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Abstract In this paper we consider a anisotropic scaling approach to understanding
rock density and surface gravity which naturally accounts for wide range variabil-
ity and anomalies at all scales. This approach is empirically justified by the growing
body of evidence that geophysical fields including topography and density are scal-
ing over wide range ranges. Theoretically it is justified since scale invariance is a
(geo)dynamical symmetry principle which is expected to hold in the absence of sym-
metry breaking mechanisms. Unfortunately to date most scaling approaches have
been self-similiar, i.e. they have assumed not only scale invariant but also isotropic
dynamics. In contrast, most nonscaling approaches recognize the anisotropy (e.g. the
strata), but implicitly assume that the latter is independent of scale. In this paper, we
argue that the dynamics are scaling but highly anisotropic i.e. with scale dependent
differential anisotropy.

By using empirical density statistics in the crust; and a statistical theory of high
Prandtl number convection in the mantle we argue that P(K, kz) ≈ (|K/ks|Hz +
|kz/ks|)−s/Hz is a reasonable model for the 3-D spectrum (K is the modulus of the
horizontal wavevector, kz a vertical wavenumber), (s, Hz) are fundamental expo-
nents which we estimate as (5.3, 3), (3,3) in the crust and mantle respectively. We
theoretically derive expressions for the corresponding surface gravity spectrum. For
scales smaller than ≈ 100 km, the anisotropic crust model of the density (with flat
top and bottom) using empirically determined vertical and horizontal density spec-
tra is sufficient to explain the (Bouger) gz spectra. However, the crust thickness is
highly variable and the crust-mantle density contrast is very large. By considering
isostatic equilibrium, and using global gravity and topography data, we show that
this thickness variability is the dominant contribution to the surface gz spectrum
over the range ≈ 100–≈ 1000 km. Using estimates of mantle properties (viscosity,
thermal conductivity, thermal expansion coefficient etc.), we show that the mantle
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Université Paris-Est, ENPC/CEREVE, 77455 Marne-la-Vallee Cedex 2, France

G.F. Bonham-Carter, Q. Cheng (eds.), Progress in Geomathematics, 151
c© Springer-Verlag Berlin Heidelberg 2008



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

152 S. Lovejoy et al.

contribution to the mean spectrum is strongest at ≈ 1000 km, and is comparable
to the variable crust thickness contribution. Overall, we produce a model which is
compatible with both the observed (horizontal and vertical) density heterogeneity
and surface gravity anomaly statistics over a range of meters to several thousand
kilometers.

Keywords Geogravity · geopotential theory · fractals · multifractals · scaling

1 Introduction

1.1 Gravity as a Probe of the Earth’s Interior: Gravity Anomalies
and Depths to Sources

The Earth’s gravity field is highly variable over a very wide range of spatial scales.
There are two approaches which have been used to understand this. The most com-
mon has been to seek one to one (deterministic) relations between the fluctuations
in surface gravity at a given scale and density anomalies at corresponding depths. In
local or regional studies, this idea is commonly used to infer the depth to the source
of gravity anomalies from the spectral peaks of surface gravity [e.g. Bullard andAU: Please provide

closing square
bracket.

Cooper (1948), Spector and Grant (1970), Maus and Dimri (1996); the methods of
wavelet analysis represent the most recent development in this type of application
(e.g. Fedi et al. (2005)). The second (neglected) approach has aimed at understand-
ing and explaining the overall scale dependence of the statistics and the relations
between the rock density and surface gravity statistics. Both approaches exploit a
basic result of potential theory which shows that the contribution to the surface
gravity at horizontal wavenumber K falls off exponentially with the depth of the
layer.

Globally, the deterministic approach has attempted to interpret the separation of
the density heterogeneities from different rheological layers – the lithosphere, aes-
thenosphere, lower mantle, and core in order to understand the relationship between
geodynamic processes and planetary gravity fields (see Bowin (2000) for a recent
review). Figure 1 shows the earth geoid up to 360th order Lemoine et al. (1996),AU: “Lemoine et al.

(1996)” is not listed in
the reference list.
Please provide.

indeed it is plausible that the breaks at scales corresponding to ≈ 3000 km and to
≈ 100−200 km can be associated with the depths of core-mantle and mantle-crust
boundaries. That the break at 100 km–200 km is indeed the reflection of the crust-
mantle boundary with the mechanism of isostatic compensation can be confirmed
by the comparison of the gravity and topography power spectra (Fig. 1). For uncom-
pensated topography, the two spectra must be parallel (as they appear to be at high
wave numbers). If the topography is completely compensated, the low wavenumber
gravity power spectrum will be attenuated depending on the depth of compensa-
tion. The exact wavenumber where the break occurs depends on the flexural rigid-
ity. The topography for wavenumbers < (200 km)−1 (see Sect. 3.5) is apparently
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Fig. 1 Comparison of the surface gravity spectrum (bottom, shifted vertically for ease of compar-
ison) with the ETOPO5 topography spectrum (middle) and continental US (top, two strips, each
512×65526 pixels long, each pixel, 90 m, also shifted vertically for clarity). Wave number units:
km−1. Red, lower left shows the (isotropic) (spherical harmonic) global surface gravity spectrum
calculated from the data discussed in Lemoine et al. 1996. The modes 1, 2 have been excluded
since they go far off-scale. The extreme high frequency (k = 360) corresponds to ≈ 100 km

fully compensated whereas for wavenumbers > (100 km)−1 − (200 km)−1, it is
not. The actual break varies locally depending on flexural rigidity. Finally, the break
at ≈ 3000 km in Fig. 1 could be a manifestation of the mantle core discontinuity.

A final note before continuing: we use the terms “crust” and “mantle” somewhat
loosely; we recognize that in many cases the terms “lithosphere” and “aestheno-
sphere” might be more technically exact.

1.2 Geophysical Scaling and Surface Gravity

The deterministic approaches have been most successful in determining characteris-
tic scales – either of rheological transitions, or of the depths of anomalies. They give
no information about – nor understanding of – the statistics as functions of scale be-
tween the break points, nor of the statistics of strong anomalies at fixed scales. In
order to understand the observed wide range variability, some scaling (scale invari-
ant) type assumptions are virtually mandatory since otherwise a (largely ad hoc)
hierarchy of individual (nonscaling) sources of variability would have to be invoked
every factor of 2 or 3 in scale.

Indeed there have been scaling models in solid earth geophysics ever since
Vennig-Meinesz (1951) suggested that the energy1 at horizontal wave number K
in the topography spectrum follows:

E(K) ≈ K−βtop (1)

1 This is the (horizontal) angle integrated spectrum not the angle averaged spectrum; see discussion
below.
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with βtop = 2. Figure 1 shows that even with modern data, Vennig-Meinesz’s spec-
trum is still an excellent approximation even down to scales of 90 m (although
βtop ≈ 2.1, see Gagnon et al. 2003, 2006). If we perform isotropic scale reduc-

tions by a factor λ such that horizontal vectors are transformed as X → λ−1X then
the corresponding wave vectors are transformed as K → λK; we see that the power
law form of E(K) is conserved (it is “scaling”); the exponent β is “scale invariant”.
Spectra of this form are therefore expected if the underlying dynamical processes are
also symmetric with respect to isotropic scaling transformations (systems symmet-
ric with respect to such isotropic scaling transformations are called “self-similar”).

The implications of the scaling of the topography for the gravity field have also
been considered for some time. Kaula (1963) noted that the spectrum of the earth’s
geoid follows a power law of the type (1) but with βgeoid ≈ 3. Since βgeoid = βg +2,
and over the range 3000–200 km, Fig. 1 shows a flat gravity spectrum (βg ≈ 0) a
value βgeoid ≈ 2 is more realistic. Kaula already noted that the power spectrum of the
gravity potential due to uncompensated surface topography should have βgeoid = 4
corresponding to a much more rapid fall-off than that observed. This reflects the fact
that the surface topography is by and large isostatically compensated.

