km. As can be seen, all the distributions are nearly
coincident, in accord with the multifractal natare of the fields. To judge the closeness of the fits, we
calculated the mean c(y) curves as well as the standard deviations for 8, 16, 32, 64, 128, and 256 km,
finding that the variation is small, being typically about +0.02 in (y), which is more accurate than
estimates obtained using functional box counting on similar data (Gabriel et al. (1988) found accuracies of
about +),05).

2.3. Universality classes of oY)

We have already argued that the resolution independent codimension function c(Y) is of considerably more
interest than particular values of the function. Continuous cascade models, allow us to go even further
(Schertzer and Lovejoy 1987a,b, this volume) since it can be shown that c(y) falls into the the following
universality classes (e.g. functional forms):

1 Note that we must not non-linearly transform our radiance field (e.g. by transforming from radiances to
equivalent black body temperatures), since this does not simulate the result of a lower resolution sensor.
Typically A,>>1 since the sensor resolution is of the order of meters or more whereas the fields typically vary over
distances of the order of millimeters.

2 Geostationary Operational Environment Satsllite.
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ot =cott - D) @4
Yo

where o and cg and yg are the fundamental parameters describing the process characterizing respectively the
generaior of the cascade, the intermittency, and smoothness of the process. The generator mcharactenzed by
the Lévy index o with 1/a + 1/o¢ =1 with the value a'=0 =2 corresponding to the Gaussian case, l<o<2
with ¢'>2, and 0<o:<1 with o'<0. Equation 2.4 can be regarded as a kind of "central limit" theorem for
multiplicative processes. When the quantity of interest is conserved by the cascade! the cascade generators
are normalized and only two parametets are required to characterize the universality class:

cm:C“%,,_l.)u- (25)

o o

The value of the parameter o is of particular interest since it is associated with qualitatively different types
of cascades2. For example, when 0.<2, the generator of the process takes on values near 0 so frequently that
all the negative moments diverge (a consequence of "exiremal " Lévy generators - ses Schertzer etal., 1988;
Scherizer and Lovejoy, 1990b, this volume), This yields processes which often have large holes (regions
with extremely low values), and may be good candidates for generators in cloud and rain models.

The difficulty in testing these ideas empirically is that the key parameter o' characterizes the
concavity of c(y) which is only pronounced when ¥ and c(y) vary over a substantial range. From the point
of view of non-linear regression, 1o fit cg, Yo, @ 10 the data we find that yo and ¢ are highly correlated and
" hence parameter estimates are not very sharp. In Gabriel et al. (1988), functional box-counting was uged
yielding less accurate estimates of c(y) than those obtained here. The issue was side-stepped by assuming
o'=2 and testing the consistency of the data with that hypothesis.

Here we improve on these results by determining ' by a least squares regression on the mean of the
8 to 256km curves in fig. 2.1ab. Maximum likelyhood estimates for the parameter o were found to be:
a=0.63+0.035 and o=1.6640.37 for the visible and infra red data respectively3. Fig. 2.2a shows the best
fit and mean visible and infra red curves. The standard errors in the fit are 10.011 and +0.015 respectively.
In Lovejoy and Schertzer 1990c, an efficient graphical method of estimating the parameters is o_utlined
which exploits the special properties of the universal c(y) function eq. 2.5: ¢(Cy)=Cl, ¢'(C1)=1 which can
be easily verified by inspection. This means that for these (conserved) codimension functions have the
property that straight lines with slope 1 passing through the origin will be exactly tangent to c(y) at the
value ¥=C; independently of the value or. Once Cj has been determined in this way, ¢ can be determined
by specifying one other value of the curve (c(0) usually works well) and solving an algebraic equation for o
For the (non-conserved) quantities analysed below an additional parameter specifies a left/right shift, but the
idea is the same. See Lovejoy and Schertzer (1990c) for more details.

The o parameters estimated at these two wavelengths are significantly different since they opnespond
10 o, Yo<0 and o¢’>2, Y>0 respectively; it is therefore of some interest to corroborate these findings. The
simplest (qualitative) method of distinguishing these {wo cases, is to consider the graph of In c(y). Taking
derivates, we find:

dnc(y) _ o 1 26)
a2 v? (o+1)?

1Fotexunplatheemrgyﬂuxmamalletscalesmthedynmﬁca]uubulmt de, or the
variance flux in passive scale cascedes.

2, is the co-dimension of the "support” of the measure coresponding to the unique dimension introduced
by Mandelbrot (1974).

3 The large difference in the maximum likelybood errors cited heve is dus at least in part to the fact that we
directly estimate ¢ and At =(1+%)?Ac" hence this effect alone accounts for a factor 2.7 in difference.
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hence for a'22 (l<as2), In c(y) is everwhere convex, whereas, for ¢¢'<0 (O<a<l), it is everywhere
concave. This sharp contrast is readily confirmed in fig. 2.2b. These analyses are important not only
because they confirm cascade theories, but also because they will help calibrate stochastic rain and cloud
models.
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Fig. 2.  The same as fig. 1ab except that the c(y) axis is in log coordinates. Nete that in accord with
the best fit values of o (the lines), the visible curve is concave, while the infra red curve is convex.

3. MULTIFRACTAL RAIN MEASURES AND RADAR REFLECTIVITIES
3.1, Multifractal Marshall-Palmer experiment

In the previous sections, we ignored the particulate natre of rain, investigating the properties of the
radiance fields without aitempting to interpret the latter in terms of the rain {or cloud) measures themselves
(i. (Vi,1j). In this section, we attempt to obtain (Vj, rj} directly, enabling the statistical properties of Z,
R and (in principle) all the radiative transfer characteristics to be determined. The method used is a modern
day version of the famous Marshall-Palmer (1948) experiment which was the first 10 measure the size
distribution of rain drops. This experiment — which in the form of a semi-empirical Z-R relation, still
provides the quantitative basis of most radar meteorology — consists in using chemically treated blotting
paper (that changes from pink to blue when wetted) to record the impacts of rain drops, The drop volume
(V) can be fairly accurately estimated from the radius p of the coloured stains on the blotting paper. By
dropping carefully calibrated draps down the four floors of the stairwell of the Macdonald physics building at
McGill University, Marshall and Palmer showed that Veepz (with little statistical scatter) which is the
relation expected if the penetration depth of the water into the blotting paper is constant, We then show
how these results can be exploited to obtain corrections to radar measurements of rain.

Our modern rerun was performed with the help of B. Miville and T, Pham; two third year honours
physics students, as part of their honours physics laboratory project. They reran the calibration procedure
using the same stairwell as Marshall and Palmer, (finding the same exponent in the V-p relation). The
improvements were a) the use of much larger (128X128 cm) squares of blotting paper (rather than the
16X24cm size used in the original experiment), b) the digitisation of the results, c) unlike Marshall and
Palmer who were interested only in drop sizes (and assumed that the latter were distributed uniformty in
three dimensional space, and hence uniformly over the blotting paper), we also recorded the position (xy) of
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the drops (for some more information on the experimental set-up, see Lovejoy and Schertzer (1950b)). By
exposing the blotting paper for very short times (~15), we attempted to obtain a horizontal intersection of
the (Vj, ri) measure. If the latter were isotropic, then knowledge of the statistics of intersections would
yield statistical information on the full multifractal (V, £j) measure for all subsets with dimension 21 (this
codimension is the "dimensional resolution” of the blotting paper — see Lovejoy et al. (1986a,b) for a
discussion). However, the anisotropy requires us to be more prudent; for example, we must use the
elliptical dimension of rain (=2.22+0.07 rather than 3) estimated in Lovejoy et al. 1987 in order to
extrapolate to the properties of (Vj, i} in space (see section 3.2).

In order to sample the horizontal intersection of the rain field, the blotting paper must be exposed for
as short a time as possible. In this case, an exposure of =1s was obtained, although this is not as short as
- might be hoped given that rain drop fall speeds are typically 2-5m/s. To put the problem in context,
consider very long exposures, In this case, (taking the rain as an (x,y.2,t) process), the blotting paper will
record the projection of the rain on the x-y plane. However, the properties of projections and intersections
are quite different. Here, the projection relation indicates that any component of the multifractal rain
measure with dimension D=2 will lead to planar projections (i.e. the projection has dimension 2, and the
bloiting paper gets wet everywhere), whereas the intersection will have D<2 as long as D<de] (where de]
is the elliptical dimension of the (x,y,2,t) process).