Although studies of the scaling properties of rock density do not cover the same
range of scales as those of gravity or topography, they have also tended to sup-
port the idea that various rock properties are scaling over wide ranges. For exam-
ple, several recent (1-D) studies Leary (1997); Pilkington and Todoeschuck (1993),
Shiomi et al. (1997) and Marsan and Bean (1999) have shown the rock density in
boreholes to be scaling over the range ≈ 2 m to ≈ 1 km. The discovery of such em-
pirical scalings have encouraged and Maus and Dimri (1995, 1996) to explore the
consequences for the surface gravity implied by assuming self-similar (isotropic,
unstratified) scaling rock density fields; their basic result is βg = βρ +2 where βρ is
the exponent of the 3-D isotropic rock density spectrum.

1.3 Anisotropic Scaling, Geomagnetism, Geogravity

The assumption of isotropic rock density statistics is quite unrealistic if only because
it contradicts the obvious fact of geological stratification. This anisotropy has been
noted and quantified for the magnetic susceptibility by Pilkington and Todoeschuck
(1995), and – more extensively – for various different physical properties (including
density) by Leary (1997, 2003) who compared the spectra of horizontal and ver-
tical boreholes. These authors (and recently Tchiguirinskaia (2002) for hydraulicAU: “Tchigirinskaya

(2001)” has been
changed to
“Tchiguirinskaia
(2002)” as per
reference list. Is this
ok?

conductivity in both the vertical and horizontal) made the important point that the
scaling is obeyed in both horizontal and vertical directions, but with different expo-
nents in the different directions. In Lovejoy and Schertzer (2007), we review these
and other scaling properties of intensive quantities such as rock density, magnetic
susceptibility etc.

If the statistics in the horizontal and vertical directions are both scaling but differ-
ent, then the overall system will be symmetric with respect to a scale change more
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general than isotropic reductions. The general formalism for handling scaling trans-
formations is Generalized Scale Invariance (GSI; Schertzer and Lovejoy (1985)). AU: “Schertzer and

Lovejoy (1985)”
whether it is “1985a”
“1985b”? In all
occurrence.

GSI shows that scale invariance is a (nonclassical) dynamical symmetry principle;
as usual with symmetries; they are expected to hold in the absence of symmetry
breaking mechanisms. A generic consequence of wide range GSI scaling are the ex-
istence of fractal structures with multifractal statistics; these features have now been
reported in many areas of geophysics (including the topography analyzed in Fig. 1,
Gagnon et al. (2003, 2006) and scaling has been proposed as a unifying paradigm for
geodynamics Schertzer and Lovejoy (1991), Lovejoy and Schertzer (1998) . These AU: “Schertzer and

Lovejoy (1991)” is
not listed in the
reference list. Please
provide.

AU: “Lovejoy and
Schertzer (1998)” is
not listed in the ref-
erence list. Please
provide.

papers also argued that the development of scaling models in geophysics has been
held back because of the all too frequent reduction of scaling to the isotropic special
case of self-similarity.

In a pair of papers [Lovejoy et al. (2001), Pecknold et al. (2001)], we explicitly
proposed that the earth’s magnetization (M) respects such an anisotropic scaling
symmetry. Using potential theory and with the help of multifractal simulations of
M and the associated surface magnetic field (B) we explored the consequences for
the B field anomalies and the relationships between the M and B statistics. Not
only were we able to renconcile stratified, anisotropic M scaling with the surface
B scaling, we also showed that the anisotropy leads to a qualitatively new scaling
regime which could explain the intermediate scale (100–2000 km scale) surface B
statistics.

Our aim in this paper is to extend these results to gravity which – also being a
potential field – has several similarities. For example, as with magnetism, an im-
portant success of anisotropic scaling models is evident at scales smaller than that
of the crust thickness. This is because the isotropic (self-similar) relation between
gravity and rock density spectral scaling exponents (βg = βρ +2) is untenable since
regional Bouger gravity surveys have βg ≈ 5 (see Sect. 3.2.2) whereas empirically,
βρ ≈ 1 (see Sect. 3.2.1). However, since we show theoretically that2 βg = βρ+1+Hz

and the rock spectra indicate the anisotropy exponent Hz ≈ 3, we will see that the
small scale gravity exponent is correctly predicted by the theory and the rock density
exponents.

Beyond these regional scales, the magnetism and gravity problems have
important differences. For example, below the Curie depth (which is above the
crust-mantle boundary), the magnetization vanishes whereas on the contrary, the
corresponding gravity field has a source in the convective mantle. Although our in-
formation on the mantle density fluctuations is quite limited and indirect, a recent
anisotropic scaling theory of high Prandtl number convection (Sect. 3.3) predicts
that over the range ≈ 20–≈ 3000 km the density should indeed respect anisotropic
scaling (also with Hz = 3); we calculate the corresponding surface gravity statistics
and compare them to the global gravity spectra. An additional difference between
magnetism and gravity is that M does not appear to have a sharp discontinuity at
the Curie depth so that the horizontal variation in the cut-off depth does not seem
to generate a strong surface B anomaly. On the contrary, the density contrast at

2 This formula is valid if βρ is the horizontal density exponent and Hz > 1; see Sect. 3.
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the crust-mantle boundary is large and is best modeled as a discontinuity across a
(multi) fractal surface. We do not consider scales larger than ≈ 3000 km, so that
we ignore core and possible core-mantle boundary contributions. Although several
of the present calculations are similar to those in the magnetism problem, by mak-
ing a small change in our scale function ansatz, we are able to obtain many exact
results and therefore can make precise comparisons between the gravity theoreti-
cally predicted from the density observations/models, and both global and regional
surface gravity surveys. Although a full statistical characterization of the fields re-
quires statistics of all orders for relative simplicity, we here limit ourselves to spectra
(which are 2nd order). While for quasi Gaussian (monofractal) models these spec-
tral results fully characterize the statistics, for multifractal models they only give a
partial characterization.

This paper is structured as follows. In Sect. 2 we review the basic theory of
anisotropic scaling and relevant results of potential theory and derive the connec-
tions between the second order rock density and surface gravity statistics (in both
real and fourier space). In Sect. 3, we apply the results to the crust, we develop a
scaling model of mantle convection and apply the result to the mantle and estimate
the contribution to surface gravity of a scaling mantle-crust interface/topography
model. In Sect. 4 we conclude.

2 Symmetries and the Relation Between the Density
and Gravity Fields

2.1 The Standard Density – Gravity Relations

In order to show how anisotropic scaling of the rock density field (ρ(r)) can lead to
a scale break in the surface gravity (gz) or gravitational potential (φ), first recall the
solution of the Poisson equation:

g = −∇φ ; φ(r) = G
∫

ρ(r′)
1

|r− r′|dr′ (2)

where G is the universal gravitational constant. The convolution in the above can be
regarded as a fractional integration of order 1, hence if the problem (including the
surface boundary conditions) were isotropic, the relative orders of singularity of the
two fields (ρ,φ) would be simply shifted by one, leading to simple relations between
the multifractal statistics of the two fields. However, the boundary conditions are
clearly not isotropic, the classical assumption being that the rock is distributed over
a half-volume bounded at z = 0. This amounts to ignoring the topography3 and
sphericity of the earth.

With this half-volume boundary condition, we obtain (e.g. Naidu (1968), Blakely
(1995)) the following particularly simple expression for the horizontal fourier

3 or, to assuming that its effects can be removed/“corrected”.