Fig. 3.1 shows the points corresponding to the centres of the circular blobs on the blotting paper; in
this case there are 452 of them. These were digitised along with their radius (to an accuracy of 0.5mm).
452 is a relatively small number of drops with which to estimate dimensions (see the paper by Essex in this
volume), however, since D<2, it is sufficient. We also analysed two other rain events (with 1293, 339
drops respectively), but these we analysed by hand and are discussed later on. The statistically most
sensitive analysis method is to estimate the correlation dimension (as was done in Lovejoy et al. (1986a) for
the meteorological measuring network). This is done by considering the function <n{l)> which is the
average number of other drops in a radius I around each drop. Since there are 452X451/2=101,926 drop
pairs, this fanction contains a great deal of information about the drop clustering. We then define the
correlation dimension D; as <n()> o iP2. Fig. 3.2 shows that over the range 2mm < [ £ 40cm, that
D, = 1.83 (the subscript refers to the fact that the drops are embedded in a two dimensional space). The
large | behaviour deviates below the line because many of these large circles go outside the blotting paper
and are therefore biased downwards. At the small scale end, we also obtain a bias due to the finite number
of points; for example, clearly <n())> 2 4521, We therefore take this as evidence that rainfall is scaling
over this range.

In order to extrapolate the <n(f)> result from the measured (horizontal) intersection to the full x,y,z
space, the strong horizontal stratification of the rain process due to gravity must taken into account.
Introducing the codimensions with respect to two and three dimensional embedding spaces C3=3-D3,
C9=2-D (=0.17 here) and using the formalism of "ge: i cgcale invariance” (Scherzer and Lovejoy,
1985a,6; 1987a,b), in x,y.z space, we expect <n()> o< I3 =(3-C3 with:

s =Cz% 3D

where dg] is the "elliptical” dimension of the rain process characterizing the stratification, estimated
(Lovejoy et al., 1987) to have the value de|=2.22+0.07 in rain (de] would be three if the space was
isotropic, and two if it was completely stratified into flat layers). Using eq. 3.1, and expressing n in terms
of the volume v =/3 we obtain:

<n(v)> = o Cofdep) 32)

Hence, using the above values of C2, dej in 0%3.2 the drop density <n{0)>/v is no longer constant
as demanded by Poisson statistics, but decreases as v—0-08,

i
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:I'he effect of this drop clustering on radar signals will be to introduce some degree of coherent
scattering fm!n the drop_s. To quantify this, consider a radar at the origin that emits a pulse of
electromagnetic waves with wavevector k, that fills a volume v = I xr0xr@ where r is the range, 0 the

-angular width of the radar beam, { is the pulse length. The power recieved at the radar depends on various

insu-umemal charactensucs including the transmitter, antenna geomeiry etc. Putting these factors into a
multiplicative constant (ignored below) and statistically averaging (indicated by angle brackets), the radar

.m.‘: i the “effective radar reflectivity factor” (Zg) whose statistical average (indicated by the brackets
is:

<laiz>
S 63
ﬁ)
_ , Jd2ker;
A= g Vj Rt B4

and g is the position vector of the j drop and the factor 2 arises because the beam makes a round trip.,

B Ther:ffoiz, accoring to eq, 3'3’.3'4’ the radar measures the square of the modulus of the Fourier

e Foumrm drop distribution (weighted by the drop volumes) at wavevector k. We therefore calculate
transform (Z¢(k)), and plot (fig. 3.3) the angularly and radially integrated quantity

k2 ézeaodzz« Kk
S

| (3.5)
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is the circle of radius [k | and empirically, we find {=-0.12 (we integrate over circles in Fourier
:;ﬁhe:ii ttI:‘ql. 3.5 to take advantage of the presumed statistical horizontal mouopy of the drop d_lsl_nbur.mn).
The factor [ 2 was included so that white noise (Poisson statistics) will yield =0, and deviations from
white noise will be easy to see. [k |was varied over the range %50 cm™'2 lkl_z Z em™! (which
corresponds to the range 2 - 128 cm), Only extremely small deviations from this behaviour can be noted at
high wavenumbers corresponding to about 4cm. The clustering (correlat.iom;) of the drops lead to ooperent
scattering, thus for a given wavenumber, there is an increase in Fourier amplitudes, hence a decrease in { as

compared to white noise.
3.2, Estimating range dependent biases in radar reflectivities

Before continuing with our analysis of this data, it is worth pursuing the Fourier result a bit further, since: it
introduces corrections into the standard theory of radar measurements of rain which assume homogeneity
(white noise). The calculation of the cotrections to the standard theory is quite simple, so that we sketch it
below. _

We have already introduced the “effective radar reflectivity factor” (eq. 3.3, 3.4). Itis customary to
introduce the "radar reflectivity factor” (usually measured in units of mm®/m?) whose ensemble average
<Z> i defined by:

2> = ﬂu‘ﬂz V2 (.6)

If the drops are uniformly randomly distributed (i.e. they have Poisson statistics), the phas?s
2k = ¢j in eq. 3.4 are statistically independent. Considering the oon_lplex sum A asa 1_-:mdomi wlzgk in
phase space, as long as <V2m<eo the central limit theorem applied to (3.4.) Emphes: <|Ale> =
<n(v)><V2> and hence the classical result <Ze>=<Z>. However, if the drops are distributed over a fractal,
wehaveparﬁaﬂyoohmemmﬂngmﬂweexpectdmpmmlaﬁonsmyieldmmmnalousexponent:

<|A B> o en(u)>2H V2> a7

where H=1/2 for compleiely incoherent scattering, and H+1/2 when some degree of coherent scattering is
present. Hence:

<Zo> o« <Z><n(v)>2H-1 3G9

In order to evaluate H from the blotting paper we used the following procedure. First, in ogder i}
reduce statistical scatter, we take [ | fixed and exploit the statistical isotropy of the drops in the horizontal
by averaging over wavevectors in 19 equally spaced directions, adding more and more terms in the sum (A‘)
by choosing drops at random from the 452 available. Fig. 3.4 shows that convergence to a power law is
obtained for n216. Varying [k |in 10 equal logarithmic increments through the scaling region, from
Zem-1 10 % ol (comresponding to distances of 1.28 to 128cm), we obiained 2Ei=1.24:0.09 where the
8 o is the siandard deviation of the 2H values estimated from each of the values of k |

We can now combine this result with our previcus formula S.Z) for n{v) 10 obtain the volume (and
hence range) dependence of <Z>, <Z>. Recalling that v =162 and keeping only the r dependence,
combining eq. 3.2, 3.6, 3.8, and using the notation <Z> o= 13, <Zg> = 15¢ we obtain:

ga.2X2 39
de

C:
§e=4m1-d—d1)-z
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Taking Co=0.17, H=0.62, dg1=2.22 yields &= -0.15, Ez = 0.28 (recall that the standard values are
Co=0, H=1/2, dg]=3, hence E=Ee=0). To judge the overall magnitude of these effects, consider a weather
radar such as the 10cm wavelength one at McGill, with minimum range (limited by ground echoes) of
=10km, and maximum range ~240km. Comparing near and far range, we obtain a variation in <Ze> of
=240.28 = 2.4, and a corresponding variation in <Z> of 24-0-15=0.6. These effects are somewhat larger in
magnitude than those due to absorption (by humidity, O2, and by the drops themselves) and should be taken
into account during radar calibration from rain gages. However, more study is needed since the above
corrections do not fully take into account the scaling proerties of rain. They could be termed “monofractal”
corrections since they involve a small number of paramters (H,C), and yield corrections for the mean
reflectivity factor. In Lovejoy and Schertzer (1990c), we discuss other (multifractal) comrections which
cormrect the higher order moments (or equivalently, the probability distributions via comrections fo c(y)).

-2.6
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Fig. 3.4: The variation of the mean (non-dimensionalised) reflective radar reflectivity of the distribution in
fig. 3.1 normalized by the number of drops (n) used in calculating the sum (eq. 3.3, 3.4), as a function of the
number of drops (n). The curve is calculated as indicated in the text and involves averaging over 19 angles in

ier space, and 10 logarithmically space wavelengths from 1-128cm. The siraightline shows the asymplotic
power law behaviour which is obtained for n216, with slops = 2H-1 = 0.24 (H = 0.62). Note that white noise

(Poisson statistics) would yield a flat curve (slope zero, H = 1/2). The increase is due to some degree of coherent
scattering.

3.3. Trace moment analysis

Physical applications of scaling typically involve scaling functions (or measures) rather than sets (see
Schertzer and Lovejoy (1987a,b) for more detailed discussion). In spite of this, the traditional emphasis has
been on fractal sets and their dimensions, even though it requires us to first transform the measure into a set
(e.g. by thresholding) and then to construct Hausdorff measures from the set by covering it with "balls”. As
argued earlier, it is more natural to to treat the fractal measure directly; we do this by introducing a series of
measures (introduced in Schertzer and Lovejoy, 1987a,b), called "trace moments®. This approach is similar
to that of Hentschel and Proccacia (1983), Grassberger (1983), Halsey et al. (1986). For an early
ap.plieatlou of the same technique to rain (including an empirical evalvation the codimension function in
rain), see Schertzer and Lovejoy (1985b) where it is refered to there as an “integral structure function”.

¥ We again cover the set § (dimension D) with disjoint boxes By, scale A (diameter [ =L/, L again
being the largest scale of interest). We then "homogenize" f over the various By's writing:
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Jrod 15

By
5 (3.10)

fi=

£, is the "homogenized” (“smoothed") f over By, used in section 2 (the denominator A-D is proportional to
the area (D=2), volume (D=3) etc. of By). Rather than study the effect of smoothing on the probability
distributions of f3, (characterised by c(y)), we can study its effect on the moments of different orders:

A N

<fib> = ABICEH) @11

<Tr 0>

Where the "< >" indicates ensemble averaging. The equality holds when f), has been normalized so that
<f>=1, otherwise the symbol “=" in eq. 3.11 indicates proportionality. The exponent (h-1)C(h) quantifies
the rate at which the various moments are smoothed with decreasing A (increasing ). As long as the B J

statistical moments converge, a box-counting approximation allows C(h) to be interpreted as a codimension i -
function for the moments (not to be confused with c(y)). This can be seen by introducing a Hausdorfl i
measure called an "hth order trace momentl, resolution A, of f over S" denoted: <Traf(S)>: & 4

0.0 0.5 1 .
0g 107“ 1.5 2.0

10

log

N@)
<TnfS)h>= Y <til> (diamBy)h = AP AG-DC(H)-HD . 3 (b-1)dh) = 3-Kp®h)  (3.12)
i

since in the above the sum is approximated by multiplication by N(A)=AD and:

_Fig. 3.52: A log-log plot of the (unmormalized) <Try, f,"> which is proportion ~Knn) =

.l. is the scale ratio, L the external size (=128cm), ! the s?mnof hnmngm‘:tt; and f 3 tn;gturx:bi- :;e:sull;m
in the text. Note that =128 cm and that convergence to power laws occurs only for lengths f2dem (A<32). The
curves, top to bottom, are for h =35 3,25 2, 15, 1.2, 0.8, 0.6, 0.3, and the (negative) slopoes a.;e. the
corresponding values of the function K p(h). Straight lines were fit for 28cm.

<> @iamBh = < [roa”"> (313
By

the trace moments <Tr3f(S)"> can therefore be estimated by the statistical moments of [ spatially integrated
over boxes of size L/L. We then estimate the exponent Kp(h) (= -(h-1)d(h), d(h)=D-C(h)) by studying the

scaling of the latter.
Furthermore, C(h) is a dual codimension function related to c(y) via a Legendre transformation:
c() = rrLin vy - (-1YChY (3.14)

3.4. Trace moments for drop volume and probability measures

We may now use eq. 3.12 (o estimate Kp(h) for the blotting paper (Vj,ri) rain measure. Two measures
with obvious physical significance are: fy=(Vi, 1) and fp=(1, i) where

s[fv(:)dD:=melotalammmt of waterin S (3.15)

an(x)dD:= the total mumber of drops in S (3.16)

1 The "= sign on the left of eq. 3.12 is introduced because the covering yielding the “infimum” in the
Heusdorff measure defining the trace moment has been epproximated by a covering of N(A) disjoint boxes - see the

Fig. 3.5b: Same as 3.5a but for the i . N
discussion of the box-counting approximation in appendix B. volume measure discussed in the text. Straight lines fitted for /28cm.
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is simply an (non-)normalized probability measure fp. _
e m“:l{e first ng;mirfe Kn;:)(h) (the number measure scaling exponent function), since it is Lhe_ simplest
characterization of (V, [j); it is equivalent to studying the set of drop centres only. In our case, it has the
further advantage of being the only measure obtained from more than one rain event. In addition to the 452
drop event described in section 3.1, we manually analysed two other events (with 1293, and 339 drops
respecti , Obtaining for >0
;llel ig&posmes wKZ"?ﬁhr). 1s, fig. 3.5a, b shows a typically plot of log<Tr AP >/<Tr 356(S)P >
vs. log A with A ranging from 1 to 128. We find that for I 28cm that scaling is fairly well rwpecteq. The
change in behavicur for ] <4cm is due to the fact that manydmpsperresoluuonlelementaremmred to
obtain asymptotic scaling properties. This hypothesis was supporied by an analysis of the two other cases
which showed that the break does not occur at a fixed scale, but rather at a fixed (average) number of drops
per box of about 16. This is consistent with the results in fig. 3.4 showing that roughly 16 drops are
required to reach the asymptotic scaling behaviour.

15

15

-25 ' ' ' ‘
.5 5 h 15

i i 0 only), the 452
Fig. 3.6: (h) estimated from (bottom to top ) a manually analysed 1293 drop case (h=>0 only),
drop 1(sdigila1)1§::gs analysed in fig. 3.5, and a 339 drop manually analysed case (h>0). The _sln}ght lines are
asymptotic fits to the negative and positive large (absolute) h regions for the 452 drap case, yielding (absolute)
slopes D, =4.06 and D,, = 1.56.

Fitting the trace moments for [24cm, we obtained excellent fits. Fig. 3.6 shows Kpp(h} for the
three cases indicating that Kyp(h) is curved at small absolute h, but fairly straig_h% for largc absolute h,
This type of asymptotic straight-line behaviour was also found for radar reflectivities in Schertzer and
Lovejoy (1987a). Theoretically, this behaviour (at least for positive h) can arise fn_'om a nu‘mber of sources,
including perhaps the divergence of high order statistical moments, and a resulting spurious scaling (see
Lavallée et al. this volume for discussion). Denoting the small h and large h asymptotic {absolute} slopes
bY D_cw and D...respectively, we obtain Do, for the 1293 drop case, =1.79, for the 452 dropcase =1.56, and
for the 339 drop case, =1.51. D_.. was only evaluated in the digitised 452 drop case, yleldmg 4.0(_34. Ngte
that in the later case, K(2)=D2 ~ 1.83 which agrees as expected with the value of the correlation dimension
found in section 3.1. o )

Next, we evaluated KyD(h) in the 452 drop case, obtaining resulis very mm!lar w KpD(h). Fig. 3._‘]’
shows Kypi(h) in this case evaluated for 128cm, The similarity of this curve with Ihe Kapih) curve is
compatible with a very low degree of correlation between drop clustering and d:op size. To l.est tlns: we
evaluated yet another, "randomized” measure that we obtained by replacing Vj in (Vi, I by a Vi obtained
by choosing V; at random from the Vj in the sample. F%:l:r sho;vtsmt:r Fxcegtoef:ramr lat;g:easb::;l:;eh:;

ions K and Ky' are nearly the same. ge viour

mgncr gowev‘;rn.(hsznoe Ihev(?ﬂ(:t)iomimd} :symptonc absolute slope of Kyp(h) yielded Do = 1.4740.03
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while that of the (W) KyD(h) yielded Do, = 1.56. We interpret this as indicating that correlations
bf:tween drop position and size are most important for the larger drops (since they contribute most (o the
higher moments).

-20 v 1 = T
-10 ) h 10

Fig. 3.7t Kyp(h) for the 4:52 drop case (lower curves) and Kyp(h) for two randomized cases discussed in the
text (upper curves). The straight lines are asymptotic fits to the negative and positive large (absolute) h regions
for the 452 drop case, yielding for Kyp(h), D_oe =3.65, Duo = 1.56.