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

Anisotropic Scaling Models of Rock Density and the Earth’s Surface Gravity Field 157

transform of the surface gravity:

g̃z(K) = 2πG

∞∫

0

ρ̃(K,z)e−zKdz; z ≥ 0 (3)

the horizontal wavevector is K = (kx,ky), K2 = |K|2 = k2
x + k2

y , and ρ̃(K,z) is the
horizontal fourier transform of the density at depth z. We use the following conven-
tion for the D-dimensional fourier transform pair f̃ (k), f (x):

f̃ (k) =
∞∫

−∞

f (x)e−ik·xdDx; f (x) =
1

(2π)D

∞∫

−∞

f̃ (x)eik·xdDk (4)

and also the convention that z > 0 downward. Equation (3) shows that the con-
tribution of deep layers are exponentially attenuated. Defining the three-vector
k = (K,kz), a more convenient equivalent expression is obtained in terms of the
3-D Fourier transforms ρ̃(K,kz):

g̃z(K) = 2πG

∞∫

−∞

ρ̃(K,kz)
dkz

−K + ikz
(5)

If we now assume statistical translational invariance, then the various fourier
modes are statistically independent (Eq. 7) and the horizontal spectral density is
easily obtained by multiplying the above by the complex conjugate and ensemble
averaging:

Pg(K) = 2(2πG)2

∞∫

0

Pρ(K,kz)dkz

(K2 + k2
z )

(6)

(the additional factor of 2 comes from the contributions for kz < 0), and Pρ, Pγ
are the spectral densities of ρ,gz and (from statistical translational invariance) we
have used:

〈ρ̃(k)ρ̃(k′)〉 = Pρ(k)δ (k + k′); 〈g̃z(k)g̃z(k′)〉 = Pg(k)δ (k + k′) (7)

Note that here and below, the symbol “<>” denotes ensemble (statistical)
averaging.

If we now assume horizontal statistical isotropy, then the horizontal spectral den-
sity is a function only of K, and we define the isotropic energy spectrum (E(K)) by:

E(K) = 2πKPg(K); K = |K| (8)

The isotropic spectrum E is usually used in the turbulence literature; in isotropic
systems it has the advantage that (contrary to P), it is independent of the dimension
of space (e.g. 1-D cross-sections will have the same E as for the full three dimen-
sional system; this is not true for P).
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2.2 Anisotropic Scaling

Up until the 1980s, scaling was restricted to isotropic systems with unique fractal
dimensions. Since then two generalizations have been important for geophysical
applications. First, the treatment of statistics of all orders (not only second order):
multiscaling/multifractality, second the extension to anisotropic differentially strat-
ified, and/or rotating systems: Generalized Scale Invariance (GSI, Schertzer and
Lovejoy 1985). In the following, for simplicity we pursue the second order statistics.
Our results will be valid for both anisotropic fractal and multifractal rock density
models although in the latter, they will only provide a rather limited characteriza-
tion of the statistics.

In order to understand GSI it is helpful to introduce the dimensionless “scale
function” ‖(X ,z)‖ which is the physically relevant notion of scale. The scale func-
tion satisfies the functional scale equation:

‖Tλ(X ,z)‖ = λ−1‖(X ,z)‖ (9)

where Tλ is the scale changing operator:

Tλ = λ−G (10)

and G is the generator. The scale function defines the physically relevant notion of
size, scale, it is analogous to a norm, but need not respect the triangle inequality4.

In the special case where the statistics of the anisotropy is independent of location
(but not on scale), G is a matrix (linear GSI) and there exists conjugate fourier space
scale functions which satisfy:

‖T T
λ (K,z)‖ = λ‖(K,z)‖ (11)

where the “T ” indicates the transpose (note the scale function in Eq. (10) is not
generally the same as the real space counterpart which satisfies Eq. (9).

If we have pure (scaling) stratification in the z direction, we may take the gener-
ator to be diagonal (this leads to self-affine statistics):

G = GT =

⎛

⎝
1 0 0
0 1 0
0 0 Hz

⎞

⎠ (12)

(the first two rows/columns refer to kx, ky, the last to kz), and an anisotropic spectral
density may be written:

Pρ(K,kz) = P0‖(K,kz)‖−s (13)

where s is the spectral density exponent and P0 is a constant determining the ampli-
tude of the spectrum; if ρ is in Kg m−3, then P0 is in Kg2 m−3. A convenient, but
not unique, choice of ‖(K,kz)‖ is:

4 It need only define a series of decreasing balls: i.e. if Bλ = TλB1 then λ′ > λ⇒ Bλ ⊂ Bλ′ .
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‖(K,kz)‖ =

((
K
ks

)Hz

+
kz

ks

)1/Hz

(14)

where we have introduced a “sphero-wave number” ks at corresponding sphero-
scale ls = 2π/ks (note that K, ks, kz > 0). At this scale, Pρ(ks,0,0) = Pρ(0,ks,0) =
Pρ(0,0,ks), i.e. Pρ is roughly constant over a sphere, since ‖(ks,0,0)‖ = ‖(0,ks,0)‖
= ‖(0,0,ks)‖ = 1 horizontal and vertical fluctuations have the same variance. In-
deed, here and in the following, any scale function satisfying linear GSI (i.e. includ-
ing those in which G has off-diagonal elements, as long as its eigenvalues are real5)
will give essentially the same qualitative results (including for the gravity spectrum)
as those discussed here.

Using the sphero-scale as a reference scale, dimensional analysis gives:

P0 = Cρ2
s l3

s = Cρ2
s (2π)3k−3

s (15)

where ρ2
s is the density variance at the sphero-scale and C is a dimensionless con-

stant which depends on the exact definition of ρs and of the unit ball.

2.3 Second Order Horizontal and Vertical Density
Statistics; the Crust

The above choice of Pρ (Eqs. 16, 17) determines the second order horizontal and
vertical density statistics. The horizontal spectrum is:

Eρ(K) = 2πK

∞∫

0

Pρ(K,kz)dkz = Aρxρ2
s k−1

s

(
K
ks

)−βx

;

βx = (s−Hz −1); (if s > Hz) (16)

(if s < Hz, then there is a high wavenumber divergence; if we prevent the diver-
gence by using a finite high frequency cut-off, then βx = −1). Here and below, the
dimensionless constants will be denoted by A (spectral), B (real space), C (other)
and can when necessary be found by comparing the exact results in Tables 1, 2
with the corresponding formulae in the text (see appendices 1, 2 respectively). The
corresponding vertical spectrum is:

Eρ(kz) = 2π
∞∫

0

Pρ(K,kz)KdK = Aρzρ2
s k−1

s

(
kz

ks

)−βz

;

βz = (s−2)/Hz ; (s > 2) (17)

5 The case of complex eigenvalues involves an infinite number of rotations of structures as the
scale is varied from 0 to ∞; it is probably not relevant to the vertical stratification problem. See
Pecknold et al. (2001) for applications in surface magnetic anomaly mapping.
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Table 1 A comparison of various density and gravity formulae assuming s > Hz > 1 (applicable
to the crust), see Appendix 1

Crust Statistics

Spectra Structure Functions

Density,
horizontal

Eρ (K) =

Cc2(2π)4 Hz
s−Hz

ρ2
s k−1

s

(
K
ks

)1+Hz−s
; s > Hz

Sρ (ΔX ,0) = ρ2
s

(
ΔX
ls

)s−Hz−2

Density,
vertical

Eρ (kz) =
Cc(2π)4Γ

(
2

Hz

)
Γ
(

s−2
Hz

)

HzΓ
(

s
Hz

) ρ2
s k−1

s

(
kz
ks

)(2−s)/Hz
;

s > 2

Sρ (0,0,Δz) =

Bρzρ2
s

(
Δz
ls

)
(

s−2
Hz

)
−1

; s−2 > Hz

Column
integrated
density
fluctuation

EIρ (K) =

2Cc(2π)4ρ2
s k−3

s

(
ks
kc

)1+s/Hz
(

K
ks

)
; K <<

ks

(
kc
ks

)1/Hz

SIρ (∞) =

BIρ (2π)2ρ2
s k−2

s

(
kc
ks

)−
(

s−2
Hz

)
−1

EIρ (K) =

2Cc(2π)4ρ2
s k−3

s
Hz+s

Hz

(
ks
kc

)(
K
ks

)1−s
; K >>

ks

(
kc
ks

)1/Hz

Surface
Gravity

Eg(K) = Agchρ2
s k−3

s G2
(

K
ks

)−s
; K >>

ks; Hz > 1

Sg(ΔX) ≈ Agch

8π2 G2ρ2
s

ΔX2

s−3

Eg(K) = Agcl<ρ2
s k−3

s G2
(

K
ks

)−s/Hz
s <

Hz; Kks

Eg(K) = Agcl>ρ2
s k−3

s G2
(

K
ks

)−s−1+Hz
s >

Hz; Kks

Geoid Egeoid(K) = Eg(K)
g2

z K2 Sgeoid(ΔX) ≈ Agch

8π2
G2

g2
z
ρ2

s
ΔX2

s−1 ;

ΔX < ls

BIρ = Cc

4πΓ
(

2
Hz

)
Γ
(

s−2
Hz

)

(s−2+Hz)Γ
(

s
Hz

) ; Agch = Cc
(2π)7

2
; Agcl< = Cc(2π)7

Cos
(

π
2

(
1− s

Hz

))

Cos
(

π
2

(
1− 2s

Hz

)) ; s < Hz

Agcl> = Cc2(2π)6 Hz

s−Hz
; s > Hz

(if s < 2, then there is a high wave number divergence; using a finite high frequency
cut-off, we obtain βz = 0).

Although ks is the sphero-wave number as defined by the spectrum Pρ, we
note that:

Eρ(kz = ks)
Eρ(K = ks)

=
Γ
(

2
Hz

)
Γ
(

s−2
Hz

)
(s−Hz)

2H2
z Γ
(

s
Hz

) (18)
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Table 2 A comparison of various formulae for s = Hz with an exponential high wave number
cut-off at ks and ρs as defined such that Rρm(0,0,0) = ρ2

s corresponding to the mantle convection
model, see Appendix 2. For the mantle model, take Hz = 3

Mantle Statistics

Spectra Structure Functions

Density,
horizontal

Eρ (K) ≈
2Cm(2π)4ρ2

s k−2
s K log

(
ks
K

)Hz
; K << ks

Rρ (ΔX ,0) ≈
2HzCmρ2

s

(
ls
ΔX

)2
; Δx >> ls

Density,
vertical

Eρz(kz) = Cm(2π)4
(

2−Hz
H2

z

)
Γ
(

2
Hz

−1
)
×

Γ
(

1− 2
Hz

)
ρ2

s k−1
s

(
kz
ks

)2/Hz−1

Rρz(0,0,Δz) =

Bρzρ2
s

(
ls
Δz

)2/Hz
; Δz >> ls

Column
integrated
density
fluctuation

EIρ (K) =

2Cm(2π)4ρ2
s k−3

s

(
ks
K

)2 (
ks
km

−1
)

K > ks

(
km
ks

)1/3

Cm(2π)4ρ2
s k−4

s K

((
ks
km

)2
−1

)

K < ks

(
km
ks

)1/3

Surface
Gravity

Eg(K) ≈ 4Cm(2π)6G2ρ2
s

k2
s K

log
(

ks
K

)
; K << ks Sg(ΔX ,0) ≈

Eg(K) = 2Cm(2π)6G2ksρ2
s K−4; K >> ks 2Cm

(
(2π)2G k−1

s ρs

(
log
(

ksΔX
2

)

downward continuation distance zc: + γE
))2

ΔX >> ls
Egd(K) = Eg(K)e−2Kzc

Geoid Egeoid(K) = Eg(K)
g2

z K2 Sgeoid(ΔX ,0) ≈
Cm

(
4π2Gρsk−1

s ΔX log ks
km

)2

ΔX >> ls

Hz = 3;Cm =
1

(2π)2Γ
(

2
3

) ;Bρz = Cm2(2π)3−2/Hz H−1
z cos

(
π
Hz

)

Γ
(

1− 2
Hz

)

Γ
(

2
Hz

)2

which is not exactly unity (for the empirical crust exponents, s = 5.3, Hz = 3, we
obtain a ratio 0.18; Γ is the usual gamma function). This fact points to the inherent
inaccuracy of estimates of the sphero-scale obtained from 1-D spectra E (rather
than from the spectral density P). We also note that here, the elliptical dimension
characterizing the rate of increase in volumes of typical structures6 is del = 2+Hz.
When Hz = 1, we obtain the isotropic value del = 3, with the corresponding isotropic
relation between exponents: βz = βx = s−2.

It will also be convenient to express the statistics in real space via the correlation
function (R) and structure functions (S). For statistically horizontally homogeneous
systems these are defined by:

R(Δx) = 〈 f (x) f (x+Δx)〉 (19)

S(Δx) = 〈( f (x)− f (x+Δx))2〉 = 2(R(0)−R(Δx))

6 This type of spectrum was first proposed in the atmosphere Schertzer and Lovejoy (1985a) where
the values βx ≈ 5/3, βz ≈ 11/5 (hence del = 23/9 = 2.555 . . .) were derived from dimensional
analysis and confirmed by observation.
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From the Wiener-Khintchin theorem we have:

R(Δx) =
1

(2π)D

∞∫

−∞

P(k)eik·ΔxdDk; S(Δx) =
2

(2π)D

∞∫

−∞

P(k)(1− eik·Δx)dDk (20)

For the models discussed here which are anisotropic in the vertical plane, but
isotropic in the horizontal, we have:

R(0,0,Δz) =
1
π

∞∫

0

Cos(kzΔz)E(kz)dkz;

S(0,0,Δz) =
2
π

∞∫

0

(1−Cos(kzΔz))E(kz)dkz (21a)

R(ΔX ,0) =
1

(2π)2

∞∫

0

E(K)J0(KΔX)dK;

S(ΔX ,0) = 2

∞∫

0

(1− J0(KΔX))E(K)dK (21b)

where ΔX = (Δx, Δy) is a horizontal vector; ΔX = |ΔX | is the 2-D modulus and J0

is the 0th order Bessel function.
Equations (16, 17) have been derived by assuming that the scaling of P is re-

spected for all K, kz; see Appendix 1 for the effect of finite cut-offs (necessary in
particular to account for the finite crust thickness). The constants Aρx, Aρz have been
chosen so that ρ2

s is the (horizontal) sphero-scale density fluctuation variance (struc-
ture function):

Sρ(ΔX ,0) = ρ2
s

(
ΔX
ls

)βx−1

s > Hz

Sρ(0,0,Δz) = Bρzρ2
s

(
Δz
ls

)βz−1

; s > Hz +2

(22)

i.e. by definition of ρs, Sρ(ls,0,0) = ρ2
s . Note that rather than defining the sphero-

scale via the fourier space ks using ls = 2π/ks, one could define the sphero-scale in
real space (lrs) using for example Sρ(lrs,0,0) = Sρ(0, lrs,0) = Sρ(0,0, lrs). Since Bρz

is of order unity, the difference will generally not be large. However, if theβ’s are close
enough to one (as is apparently the case in the crust), the difference can be large, see
Appendix 1. Here and throughout, we use the fourier space definition ls = 2π/ks.
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2.4 Second Order Horizontal and Vertical Density
Statistics; the Mantle

The mantle model is discussed in Sect. 3.3, the spectrum is of the same general
form as that discussed for the crust, hence it is appropriate to discuss the corre-
sponding gravity formulae here. Although the mantle and the crust formulae share
the same basic anisotropic scaling form, there are nevertheless significant differ-
ences. For example, for the mantle s = Hz(= 3) whereas for the crust, s > Hz. This
is significant since when s = Hz there must be a high wavenumber cut-off at the
sphero-scale to assure convergence of the horizontal spectra, i.e. formula 16 is only
valid for K, kz < ks. Physically, the convection model upon which the density scal-
ing law is based breaks down for these scales, the corresponding Peclet number is
less than one, convection becomes ineffective. The necessity of a large wavenumber
cut-off poses a technical problem: what is the most realistic/and or mathematically
tractable cut-off? A related problem is the definition of the sphero-scale fluctua-
tion variance ρ2

s . The model choices made in dealing with these issues are con-
sidered in Appendix 2; they will alter the constants in the following by a factor
of order unity (comparison of various models indicates that the factors may be as
large as 4).