4. LIDAR MEASUREMENTS OF RAIN DROPS
4.1. Extending the blotting paper results in time and space

In an attempt to extend the blotting paper results of section 3 to much greater time and space scales, we
undertook to examine the reflexions of high-powered laser pulses (lidar) from rain drops. Lidar has generally
been used to detect very small particles (such as aerosols) whose tiny size (typically <1pm) preciudes their
measurement by microwaves. Even with high power and telescopic receivers, the return signal is typically
very weak and relatively long pulse lengths (e.g. 50m) and averages over many repeated pulses are used 10
Improve the signal 1o noise ratio. Lidars have also been used to study clouds, where the drops are typically
l-201_.1m in size. Here the problem has not been the weakness of the retum signal, but rather the high
density and efficiency of the scatterers which attenuates the signal so strongly that typically only the cloud
edge is detected,

4 _Our approach was somewhat different. By studying large drops (rain-typically 0.5-3mm in diameter),
with high power and short range, we can obiain excellent signal to noise ratios, even with very small pulse
lengths (here = 3m) and averaging over pulses is not required (of course, the measurements had 1o be

 performed after dark). Also, unlike the typical lidar configuration in which the beam is directed upwards,

here, we pointed it in the horizontal. Furthermore, the lower density of rain drops as compared to cloud
drops means that attenuation is not a serious problem. Although an ultimate objective is to reduce the
pulse lengﬂ: 1o centimetres or smaller (lasers with these characteristics are readily available), and to measure
the position and reflection of individual drops, our electronics were insufficiently fast. The set-up involved
aYaG laserwu.h 10ns pulse duration (0.1J per pulse, at 10Hz) with a frequency doubler so that it emitted in
the green region (_)f the spectrum. Although the pulse volume is too large to isolate individual drops
completely unambiguously (due to beam spreading, the pulse volume at a 10m distance is 20cm3, while at
Lk, it :s_o.zm?-; the return signal still yields valuable information on the time/space structure of rain.
The experiment (including the assembly of the laser, telescope, photomultiplier and triggering circuits) was
Performed by Alex Powell and John Weisnagel, as part of their 3 year honours physics lab project,
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data were digitised and archived on floppy disks in two basic formats, the overall limitation
being thTsiloppy disk ca]gacity In the first format, the object was to produce roughly square (x,1) plots so
that 180 consecutive pulses were stored (0.1s between pulses) with a downrange resolution of 180 pulse
lengths (=180X3=540m). In the second format, much longer series of pulses were available (5000 over a
pmod of 5000X0.1=500s), but over only a couple of pulse lengths. Other data sets obtained included (z K]
ts where z is the vertical coordinate. We ¢xpect systematic analysis of these data sets to yield not
only information on the multiple scaling of rain over these small time and space scales, but also on the
statistical anisotrapy of (x,y.z,1) space. This is important since the hypothesis of the isotropy of (x.y.z,t)
space constitutes a statistical version of the well-knowu Taylor hypothesis of "frozen wrbulence” which i 1::
often invoked but which has not been directly tested!. In the following, we give only preliminary resu
which over the range of scales studied, conﬁrmt‘hescahngmbndzspaceand time. These are however,
consistent with a generalization of Taylor's hypothesis of frozen twrbulence in which the space and time
scales are statistically the same if one of the axes is differentially stratified (compressed) with respect to the
other,

4.2. Data analysis and results

of the raw data photomultiplier voltage (in light rain) is shown in fig. 4.1. The basic
fmﬁﬂﬁ a) the sieep rise in the first 50m, b) the steady power law fall-off of the mean signal.
The initial rise is due to the telescope focusing effect (the close range was out of focus), while the fal]-oﬂt;f
roughly following 4 law, is expected for single particle scattering (if there is no attenuation, then the
outgoing signal falls off as -2, similarly for the reflected signal).

Signal (mV)

A5
0 200 Rangem 600 800

tude
4.1: An example of an incorrected lidar pulse retum. The reflected intensity is measured by the magni
of ﬂ;me& (negative) phnmphuluphu voltage (in millivolts). Note the initial dip in the signal due to poor eﬁwmcmp
focus at near range, as well as the fairly rapid (%) fall-off further downrange. Positive values are due to

noise and must be reset to zero. The far range rerurn is from a distant apartment building.

50m, and
Tommovebomofmeseomonsmngedependemws.wedlmmawdalldnmammm , and
applied a simple r# correction, A perspective plot of a typical (range corrected) sequence of pulse retums, as
is shown in fig 4.2, indicating that there is no longer any obvious range dependence. In fact, a subtle range
effect must still exist because as the pulse spreads away from the lidar, there is a tendency for the pulse

1suuppmdix5fordismsi0n-
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volume to include more and more drops, and hence increase the signal. Apparently, this effect has been
somewhat offset by a decrease due to some attenuation. In any case, we do not expect these effects to yield
a serious bias in our analyses since the same mix of near and far data was used in trace moments estimated

at each scale. This is the same argument as that used in Lovejoy et al. {1987) with regard to the effect of
the spreading of the radar beam.

4.3. Trace moment estimates of correlation dimensions

Although the pulsc volume is generally too large t lead to completely unambiguous conclusions about
number and size of the drops in a pulse volume, it was still small enough that at light rain rates, many of
the pulse volumes gave very low return signals (signals compatible with either aerosol scattering or other
neise sources this is true of most of the return signals with voltage 20 in 4.1). There was therefore some
indication that by putting a fairly low threshold on the return signal, that a crude separation could be made
into rain and no-rain pulse volumes. In the following, we therefore analyse only the set of pulse volumes

exceeding the sample average signal. The properties of this set were then investigated by the trace moment
analysis described in section 4.3.
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Fig. 4.2: A (x,t) perspective plot of the log of the absoluic (range corrected) lidar reflectivity (vertical
coordinate) indicating the extreme variation, in both space and time, as well as the approximate absence of
Temaining range biases (180X180 points are shown).
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Fig. 4.3 shows such an analysis on a time sequence involving 5000 pulses (=500s). The telescope
was focusedatuearmtgea]lomngpulsevolumesonly 10m from the lidar to be studied. At this range,
these were 0.3mm in diameter and therefore sufficiently small so that often no scattering took place. In this
case, due to the proximity - mescaumngoccuredmaMcGlIlpurhnglot the above statement could be
readily verified by eye: at a given range reflections occured only at fairly irregular intervals. In fig. 4.3, note
how accurately the scaling is followed. Using the slopes to estimate Kp(h), and the formula
d(h) = -Kp(h)/(h-1) we find that the dimensions of these 1-D sequences were typically in the range
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0.9-0.85. The resulting codimensions (0.1 - 0.15) are comparable to those found in section 4.1 for the (x,y)
distribution (0.17) but a proper analysis of the difference in spaceftime codimensions has not yet been
performed, however, the results here are sufficient to conclude that space and time do not scale in the same
way - see appendix E for a theoretical discussion.

Fig. 43: Trace moment analysis (similar to that in figs. 3.5a,b) for the time domain (5000 pulses over a
period of ty=500s) for those range corrected retums that exceeded the average. Curves from top to battom are for
h=10, 9, §, 7, 6, 5, 4, 3, 2 respectively. Note that the scaling is extremely accurately followed.
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Fig. 44: Trace moment snalysis for downrange domain (each pulse retumn is divided into 180 pulselength
sections, 3m apart (L=540m) for those range corrected returns that exceeded the average. Curves from top 1o
bottom same as for fig. 4.3. Note that the scaling is extremely accurately followed.
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Fig. 4.5: Trace moment analysis for the (x,t) domain (180 pulses, 0.1s apert in time, 5 i

. , 0. pace resolution 3m) for
those range corrected retarns that exceeded the average. Curves from top to bottom same as for fig. 4.3. Note that
the scaling is extremely accurately ifnllowed. This data set is the same as that shown in fig. 4.4, except that
analysis was performed on "squares” in (x,1) space rather than by intervals (downrange) only.
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Fig. 4.6: Comparisons of the functions K,p(h) obtained (bottom to top) from Lidar (x.t blot
(x.y space) lidar (¢ space), lidar (x . The two lines .t space), blotting paper
dﬁmmmwmcmehwmlm)hlmww‘p:;:-smaperhecauselheymmbeddedmamo