In the special case s = Hz, we have:

Eρm(K) ≈ Aρmxρ2
s k−2

s K log

(
ks

K

)Hz

K << ks (23a)

Eρm(kz) ≈ Aρmzρ2
s k−1

s

(
kz

ks

)2/Hz−1

; kz << ks (23b)

Similarly, in real space:

Rρm(ΔX ,0) ≈ Bρmxρ2
s

(
ls
ΔX

)2

Δx >> ls (24a)

Rρm(0,0,Δz) = Bρmzρ2
s

(
ls
Δz

)2/Hz

Δz >> ls (24b)

(for the mantle, put Hz = 3 in the above). The correlation (rather than structure)
function is used since the corresponding spectrum is an increasing function of hori-
zontal wave number up to the cut-off so that R rather than S is a pure power law (see
Eq. 20 for the relation between them). Following the discussion in Appendix 2, the
optimum choice is the exponential cut-off model with the definition of ρs such that
Rρm(0,0,0) = ρ2

s ; these choices were used in determining the theoretical constants
in Table 2.
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2.5 Symmetries, Symmetry Breaking and the Gravity Statistics

We have seen that the gravitational potential φ is the convolution denoted “∗” of
density ρ with the Green’s function |r|−1:

φ ∝ ρ∗ 1
|r| (25)

(Eq. 2; |r| is the usual norm/distance) however, the Green’s function is symmetric
with respect to scale changes with isotropic generator G = 1:

1

|λ−Gr|
= λ

1
|r| ; G =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ (26)

The result is that φ has broken symmetry. A direct calculation of the horizontal
spectrum of the vertical component of gravity (with low frequency cut-off; kc) gives:

Eg(K) = 2(2π)3G2K

∞∫

0

Pρ(K,kz)dkz

|(K,kz)|2
= 2(2π)3G2K

∞∫

0

dkz

|(K,kz)|2‖(K,kz)‖s

= 2(2π)3G2K

∞∫

0

dkz

(K2 + k2
z )[(K/ks)Hz +(kz/ks)]s/Hz

(27)

We now consider in turn the two cases s > Hz, s = Hz.
i)s > Hz:
For the crust, (s > Hz, no high frequency cut-off), this yields:

Eg(K) = Agchρ2
s k−3

s G2
(

K
ks

)−βh

K >> ks

Eg(K) = Agclρ2
s k−3

s G2
(

K
ks

)−βl

K << ks (28)

i.e. there are two distinct regimes with high and low wavenumber exponents βh, β1
given by:

βl = s+1−Hz; s > Hz

βl = s/Hz; Hz > s > 1 Hz > 1

βh = s (29a)

This result shows that the incompatibility of the anisotropic scaling of the density
with the isotropic scaling of the gravitational Green’s function produces a break at
the sphero-scale.
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The corresponding formulae for Hz < 1 are:

βl = s−2;

βh = s−3+Hz; s > Hz Hz < 1

βh = 2/Hz −2 s < Hz (29b)

From Eqs. (33a), b we see that if s > Hz, then for any Hz : βh − βl = Hz − 1.
However, we shall see that the empirical rock density spectra constrain s > 1 and
from Fig. 1 we see that all of the transitions have βh − βl > 1 so that anisotropic
scaling with Hz < 1 cannot explain them. In addition, we will see that the empirical
evidence is fairly clear that βx > βz for various rock properties including density,
implying Hz > 1 (see also the survey Lovejoy and Schertzer, 2007). Final evidence
that Hz > 1 is that βh ≈ 5 so that Hz < 1 would imply (Eq. 39b) that s ≈ 8, βx, βz > 6
which are much too large. In what follows, we shall concentrate on the parameter
range Hz > 1 (in particular, the values s = 5.3, Hz = 3 give a reasonable fit to the
high wavenumber rock and gravity spectra). Note that for s > Hz > 1, we have
βl = βρx +2 which provides a strong constraint on models since the mantle regime
((≈ 3000 km)−1 < k < (≈ 200 km)−1), has βg ≈ 0, and βρx ≈ 1. This rules out
a simple linear GSI model for the crust/mantle transition. Finally, when Hz = 1
(isotropy), we recover the standard result βl = βh = s = βρx +2 = βρz +2.
ii) Hz = s:

For the mantle (s = Hz = 3), we obtain:

Eg(K) ≈ Agmx,l
G2ρ2

s

k2
s K

log

(
ks

K

)

; K << ks (30a)

Eg(K) = Agmx,hG2ksρ2
s K−4; K >> ks (30b)

Note that this formula ignores the downward continuation factor e−2Kzc neces-
sary to take into account the fact that the mantle is at a depth zc below the crust. The
corresponding real space results are given in Table 2 and in Appendix 2.

It is also of interest to calculate the corresponding formulae for the geoid. The
relation of the geoid and gravity spectra is:

Egeoid(K) =
Eg(K)
g2

z K2 (31)

Corresponding formulae are given in Tables 1, 2 and the Appendices 1, 2.
We have already noted that breaks in the gravity spectra introduced by the

anisotropy of the rock density scaling, cannot in themselves explain the shape of
the gravity spectrum (Fig. 1) if only because the latter has two breaks. Since the
effect of low wave number cut-off is not trivial; and an understanding is helpful in
evaluating this and other (more realistic) models discussed in Sect. 3, we give details
of the effect of a cut-off in Appendix 1.
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3 Scaling Models of the Density of the Crust, Mantle,
Topography and Interface

3.1 Discussion

In modeling the density of the crust-mantle system, we will need hypotheses about
the topography, the crust-mantle spatial correlations the topography and the na-
ture of their interface; the latter being important because of the large (typically
≈ 400 Kgm−3) crust-mantle density contrast. Because of isostatic equilibrium the
crust-mantle interface and the topography contributions are intimately connected;
(see Sect. 3.4). The spatial correlations between the crust and the mantle are most
simply dealt with by considering them to be statistically independent systems. Phys-
ically, the most unrealistic consequence of this neglect of mantle “roots” of crustal
structures is that it implies a strong statistical discontinuity in structure at the in-
terface; however since the interface will be treated as a (statistically independent)
fractal discontinuity surface, this lack of statistical crust-mantle continuity may be
less significant.

This model leads to the following equation (c.f. Eq. 3) for the surface Fourier
transform:

g̃z(K) =
zc∫

0

ρ̃c(K,z)e−zKdz+ e−zcK

zm−zc∫

0

ρ̃m(K,z)e−zKdz;z ≥ 0 (32)

where crust and mantle parts are indicated with indices “c”, “m” and the crustal
region is down to depth zc, and the mantle between zc and zm. With the assumption
of statistical independence of the crust and mantle (but also of fourier components,
Eq. 7), we obtain

Pg(K) =
〈
|g̃z|2

〉
≈

∞∫

kc

[Pc(K,kz)+ e−2KzcPm(K,kz)]
K2 + k2

z
dkz

+e−2Kzc

kc∫

km

Pm(K,kz)
K2 + k2

z
dkz (33)

Where the factor e−Kzc takes into account the fact that the mantle layer starts at
a depth zc, not at z = 0 and where we have more convenient step-function fourier
space cut-offs: kc ≈ 1/|zc|,km ≈ 1/|zm − zc| ≈ 1/|zm| (i.e. take zm >> zc). Equa-
tion (33) shows how the crust and mantle contributions to the surface gravity may
be combined.
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3.2 The Crust

3.2.1 Empirical Estimates of Model Parameters

Unfortunately, very few data exist on spectral exponents for the rock density.
Leary, 1997, has probably the most extensive analyses with both horizontal and
vertical spectra from similar regions. Due to strong (presumably multifractal) inter-
mittency/ variability, (see Marsan and Bean (1999), Pecknold et al. (2001) individual
boreholes have a fair amount of spectral variability (recall that the spectrum is an en-
semble averaged quantity; the scaling is almost surely violated on every individual
realization).