. In fig. 4.4 we analyse down-range returns for another storm, using the r4 correction and again
thresholding at the sample averaged threshold. Again, lhescalingisaocmtelyfollowmovenhe;glmt;re
langeofsc_alu from 3 mS:tﬂm, with similar dimensions, Fig. 4.5 shows the results for the 180X180 (x,1)
field described abov_e, again showing the scaling. Fig.4.6 compares the functions Knp(h) obtained from
3.5a, 4.3, 4.4, 4.5 yielding estimates of Do, = 1.56 (x.y, blotting paper), 1.68 (x,t, lidar), 0.84 (t, lidar),
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0.76 (x, lidar), or, Cea = 0.44, 0.32, 0.16, 0.24 respectively. These results are not immediately comparable
since both the data sets and measurement methods were different (for example, if the x,y space is
statistically isoropic, then from a theorem on intersections, Cea(X,¥)= Cus(X}). More can be said about the
lidar (x) and (x,t) space results since in this case, the same data set was used. The difference between C..(x)
and Coo(x,1) (0.24 and 0.32 respectively) - if confirmed in more detailed studies- indicates that an anisotropic
version of Taylor's hypothesis holds. A preliminary estimate of the elliptical dimension of the (x,t) space
i8: deg ¢ = 2%0.24/0.32= 1.540.3 where the (large) error is estimated by assuming that the individual errors
in the estimates of Co is 20,03, This result is consistent with space-time transformation involving
turbulent velocities yield defy,c = 5/3.

Combining the blotting paper results (several mm- =1m fig. 4.2), the lidar resnlts (=3m - 0.5km,
figs. 4.4, 4.5), with satellite analyses (=100m-100km, fig. A.2, and ~8 - 512km, fig. 2.1) we we have an
excellent indication of the existence of a continuous multiple scaling structure of rain and clouds over nearly
the entire range of meteorologically significant space scales.

5. CONCLUSIONS

The object of this paper has been to discuss and illustrate new data analysis techniques which directly
analyse multifractal measures, determining the codimension function characterizing the singularities of
various orders (the PDMS technique), as well as a related (dual) codimension function characterizing the
scaling of the various statistical moments (the trace moment technique). Unlike ("mono-fractal”) methods
adapted 1o studying the geometric properties of sets (which involve single fractal dimensions), both methods

- involve creating a series of lower resolution fields and allow direct determination of the entire
{co)-dimension function. Since geophysical phenomena are typically measures (or fields when averaged over
the resolution of a sensor), mono-fractal techniques operate by first transforming the fields into sets,
typically by applying thresholds. This indirect procedure is unsatisfactory since the values of the thresholds
depend fundamentally on the resolution of the sensor; in appendix A we re-examine several of the most
commonly nsed mono-fractal techniques (particularly area-perimeter relations and area distribution
exponentsl) in this context. We then apply these multifractal techniques to infra red and visible satellite
surface and cloud radiances, radar reflectivities of rain, blotting paper data on rain-drop size and position, and
lidar data on the space-time structure of raindrops.

In section 2, we applied the Probability Distribution/Multiple Scaling (PDMS) technique showing
how it could be used to establish the multiple scaling of satellite cloud and surface radiances in visible and
infra-red wavelengths and determine the resolution independent (normalized) probability distribution (the
codimension function). We further showed how this function fits into theoretically predicted vniversality
classes, estimating the important parameters characterizing the generators of the process. This is important
since it helps both to justify and to calibrate, the modelling of clouds by continuous cascade process (c.f.
Wilson et al. this volume). The PDMS technique is appealing because of its simplicity, and the fact that it
directly comesponds to a systematic degradation of the data resolution.

: In section 3, we directly studied the (Vj, 1j} (= volume, position) measure defined by raindrops as
they intersected a large piece of blotting paper. Using a variety of techniques including Fourier analysis and
trace momenis, we were able 1o not only establish the multiple scaling of the measure, but also to
quantitatively evaluate systematic cocrections that the behaviour will introduce into radar reflectivities. The
corrections arise due to the long-range correlations in rain associated with its multifractal structure, On the
one hand, these correlations lead to a degree of coherent scattering that enhances the radar signal above its
conventionally assumed level. On the other hand, the sparseness of the raindrops leads to a decrease in their
density with scale which tends to act in the opposite sense. Quantitative evaluation of the relative

1 The re-evaluation of the mono-dimensional techniques involved a number of new findings. First, that the
area-perimeter expenent will not in general be the dimension of the perimeter, but rather the ratio of the perimeter
dimension to half the dimension of the area (in appendix A- we empirically show that this correction is often of
the order of 25% or more). Second, the distribution of areas has an exponent which is generally expected to be <1,
since unlike many simple geometric fractal sets, in fractal measures, we do not expect fragmentation of structures,
to play & very important role in determining the fractal dimensions (appendix D).

e e
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importance of the two effects shows that it is the former which dominates, yiclding a systematic bias that
may easily reach 50% in typical weather radar systems,

) The blotting paper analysis was unfortunately 100 limited to permit more systematic investigation of
the rain structure- particularly due to the lack of vertical resolution and small sample sizes. This limitation
prompied the final study reported here, which involved very short pulselength lidar (laser) measurements of
rain drops. Although we could not completely unambiguously distinguish pulse volumes with one or more
drop from those without any, an approximate separation was achieved showing that over the range 0.1s to
500s, and 3 - 540m, in space, that the distribution of raindrops is scaling. We also evaluated the multiple
fractal dimensions of the set of rain-filled pulse volumes. Although these results are preliminary, they
clearly established the scaling in this important range of time/space scales. If we combine the analyses of
section 2,3,4 and appendix A (oot 1o mention quite a few other analyses in the literature), we find a
convincing case for the multiple scaling of rain and clouds over the entire range of millimeters to nearly a
thousand kilometers.

In light of these findings, we can affirm that the only convincingly documented evidence of scale
breaking to date is at the viscous scale (S1 mm) and at planetary scales (21000km). However, as with any
theoretical idea, no amount of empirical evidence could ever prove the validity of the scaling hypothesis.
However, the lack of strong evidence for breaks in the scaling means that the latter- if they exist- are likely
to be relatively weak. This evidence, coupled with theoretical arguments in favour of such scaling -not to
mention its unifying and simplifying power- certainly make the hypothesis more attractive than ever.
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APPENDIX A: THRESHOLDING AND MULTIFRACTAL MEASURES: A RE-EVALUATION OF
SEVERAL MONO-DIMENSIONAL ANALYSIS TECHNIQUES -

A.l. Discussion

We have argued (especially in section 2), that emphasis on the geomeiric properties of scale invariant
processes has lead to excessive emphasis on the study of sets, and their fractal dimensions. For example,
using a threshold on satellite cloud and radar rain data, Lovejoy (1981, 1982) determined area-perimeter and
fma-dislribm:ion exponents. Although limited to the range 1-1000km, and to a single cloud and rain
intensity level and meteorological situation, Lovejoy (1982) showed that scaling could hold over a wide
range of meteorclogically significant length scales. Since then, these and related methods have been used by
a number of other investigators (¢.g. Carter et al., 1986; Ludwig and Nitz, 1986; Rhys and Waldvogel,
1986; \_pVelch et al., 1988; and several authors in this volume), occasionally yielding apparently
contradictory results. For example, the value of the area-perimeter exponent of 1.35 found in Lovejoy
(1982) was at first considered a fundamental constant, which was subsequently found to be not always
reproducible; Rhys and Waldvogel (1986) and Cahalan (this volume) found generally higher values that
depended on the realization ("metearological situation”), and Carter et al. (1986) estimated the dimension of
the “graph" of infra red radiance intensity from clouds, obtaining yet another value of the dimension.
Hm\_revex. once the multifractal nature of the fields is appreciated, these results can be easily explained. In
w, the interpretation and significance of the area-perimeter and area distribution exponents, graph

.asw‘ellasmeirrela:ionshiptoﬂleﬁactal dimensions of the rain or cloud regions themselves
mjlst_be re-examined. This is done below; the most important results are a) the area-perimeter exponent
\n-nlllm general not be equal to the fractal dimension of perimeter b) the range of possible values and
sxgmﬁca.mce of the area distribntion exponent is different than that obtained by simple arguments on
geometric sets. We then re-examine these early smdies in this multifractal context.
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A.2. Muliifractal exceedance sets, perimeter sets and graphs

Congider the function f3() obtained by averaging a multifractal measure over scale /, scale ratio A, in a
region of the plane! X size RXR (.. with large scale L=R). As mentioned in section 2, the underlying
measure is most directly studied by considering how the properties of f vary as we change A (_e,g. by
successively degrading our sensor resolution). However most applications of remotely sensed data involve
smudying the properties of fj, at fixed A. ‘When, as is often the case, these exponents are obtained by using
thresholds (T3) on fi, to define sets, we find that the results will depend directly on A via the multifractal
relation Ta=TAY where T is the large (e.g. image scale resolution) value of the field (T} is at the same
resolution as f1). Our exponents will therefore depend (via T») on both the sensor resolution (1), and the
*meteorlogical situation” (i.e. stochastic realization) of the process, and hence be of limited utility. Below,
we fix the function resolution A, and write simply f(), T.

Define the (closed) exceedance set ST as the set of points satisfying f(r) 2T. If f(p) is a scaling
function, the (Hausdorff) dimension D(S1.) of Sy, will be a nonincreasing function of T, since S1= O St=
for T>T and the dimension of a subset must < to the dimension of the entire set (this property is so basic
that it holds for all definitions of dimension of which we are aware, including topological dimensions)?.

Fig. A.la: Schematic
illustration showing
some of the definitions
used in the text. Gr is
the set of points in the
black (spiky) region
above the plane f{D)=T.

Consider next the "graph" (G) of f(r) defined as those points in three dimensional (r., f()} space. As
before, we may define G as the subset of G such that f(r)2T (see fig. A.1 for an illustration, and appendix
D for more discussion). Consider now the perimeter set of Sy, denoted py. pr is the "border set” of Stz,
more properly defined as the "T-crossing set" of G with the plane f(t)=T (in analogy with the expression
"zero-crossing™ used in the theory of stochastic processes). This is the set of points [ such that arbitrarily
small neighbourhoods of I contain some points such that f(f)<T and some such that f(=T. Using basic
notions about sels, we can now give a definition of py. Define the (open) complement of STz as:
ST2 = R-S1=. pris thus the set of "contact" points of St which are required to close it, yielding [Stz].
‘We thus obtain:

1 Generalizations to higher dimensional spaces are straightforward and will not be explicitly considered.

2 Complications arising from non-self-similar, snisotropic scaling (Generalized Scale Invariance, see e.g.

Schertzer and Lovejoy, 1987), will not be considered here.
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Fig. A.lb: Schematic
illustration showing the
definition of Sy, pr used in
the text, for two different
thresholds T1<T2. The
illustration was produced
using a multiplicative
cascade process (an “alpha
model™) with a cascade
discretised into 8 steps of a
factor two in scale each step.

Fig. A.le: Graph of the
1 functions D(St,) (white
fquares), D(pr)

|
a B8e
oae

Kdiamonds), D(St.)
(black  squares)
determined numerically
from a multiplicative
cascade process on a
128X128 point grid.
As  expected, the
functions respect the
inequality A.2.
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1t is important not 1o confuse this zero-crossing set with the set of points r such that f(r)=T which is
the intersection of G with the plane f()=T, (GNT) denoted St... In general, py will be different from S
with the two coinciding only if special conditions apply such as G is everywhere continuous (i.e. G
typically jumps from one side of the plane f()=T without intersecting it! ). However, in what follows, we
see that in general, G is discontinuous, and all we obtain is:

D(Sr2) 2 D(pr) a2

(since Sz D pr) with the actual value of D{pr} however depending critically on the topological siructure
(i.e. connectedness) of the set. Fig. A.lc compares the functions D{(Stz), D(pr), D(Sr=) for a numerical
simulation of a multifractal caseade process on a 128X128 point grid (mean=1), with Gaussian generator
(except for the extreme fluctuations, the intensities are log-normally distributed - see Lavallée et al. (this
volume) for more details). The dimensions were estimated using the box-counting technique described in
appendix B2. In order 10 get a large enough sample size to estimate the dimension function D(St.), the
latter was estimated from the sets Sy, xy>-S1 With AT=0.2T,

Note that as T—eo, I(St2) can —Deo >0 (this occurs for example in the "ot model”, Schertzer and
Lovejoy (1983,1985)), although in general® (especially in continuous cascades), we expect Do =0. In the
latter (more general) case D(pr) may initially increase with T, although it most eventually decrease.

) A.3. The relation between D(Pr) and area-perimeter exponents

We can now relate the areas and perimeters by eliminating R in the above equations. Using box-counting
10 estimate the Hausdorff dimensions (see appendix A), we obtain:

Nyte) = )P %)

N, p(r) . (%)D(Pl')

where N is the number of rXr boxes required to cover the set (which is of linear size R).
The areas A(r) and perimeters P(r) are given by:

Ao=Ngr2= (B)PSw) 2 a4
Proy=Npor = ()PP

eliminating R, we obtain:
Pr= ATD(PI-).D(SE) r l-ZD(‘pl-M)(Sm) (A.5)

1 Pr= ONT does however generally apply to the mono-dimensional processes (such as fractional
Brownian motion) discussed in Mandelbrot (1982).

2 The procedure of transforming f, into sets with threshold L, and measuring the dimension as a fanction of
T using box-counting, constitutes the functional box-counting technique discussed in Lovejoy et al. (1987).

3 Ses Scherizer and Lovejoy (19872, this volume), for a discussion of this point, including universality
classes of D(St2).

%

| themselves (see fig. A.2 reprod

. volume)) indicate that for multifractal fields fluctuations are

MULTIFRACTAL ANALYSIS TECHNIQUES

Po (\(I)ér A

137

(A.6)

where &1 = 2D(pr)/D(St»). When D(Sr)=2 (i.e. the exceedance sets are n i

ere & WD(Sr2). : . ot fractal), we obtain &y =
Kllnchm'lhe relgtlonshlp discussed in Mandelbrot (lQSZ).mﬂappliedtoclondareaxinLovej;gy (?9%}%
ternatively, using the value &y rather than D{py) we are in error by the ratio 2/D(S12) 2 1.
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' Fig. A2: Area-perimeter curves for 9 different LANDSAT .
(1988). Although, as expected, different scenes yield di scenes (28m resolution) replotted from Welch et al.
scaling over the entire range of 102 to (nearly) 1 kl,;z_ different slopes, thers is no evidence for a break in the

Recently, Welch et al. (1988) have used the same method
1 » Welck . ) to analyse LANDSAT data with 28m
m:mm 0 stud:l visible clond rad:ancf t:ields. Although the authors claim that two straight Lines with
o ylkmdllfemmz) L :)pes (\_vhat l'hey call "bifractal” behaviour) can be fit to their graphs (with a break at
, single straight :'I;t:ls fgg;e d‘:‘::r s;_ach scene) do excellent jobs, as readers may verify for
I 2 ed | ir fig. 8). In any case, since the latter applied their anal
single scc:ln;sd;:ere will be_smnsucal fluctuations duve to the finite sample s:zepp Funhermomys:assﬁ
theoreti about multifracals (as well as cascade simulations performed in Lavallée et al, (this

\ ; that f ract generally likely to be very large
Eﬁ;mefm individual reallzauoqs. In any case, it would be interesting (follmtari;.;-;r Gatgnﬁés::):lg.
authors to reanalyse their data to try (for each scene seperately) to statistically reject the
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hypothesis that individual straight provide good fits. For the moment, we interpret these data as giving
strong support for the scaling of cloud radiance perimeters between 102 and 10% km? for a variety of cloud
types (i.e. precisely through the range of 1km? where Cahalan (this volume) claims evidence for a break).
The above analysis shows that we should nmot be surprised by the empirical finding that
area-perimeter relations pive fairly constant exponents typically in the range 1.3gE1<1.6, since both D{pr}
and D(Sy) are likely to decrease slowly with increasing T, and hence the ratio 5 : may be expected to
remain relatively fixed (see Yano and Takeushi (this volume) and Cahalan (this volume); the latter finds a
slight increase of &y with T, yielding typical low {dim) cloud values of 1.5, and high (bright} cloud values
of 1.6). Note that this correction is not negligible; empirically, we find (Gabriel et al., 1988) that even for
very low values of T, that I(St) = 1.8 at both visible and infra red wavelengths, and may easily decrease 1o
« 1.5 for very bright regions or cold tops. These values lead to corrections of 1.11 and 1.33 respectively.
Applying these to Cahalan's typical range of & values we obtain D(pr) = 1.35 and 1.20 respectively.