Before proceeding, it is useful to invert the relations (16–17) to obtain:

Hz =
(βx −1)
(βz −1)

(34)

which is a convenient formula for estimating Hz from spectra.
The difficulty in estimating Hz (and the sphero-scale) is that Leary’s results give

roughly βz ≈ 1, βx ≈ 1; his precise analysis of 45 spectra (30 vertical, 15 horizon-
tal) yields βz ≈ 1.1± 0.12,βx ≈ 1.34± 0.12, yielding Hz ≈ 3 (the nearest integer).
A comparable value (Hz ≈ 2−3) was obtained for the magnetization (M) (Lovejoy
et al. (2001), Pecknold et al. (2001)); in obvious notation, if HzM = Hzρ and sM = sρ,
then a statistical version of Poisson’s relation may hold7. The spectrum from the
much longer KTB borehole yields: βz ≈ 1.2 Lovejoy and Schertzer (2007); simi-
larly Shiomi et al. (1997) obtains βz ≈ 1.1−1.3 for sedimentary, βz ≈ 1.3−1.6 for AU: “Shiomi (1997)”

has been changed to
“Shiomi et al. (1997)”
as per reference list in
all occurrence. Is this
ok?

volcanic rock. Finally, we should note that Leary also gives nearly identical values
for the exponents for gamma decay and sound velocity; this supports the idea that
the value of Hz (and hence del) may be the same for different physical properties
and hence supports the notion that it may be a fundamental characteristic of the
geological stratification.

The poor estimates of Hz (due to their small horizontal/vertical difference) leads
to great uncertainty in estimating the sphero-scale. It can be roughly estimated using
Leary’s spectra (which are over the range ≈ 1− 103 m), by extrapolating the hori-
zontal and vertical spectra to their crossing point (although he gives exponents for
45 spectra, he only shows a single horizontal and a single vertical density spec-
trum). For the above exponents, this gives a crude estimate of the sphero-scale
to be8 ≈ 100 km, but this value is very sensitive to the exact values of βx, βz.
In order to improve the reliability of this estimate and to use Shiomi’s (vertical

7 Poisson’s relation is between magnetic and pseudo-gravity potentials and should not be confused
with Poisson’s equation. More precisely, if M has a constant direction and is everywhere propor-
tional to ρ then both Poisson’s relation and HzM = Hzρ and sM = sρ follow. However, the latter does
not necessarily imply the former.
8 For comparison for gamma emission, we obtain ≈ 1 m, whereas for the velocity we find ≈ 1 km,
but these are all quite inaccurate. In addition, for magnetic susceptibility, Lovejoy et al. 2001
estimate a sphero-scale at ≈ 104 −105 km.
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only) density spectra, we first graphically estimated the prefactors in the formulae
Eρ(kz) ≈ E0zk−1.1

z , Eρ(K) ≈ E0xK−1.3; these are shown in the table below where
the units are rad m−1 for k, Kg2m−5 for E (Shiomi obtained an exponent 1.27, but
this is not too different from the 1 value from Leary). Shiomi normalized his den-
sities by an unknown mean; from the graph of his borehole data, we estimated a
mean density of ρ0 = 2.5×103 Kgm−3, and used his graph to estimate the E0ρz in
Table 3.

The second step in obtaining a reliable estimate of ρs, ks, was to use the DNAG
Bouger gravity data (Fig. 2). These anomalies were from 8 continental regions
in North America; the compilations were made for the Decade of North Ameri-
can Geology (DNAG); resolution ≈ 5 km, 1024× 1024 pixels. We note that the
high wave number regime, down to 10−4 rad m−1 or so is fairly linear on a log-
log plot with slope s ≈ 5.3 as predicted by the high frequency gravity (approxi-

mately given by Eg(K) = Chρ2
s k−3

s G2
(

K
ks

)−s)
. In this power law regime, we es-

timate Eg(K) ≈ E0gK−5.3 with E0g = 3.0× 10−25. Using this high wave number
gravity formula, leads to ρ2

s k2.3
s = 2.0 × 10−7 which can then be used as a con-

straint in the density spectrum (which also depends on ks, ρs, see Eqs. 16, 17).
Unfortunately, due to the low wavenumber cut-off, these theoretical formulae are
not too precise. However, numerics (assuming the crust thickness in the range
40–160 km, see Fig. 2 for the limited dependence on kc) give the solutions in Table 3
for ks, ρs the overall “best” values being ρs = 215 Kgm−3, ls = 2π/ks = 250 km,
lsρs = 5.4×107 Kgm−2. The fact that ks < kc (the crust cut-off) means that ρs cannot
be interpreted as the actual sphero-scale variance; it is simply a dimensional parame-
ter. In passing, we may note that the assumption of self-similar rock scaling (Hz = 1)
is untenable since the DNAG estimate s ≈ 5 for the surface gravity exponent would
imply βx = βz = 5−2 = 3 which is much to steep to be compatible with the bore-
hole data; indeed, the difference is so large that we can probably safely rule out
the use of self-similar models in explaining the high wave number surface gravity
variability.

Table 3 A comparison of various parameters estimated for the density field using the constraint
from the DNAG gravity that Eg(K = 10−4rad m−1) = 5×10−4 m3 (and crust thickness = 80 km,
but the result is not too sensitive to this, see Fig. 2)

E0 ks (rad m−1) ls (km) ρs (Kgm−3) ρsls (Kgm−2)

Shiomi (1995)∗ (vertical) 1.17×104 10−4.5 250 233 5.8×107

Leary 1997 (vertical) 1.92×104 10−4.7 310 300 9.5×107

Leary (horizontal) 2.3×103 10−4.3 125 113 1.4×107

Overall 10−4.5 250 215 5.4×107

∗(For the Shiomi relative density fluctuations, we assumed a mean density ρ0 = 2.5×103 Kg m−3).
+These values assume E = E0k−β with β = βx = 1.3 (horizontal), β = βz = 1.1 (vertical), and
units of k in rad m−1, units of E in Kg2 m−5.
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Fig. 2 A comparison of the crust model thickness 10, 20, 40, 80, 160 km with the DNAG spectrum
(from North American continental Bouger data over an area ≈ 5000 km across). The parameters
ρs = 215 Kgm−3, ls = 250 km have been adjust to fit the function at K = 10−4 rad m−1, 80 km
thick, and the Shiomi and Leary borehole density data as above. The latter curve agrees well with
the gravity data up to log10K ≈−4.5 i.e. up to about 200 km. The model low wave number slope is
+1, the high wave number slope −s = −βh = −s = −5.3 (the intermediate wave number regime
discussed in the text is not visible since kc > ks)

3.2.2 Crust Density and Gravity Spectra, Structure Functions (<300 km)

Figure 2 shows that with these parameters the measured horizontal and vertical rock
density statistics up to scales of a kilometer can be extrapolated up to vertical scales
comparable to the crust thickness and horizontal scales of at least the order of sev-
eral hundred kilometers without contradicting the surface gravity spectra. We ar-
gue in Sect. 5 that the breakdown at the larger horizontal scales is due to the large
contribution from the fractal crust-mantle boundary which dominates for scales >
100–300 km rather than because of a break in the horizontal scaling of the rock den-
sities. Indeed, since the crust contribution to surface gravity falls off at low wave
numbers with βl = −1 (see Fig. 2), the crust contribution to the spectrum rapidly
becomes smaller than the contribution from the crust-mantle interface or mantle.
From the gravity spectrum alone, we cannot rule out the possibility that the hori-
zontal crust density scaling continues up to planetary scales.

Using these parameters, we can numerically calculate the crust statistics; these
are shown in Fig. 3a–d.