A.4. Other implications of multifractals for analysis methods

The preceding sub-sections have shown that multifractal fields are generally considerably more difficult to
analyse than their monodimensional counterparts. Two other techniques that have been used to study
scaling in cloud fields are area distribution exponents and the dimensions of graphs. Both techniques must
be applied with considerable care to multifractal fields. In the former case (discussed in detail in appendix C)
the interpretation of the exponents is quite different for multi and monofractals. In the latier (appendix D),
shortcuts in performing box-counting that assume continuity of the process (which holds in many common
mounofractal processes but not generally in multifractal ones) can (and do) lead to completely erroneous
* results

Another aspect of multifractals that must be carefully considered in analysing data, is that unlike the
monodimensional case, the thresholds that correspond 1o a given fractal dimension depend directly on the
resolntion with which the basic fractal measure is averaged by the measuring device. Even if the resolution
is constant, the dimension corresponding to a given threshold will also depend on the realization of the
process (e.g. the "meteorological situation"). As argued earlier, this difference between mono and
multifractal processes is very basic; for now, we briefly discuss how these new dependencies can lead 1o
practical difficulties, including apparent breaks in the scaling symmetry.

i) Pooling dats ifferent realizations: Pooling data (e.g. in box counting, in area-perimeter graphs, or
in area histograms) is a useful way of increasing sample size to obtain better statistical estimates of the
parameters. However, it must be performed very carefully in multifractal fields, since it can "mix" fractals
with different dimensions. For example, Rhys and Waldvogel (1986) consider area-perimeter relations
obtained by pooling areas and perimeters of radar rain areas over consecutive images in time, using the same
threshold. Since the dimensions for the fixed threshold will in general vary in time, this mixes fractals with
different dimensions. If the sample was large enough, this would not be serious, since the largest
area-perimeter exponent would eventually dominate the rest. However, if the fractals have nearly the same
dimensions (as they do in their study), the convergence is extremely slow, and finite samples, will yield
either large spreads or non-linear log-log plots, that can easily (and ecroncously) be interpreted as breaks in
the scaling, These results must therefore be re-analysed before any conclusions about symmetry breaking
can be drawn.

lead to artificial symmetry breaking in yet another way. Consider taking a short-cut in estimating areas and
dimensions by fixing a threshold and degrading successively the resolution of the set which exceeds the
threshold (e.g. by box-counting), calculating pr from the set at different resolutions. This method will
work whether or not the field is multifractal, since it is first converted into a set having a well defined
dimension. Howevex, if rather than degrading the set resolution, we degrade the multifractal field itself by
simply averaging the ficld (rather than the set) over larger and larger scales, and then defining the exceedance
set with respect to the previous threshold (as in Yano and Takeuchi, this volume), the method will no
longer work. To recuperale a set with the same dimension, the threshold must be appropriately decreased to
compensate for the fact that averaging over larger scales decreases (smooths} the intense regions (the precise

| the lidar data discussed in section 5),
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amount of decrease can be quantitatively estimated by associating each threshold with singulariti i
f.ollowag section). As long as sufficiently low thresholds are uied g0 that the dimension \rari'::s':;s ;ﬂ.ﬁ;ﬁ
litde wu.h threshold (i.e. in this range of thresholds, the field is approximately mono-dimensional), this
ef_fect will not be too important, but at extreme threshold levels, where the dimension changes more rai)idly
with threshold (e.g. for the cirrus clouds in Yano and Takeuchi, this volume) this will yield systematic (but
totally artificial) breaks in the scaling (the downward curvature observed in their curves).

APPENDIX B: ESTIMATING HAUSDORFF DIMENSIONS BY BOX-COUNTING:

Box-counting techniques have been developed for some time to estimate the dimension of
> strange attractors

and olher_ fractal sets. Lovejoy et al. (1987) showed how it could be applied to multifractal fields by
transforming them into the series of sets St as indicated above,

Box counting arises as a natural method for estimating Hausdorff dimensions. This ma:

) g . y be seen

recalling tl:e definition of Hausdorff measures and dimensions. Consider a set (fractal or otherwise) I;y
Define the "Hausdorff measure of S resolution / relative to the (convex) function g" as follows:

N
Wg®)= inf ¥ gdiam(B;) ®.1)
i
all coverings B; such that diam By</

;lhzrg s:i; l(;over lhe set aT;:lm' N “ballsl:h:!} of g:ameter = diam(Bj) such that diam(B;)<l. The "inf" is over
coverings is responsible for the practical difficulties in evaluating Hausdorff
Next, we define the "Hausdorff measure of § relative to g" as: o B

ng(S) =! Lu;l Wy, g(5) (B2)

Next, taking g(t}uth, we can define the "h-dimeasional Hausdorff measure of S* i
L o i o e ure + Hh(S) . Finally, we

D(S) = inf b (Uu(S)=0) = suph (LA(S)===) ®3)
The (non-trivial and extremely general) equality between the inf and the sup (which implies a brutal

transition from O to e 45 h is decreased below D(S)), is the property that makes Hansdorff dimensi
c b \ ensions so
useful, since they can be applied to virtually any ser. The interpretation of the above property is

| sraightforward. For example, when applied 10 a planar s § (DI(5))=2), it says that the “vol S)=0
- and that the "length” (1) (S))=ee. The size of the set is then given by HD(S)(S) (which forwslandm'dms( )s):w:

yields the Lebesgue measure of S as expected) Note that some sets (such i i
¢ . } ed). as the trail of a Brownian
l;pamcle, Whld'l, yvhea embedded in a space with d=2, has D(S)=2), yields HD(s)(5)=0 even though the set
as BI(IS) infuu%e numbezr‘ of points.  These are "marginal" sets and require using
F‘F:)it (logt.)5 (Ioglogtﬁ - w1t‘h at least one of the &'s>0. These are the source of the "log corrections”
a}rechssmeumw discussed in this context. Note that Mauldin and William (1986) have shown that in a
certain ut: random fractal sets, that log-correction arise quite naturally. It is therefore perhaps not too
mngmmmmmecaseswhmmemmmnemsmaicmmmwuhw scaling is well respected (e.g.
simple bo ting yi
Bowopariis wi fog e pl x-counting yields curved log N(J) v.s. log { plots
The box-counting approximation is now relatively si | i
_ The . z I y simple o describe. Ignoring the possib of
logarithmic corrections, (i.e. taking g(t)=t|‘). and covering the set with disjoint "cubical” balls, sn:]:ti S0

ﬂlatdimu(Bi)el(i.earegnlargﬁd,dimdinglheinf),weobmin:
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Ns()
W)= Y, i = hNs@® ®4)
i=1

taking the limit /-0, and recalling that py(S) is finite and non-zero only if h=D(S), we obtain:
Ng(h) = D) as i—0 ®B5)

which yields the estimate:

' ' log N _
DS) = timis - S @9

APPENDIX C: AREA DISTRIBUTION EXPONENTS

Consider i i i i exceeding T to the set Stz.
the problem of relating medisuibuumofcmugwusmequalww C T
If D(Sy2) > lp:.l‘::i Sy will generally be made up of many contiguous subse:ls {denoted snfl_)) {?achmmm
external scale Aj for the ith region. Because of the assumed scaling, the A will generally be distributed (o
within logarithmic corrections) as:

Ne(A>]) o [T €D
where "Ne” indicates the number of subsets sy>U) whose size exceeds I. Note that since Stz O Sra.
D(&R)Astﬁﬁ)ﬁ}m 1, & subset sp with scale [ will have area:

st~ (OO 2 ©2)

Hence, eliminating { in terms of ay, we obtain:

Ni(Aragyocar BT €3

iri ' i i i . Lovejoy (1981, and
here B'y = By/D{(sy,). Empirically, By is the most mdﬂy_amesglble area exponent : ;
wlnvejoy ;nd Mam:l;)rot (1985) show empirically that for light rain rates, low :flouds_. B'r=0.75. Lr.ytvtv.ejno‘i
and Mandelbrot (1985) and Lovejoy and Schertzer (1985} also develop mmo:dm?nmonal models wi e
in the range 0.5 - 0.75. Another reference is Cahalan (this volume) who obtains B'r =0.8 for satellite clou
pmmv‘!fe now seek to relate B, D(syz) and D(Stz). To do so, note that the total number of boxes required
to cover St is