3.3 The Mantle

3.3.1 Theoretical Statistics Far from Boundaries

The basic starting point is the consideration of very large (most often infinite)
Prandtl number convection (Pr = ν/κ = viscosity/diffusivity; typical values for
the mantle yield 1024). This implies that inertial terms are totally negligible (e.g.
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Fig. 3a Horizontal density
spectrum with crust thickness
2π/kc = 10, 20, 40, 80,
160 km, ls = 2.5×105m,
ρs = 215 Kgm−3. The
maximum is proportional to
(kc/ks)(1−s/Hz); see
Appendix 1

(a)

Fig. 3b Horizontal density
structure function Sρ(Δx)
showing the variance of the
density fluctuations as a
function of separation
distance Δx. The curves are
for crust thickness 10, 20
(thick), 40 km,
ls = 2.5×105m,
ρs = 250 Kgm−3. The
maximum is
≈ (kc/ks)(1+(2−s)/Hz), see
Appendix 1: at 80 km it is
about (160 Kg m−3)2

(b)

Fig. 3c The surface gravity
structure function
corresponding to 3b for
ls = 2.5×105m,
ρs = 215 Kgm−3 and
lithosphere thickness 10, 20,
40, 80, 160 km.
Sg = 10−10 m2s−4

corresponds to 1(mGal)2

(c)

Fig. 3d The horizontal
gravity spectra corresponding
to ls = 2.5×105m,
ρs = 215 Kgm−3 and
lithosphere thickness 10, 20,
40, 80, 160 km

(d)
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the Reynolds number Re = vL/ν ≈ 10−19 for typical values L = 3 × 106 m,
v = 10−8m/s, ν = 3× 1017 m2s−1). The standard approach to mantle convection
concentrates on either a) the boundary layer where most of the temperature drop
occurs; one nondimensionalizes the equations with typical external lengths, temper-
ature gradients etc. or b) the linearized nondimensional equations which are used to
estimate the critical Rayleigh number (Ra) for the onset of convection (the latter is
typically estimated at 1000–2000, however the Ra for the entire Mantle is probably
> 106 so that chaotic behaviour (as found in high resolution numerical models) is
expected.

Lovejoy et al. (2005) describe a turbulence-type approach which is expected to
be valid far from boundaries within high Prandtl number convection with quasi-
constant heat flux. The basic argument is that if we are interested in the statistics in
the interior mantle region far from boundaries, then the type of statistics should not
depend on the outer boundaries; our approach is analogous to that used to obtain
the Kolmogorov spectrum in fully developed turbulence (the latter is also expected
to be insensitive to the nature of the forcing and boundaries). The most satisfying
way to derive the Mantle convection scaling laws is to start from the basic con-
vection equations of for the fluctuations around the conductive solutions (see e.g.
Busse (1989)):

∇ ·u = 0 incompressibility (35)

ν−1
(
∂u
∂ t

+u ·∇u

)

= − ∇p
νρ0

+∇2u−gαν−1T velocity equation

(Boussinesq approx.) (37)

∂T
∂ t

+u ·∇T = −∇ ·H
cpρ0

+
J

cpρ0
+

vzQ
κcpρ0

Temperature equation (36)

H = −κρ0cp∇T +Q′z Heat diffusion equation (38)

T , p are respectively the temperature and pressure differences with respect to
a reference temperature and pressure (the solutions of the static equations), H is
the heat flux, J is a volume heat source. We now ignore J with respect to the heat
originating in the core, and take a typical value of (H)z = Q, the vertical heat flux
imposed by the bottom heating, top cooling. The vz term in the temperature equation
arises because of the use of fluctuating T ; as does the Q′z term in the heat diffusion
equation (ẑ is the vertical unit vector).

Consider first the velocity Eqs. (35, 36). Due to the very low Reynold’s number
we take Du/Dt ≈ 0 (“D/Dt” is the advective derivative). In addition, as usual the role
of the pressure term is simply to maintain the incompressibility condition. Therefore

Eq. (36) depends only on the dimensionless combination
gα
ν

.

Considering the temperature equation, various arguments show that with the as-
sumption about the imposed vertical heat flux boundary condition, that the main
variations are in the z direction, i.e.:
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vz
∂T
∂ z

≈ 1
cpρ0

∂ (H)z

∂ z
(39)

Integrating over a layer and using a typical value of (H)z = Q, this implies that
only the combination of variables Q

cpρ0
enters into the problem. Finally, we can note

that the heat conductivity equation only contains the dimensionless combination
κcpρ0.

We thus see that the dynamics depend on the three combinations: gα
ν , Q

cpρ0
,κcpρ0;

since there are also three fundamental dimensions (temperature, distance, time), we
obtain the unique dimensional quantities:

ls ≈
(
ρ0cpνκ2

gαQ

)1/4

(40)

τs ≈
(

cpρ0ν
Qgα

)1/2

Ts ≈
(

Q3ν
gαρ3

0 c3
pκ2

)1/4

From these, we may derive a characteristic density and velocity:

ρs = ρ0αTs ≈
(

α3ρ0Q3ν
gc3

pκ2

)1/4

(41)

vs = ls/τs

The significance of these numbers can be seen by considering the fluctuation
Peclet number Pe = lsvs

κ for fluctuations at scale ls, velocity vs. This dimensionless
group characterizes the typical ratio of the dynamic heat transport terms to the heat
diffusion terms. Using the above dimensional quantities, we obtain:

Pe =
lsvs

κ
= 1 (42)

i.e. for scales smaller than ls, the heat transport is dominated by conduction, con-
vection can be neglected, ls is therefore the inner scale of the convection regime. We
have used the subscripts “s” in anticipation of the fact that the inner scale is also a
sphero-scale (see below).

Before continuing, we can note that using standard empirical estimates for the
various parameters, we obtain quite reasonable values for ls, vs, ρs. In the final col-

umn, we give the combination ρsls =
(
αρ0Qν

gcp

)1/2

since according to Eq. (30a)

(ignoring log corrections) this is the quantity that determines the mantle contribu-
tion to the surface gravity:
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To obtain the behaviour of the statistics, we must perform a more detailed anal-
ysis of the equations. This may be done by considering the horizontal and vertical
extent of convective plumes. In particular, it is possible to obtain two fundamental
empirical laws relating the horizontal and vertical extent of laboratory generated
plumes (C. Jaupard private communication). If these laws are applied to an ensem-
ble of plumes, the following anisotropic scaling results:

ΔT (Δx) = Ts

(
Δx
ls

)−1

ΔT (Δz) = Ts

(
Δz
ls

)−1/3

Δv(Δx) = vs

(
Δx
ls

)1

Δv(Δz) = vs

(
Δz
ls

)1/3

(43)

the density fluctuations may be obtained by multiplying the temperature equations
by αρ0. these equations justify the interpretation of ls as the sphero-scale of the
convection. Comparing this with Eq. (24) we see that s = Hz = 3. Physically, the
decrease of temperature differences for points increasingly seperated points (the
negative exponents) seems reasonable since it reflects the ability of the convection
to better uniformize the temperatures over larger distances.

3.3.2 Mantle Parameters: Density, Gravity, Spectra, Structure
Functions (> 100 km)

We may see that Eq. (43) predict reasonable typical external velocities, temper-
atures. Taking the following values from the table Ts = 375 K, ρs = 30 Kgm−3

and ls = 20 km, vs = 2 mm/yr, and defining λ as the scale ratio λ = L
ls

where
L ≈ 3000 km is the thickness of the mantle and ls = 20 km, we obtain λ = 150,
so that the typical temperature, velocity, density horizontal and vertical fluctuations
with Δx = Δz = 3000 km are:

ΔT (Δx) = Tsλ−1 ≈ 2.5K; ΔT (Δz) = Tsλ−1/3 ≈ 70K

Δv(Δx) = vsλ≈ 45cm/yr; Δv(Δz) = vsλ1/3 ≈ 1.5cm/yr

Δρ(Δx) = ρsλ−1 ≈ 0.5K; Δρ(Δz) = ρsλ−1/3 ≈ 6K

(44)

This shows that at large enough scales, the free convection zone far from bound-
aries is indeed nearly isothermal. The typical vertical velocity horizontal shear of
45 cm/yr is also a rough estimate of the horizontal advection velocity at the top. Fi-
nally, we can consider the Rayleigh number (Ra) which must be high for convection.
We obtain:

Ra =
gαΔTΔz3

νκ
=
(
Δz
ls

)8/3

(45)

Using the largest scale Δz = 3000 km, ls = 20 km, we obtain Ra ≈ 106 which is
comparable to but a little smaller than other estimates (see e.g. the review in Jarvis
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and Pelletier (1989) where values 7× 106–6× 107 are suggested depending on the
exact specification of the boundary conditions).