R
Nyt = B)P6) < I(f)D(s’”’)dNM ©a
T

where dNr{(A>J) o= I-BT-1d is the number density associated with Nr(A>). The above yields:

R
Ne) o 1O rI P Briy €3
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taking into account the sign of D(sy)-Br, this yiclds

N(o) o r D12 [|RDEr2!Br_ Dispa)-Br ] 6

The relative values of D(sr;) and By depends on the topological (connectedness) properties of the
process. We must now distinguish two cases depending on which is greater:
i) Br2D{spp). In this case, in the limit r—0, the r "7 T term dominates the R™“T®T term and the
number of boxes/subset is small compared 10 the total number; fragmentation dominates, and:

Ns@) oer' BT =  B=D(Sp) €n

This is the case discussed in Mandelbrot (1982) where geometric generators are used to produce fractal
sets which yield D(sy2)<DX(Srz). We therefore have D(S)=B>D(sps) = By = %H.

i) B<D(sp>); In this case, in the limit r—0, R°“™*™T dominates P°“T2"®T and the number of

boxes/fractal subset is a large fraction of the total; the number of boxes needed to cover the fragments
is negligible compared to the number needed 10 cover individual connected regions, this yields:

N =10 o Ds)=D(sw) C8)

andBrcD(s,gm.hmB' = By <1. Each contiguous region has the same dimension as the
entire set, and the fragmentation is f¢latively unimportant. This is the case relevant to multifractal
fields, and of interest in geophysical applications.

APPENDIX D: GRAPHS AND THEIR DIMENSIONS

Carter et al. (1986) considered the x-z cross-section (intersection) of the graph G of the infra red cloud
radiance as a function of telescope scanning angle (for clarity we use the notation €. f©)) = (x,y,z) since
L= (x,y) and f=z=radiance, x,y are angle variables), Denote this intersection set by Gn(xz). They then
estimate the dimension of G using box-counting 10 cover the graph of Gr(xz). However, their method
actually implicitly assumes continnity- they use additional boxes to cover not only their experimental

. poimts, but also those points on straight lines connecting the latter. Their resulting estimate of D(Gr(xz))

is very near 1 (1.16, and 1.11 depending on the wavelength used), and we may therefore suspect that it is an

. artifact of their assumption of continuity (since the connecting straight lines have dimension 1, while the
. experimental points have D<1, their method will estimate the maximum of the two). We now discuss this
| possibility in more detail.

The simplest way to relate D{Gy) to D(Syy) and D(ST) is recall that ST is the projection of Gy

| with the xy planc. The projection set (S,) of S, onto S, has dimension:

D(Sp) = min(D(S1),D(S2)) @®.1
in this case, we obtain:
D{S12) = min(IXGr),2) D2

There are now two distinct possibilities:

If the process is non-stationary, such as the {mono-dimensional, Gaussian) fractal Brownian motion

. processes used by Mandelbrot (1982) and Voss (1983) to model mountains, then the graph is continuous
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{but non-differentiable), but rarely crosses the plane f(p)=T, and D($1=)=2, and the projection relation gives
us no further information about I{Gr).

The process is stationary (as are cascade processes, and, presumably most remotely sensed fields), in
this case, we will generally have D(Sy2)<2, hence the projection relation yields:

D(Gr=D(Sr)<2 @3

In this case (which applies to the examples shown in fig. A.lab.c), GT_wll_l be discontinuous
everywhere, We ncfw consig Gn(xz) studied by Carter et al. 1986. All the preceeding results ap]_)lymw
‘Gn(xz), St2N(x2) ek, as Jong as the dimensions of all the abfwe sets are reduced by one {1fﬂI e
comesponding value becomes negative, it must be reset to zero). Since we have empirical evidence lat
generally, D(St2)<2 (see the section 2), we expect D(S12)=D(Gr), so that D(Grn(xz)) = D(Sran(aﬂ)ﬁ .
implying that Gn(xz) is discontinuous everywhere, However, Cartex et al. (198_6) assurped m'a: r?(xz:
was continuous, and effectively interpolated their experimental points witha continuous line (dm'fensm?
which is > D{(GrY(xz))), hence we expect them to obtain an as!.lmatc D=1 (the maximum of the d_lmenfsm
of the set of points on GN(xz) and the set on the line connecting them). Infieed, carefn} inspection (11 !
Carter et al. (1986) box-counting figures (N(/) v.s.]) indicate that the function 1\_T(f) = ['l (hence D=1) fits
well over most of the range of { (which was only over roughly two orders of_nmg_mmde anyway). )

This example, illustrates the dangers of approaching the data analysis with, unwarranted theoretical
preconceptions about the continuity of the process.

APPENDIX B: Generalized scale invariance and space-time transformation in rain:

ical and lal flows, it is generally far easier to obtain_ high Iempoml resoluuqn

?elm %::ap:zzne or only mims than to obtain detailed s?atial information at a given instant. :1‘ is
therefore tempting to relate time and space properties by assuming that t.h_e flow pattern is froze::h and is
simply blown past the sensors at a fixed velocity without appreciable evolu'ucm, and to directly us? e time
series information to deduce the spatial structure. This "Taylor's hypothesis of frozen‘ wrbulence” (Taylor,
1938) can often be justified because in many experimental set ups, the ﬂo.w pattern is caused by axtem?l
forcing at a well defined velocity typically much larger than the fluctuations under slludy. Ho?nevm:. in
‘geophysical systems (in particular in the atmosphere and ocean) where no extemal forcing velom'ly exists,
the hypothesis has often been justified by appeal to a meso~scale_ gap s'epar'aung large §cd? motions (:}gi
"weather") and small scale "turbulence”. If such a separation eausted..lt :mgt!t at least Jgst}fy a statistica
version of Taylor's hypothesis in which a the large scale velocity is considered stausucail_y constant
(stationary). Various statistical properties such as spatial and temporal encrgy spectra would be similar even
though no detailed transformation of a given time series to a particular spatial pattem would be possible.

i tatistical equivalence could be made.

ipf ml?:smin this pa?u‘ and in many of the references cited in the introduction, the mesn-scale'gap
is a fiction, then no large scale forcing velocity canbeappealedwinordertol:ransfr_mn from space to time,
and turbulent velocities must be used instead of amplitde vy ~ <g/13>1153 where ! s the scale of the eddy,
€1 is the enerFy flux through the eddy to smaller scales. Although <ep> is sca_le independent, due to
intermittencyl <e/13>~ 18 where § is a small correction. Rather than being scale independent, the space-
time transformation has a scale dependent velocity2 vy = iH with H=1/3+3. The two geophysically relevant
Taylor's hypotheses therefore correspond to H=0 or H=1/3+8 depending on the existence (or not) of the
) theoretical arguments mentioned above make it clear that the turbulent velocity is likely to be
relevan'f';;e for space-time transformations, and the clear differences in slope in the trace moments analyses

! These are due to multifractal effects, the exact value of will depend on the Kp(h) function for the velocity
on which value of h is relevant for rain. o ) ) o
fete .%‘gih“nmmt of the rain field will require a different 8. For simplicity, we ignore this complication here.
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(figs 4.3-4.5) rule out the constant velocity (H=0) hypothesis!, The space-time transformation we infer
from the turbulent value of H (=1/3) can be easily expressed in the formalism of Generalized Scale
Invariance. Consider (x,y,t) space, the space-time transformation can be simply expressed by statistical
invariance with respect to the following transformation: x—>x/A, y—y/&, t—->t/A1-H or using the notation
r=(x,y,0), 4=Taxn) with T)=4"C and:

100
G=[ 01 0
0 01H

we therefore obtain Trace(G)= 3-H, i.e. by measuring d or H we can determine G {assuming that there are
ro off-diagonal elements corresponding 1o rotation between space and time, and ignoring differential rotation
in the horizontal). The isotropic statistical Taylor's hypothesis? is H=1/3, dg) =8/3. If we now consider the
full (x,y,z.t) space, it has already been shown (Lovejoy et al., 1987) that dgj =2.22 for the corresponding

transformation in (x,y,z) space for radar rain data, hence, Hz=0.22, and the corresponding dg) =2.22 +2/3~
2.89.
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