We can now use these values to calculate the second order surface gravity statis-
tics; the main additional assumptions that are needed concern the details of the high
wave number convection cut-off (these details are discussed in Appendix 2 and im-
ply uncertainties of a factor of four or so). All the following mantle calculations
use an exponential cut-off at the sphero-scale defined in real space at ls = 20 km
as the value for which R(ls,0,0) = ρ2

s . The upper bounds of the mantle are consid-
ered to be flat, lying directly underneath the crust (only the mantle contribution is
shown); downward continuation to this depth is used; see Fig. 5a,b,c,d for the effectAU: Please provide

Figures 5c and 5d. of varying depths to the top of the mantle. An additional assumption affecting the
low wave number behaviour is necessary at the lower bounds of the mantle. Since
there is additional variability in the core, putting a drastic truncation at the wave
number corresponding to the bottom of the mantle km would underestimate the true
variability; hence a cutoff corresponding to 6000 km rather than 3000 km was used.
As seen in Fig. 6, this difference is only noticeable at the lowest wave numbers.

(a)

Fig. 5a Mantle gravity spectrum the curves correspond to downward continuations of 10, 20, 40,
80, 160 km (right to left), ls = 20 km, ρs = 30 Kgm−3. Mantle thickness 6000 km so as to partially
account for the core

(b)

Fig. 5b Mantle gravity structure, ls = 20 km, ρs = 30 Kg m−3, the curves correspond to with
downward continuations of 10, 20, 40, 80, 160 km (top to bottom)
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Fig. 6 Global and DNAG gravity (the bottom, top empirical curves respectively), the thin theo-
retical curves are for the optimum estimates ρsls = 6× 105; the thick continuous curves are the
corresponding curves for double this: ρsls = 1.2× 106. In each case, the upper curve is for man-
tle thickness 6000 km (to avoid an artificial drastic low wave number truncation), the lower for
3000 km. All four model curves assume for a downward continuation of 80 km

The surface gravity field provides one of few ways of empirically testing the
model, we therefore compared the theoretical predictions with both the global and
DNAG spectra (Fig. 6). With the optimum parameters (Table 4), the figure shows
that the contribution of the mantle to the surface gravity spectrum is barely dis-
cernable. However, in the next section we see that out to about log10 K ≈−5.7 (i.e.
3000 km) that the surface gravity can be explained quite adequately by a fractal
mantle-crust density discontinuity, so that this result is not surprising. Indeed, had
the model predicted an effect larger even for a factor of only 4 or so – then the
absence of a clear signature would have been difficult to explain. We should note
that these conclusions are for ensemble averaged effects only; we may expect local
regions to have somewhat larger mantle contributions to surface gravity, in these
regions, a mantle gravity signature may be visible.

3.4 Topography and the Crust/Mantle Interface Regime
(≈≈≈ 300–3000 KM)

Up until now, we have considered the earth’s surface as well as the mantle-crust
boundary to be flat. However, Fig. 1 showed clearly that the topography is on the
contrary scaling up to planetary scales, in addition processes of isostatic equilibrium
imply that the variations in high wave number surface topography are associated
with particularly deep “roots” (mantle-crust boundary depths). This suggests that
we can use the observed surface topography as a statistical surrogate for the overall



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

176 S. Lovejoy et al.

Ta
bl

e
4

T
he

m
ea

n
of

th
e

fo
ur

es
tim

at
es

of
ρ s

l s
is

6
×

10
5

K
g

m
−

2
;t

he
re

su
lt

th
at

w
e

us
e

be
lo

w
(w

e
al

so
to

ok
l s

=
20

km
,ρ

s
=

30
K

g
m

−
3
,b

ut
as

lo
ng

as
l s

is
sm

al
le

no
ug

h,
on

ly
th

e
pr

od
uc

ti
s

im
po

rt
an

ta
tl

ow
fr

eq
ue

nc
ie

s

α
ρ 0

κ
c p

Q
ν

l s
ν s

T s
ρ s

ρ s
l s

Q
ua

nt
ity

ex
pa

ns
io

n
co

ef
f.

de
ns

ity
th

er
m

al
co

nd
.

he
at

ca
pa

ci
ty

th
er

m
al

flu
x

ki
ne

m
at

ic
vi

sc
os

ity
sp

he
ro

sc
al

e
ty

pi
ca

l
ve

rt
ic

al
ve

lo
ci

ty
l s

ty
pi

ca
l

te
m

p.
flu

ct
.

ty
pi

ca
l

de
ns

ity
flu

ct
.

pr
od

uc
t

U
ni

ts
K
−

1
K

gm
−

3
m

2
s−

1
m

2
s−

2
K
−

1
K

gs
−

3
m

2
s−

1
km

m
m

/y
r

K
K

gm
−

3
K

gm
−

2

P
oi

ri
er

19
91

3
×

10
−

5
4
×

10
3

10
−

6
10

3
8
×

10
−

2
3
×

10
17

15
.0

2.
1

30
0

36
5.

4
×

10
5

Ja
rv

is
,

P
el

lt
ie

r
(1

98
9)

(u
pp

er
)

2
×

10
−

5
3.

7
×

10
3

1.
5
×

10
−

6
1.

26
×

10
3

0.
09

9
2.

7
×

10
17

19
.5

2.
4

27
6

20
.5

4.
0
×

10
5

Ja
rv

is
,

P
el

lt
ie

r
(1

98
9)

lo
w

er
)

1.
4
×

10
−

5
4.

7
×

10
3

2.
5
×

10
−

6
1.

26
×

10
3

0.
09

9
4.

3
×

10
17

32
.9

2.
3

21
9

14
.4

4.
7
×

10
5

O
ve

ra
ll

2
×

10
−

5
4
×

10
3

1.
5
×

10
−

6
1.

2
×

10
3

0.
09

3.
1
×

10
17

24
2

34
0

26
6
×

10
5



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

Anisotropic Scaling Models of Rock Density and the Earth’s Surface Gravity Field 177

crust thickness if we assume that on average, the two are related by a numerical
factor χ . The following derivation corresponds thus to the Airy model of isostatic
equilibrium.

In order to determine the implications of varying crust thickness for the surface
gravity, consider a crust with thickness varying as h(R) where R = (x,y) is a surface
position vector. This thickness takes into account the entire thickness of the crust
(including the topography), except that all the corresponding mass is considered to
reside in a column of uniform density ρ(R′,z), and the top of the column is z =
0. The typical crust/mantle density contrast Δρm = ρm − ρc is about 400 Kgm−3

(= 3300− 2900). This uniform density approximation should not be too bad for
scales comparable to or larger than the thickness.

If we assume that the “roots” of the topography are χ times larger, then we have:

h′(R) = χht(R) (46)

where ht is the topography. Using this model (see Appendix 4), we obtain:

Eg(K) ≈ G2Δρ2
mh2

0χ2Eht (K)K2; K < 1/H (47)

i.e. in this range, Eht (K) ∝ Egeoid(K) (see Eq. 35).
We can test out the implications of the above by comparing Eg with K2Eht . If

the latter is multiplied by the factor 2.1× 1017 G2 we obtain the excellent agree-
ment indicated below over the range 300–3000 km. If h0 = 100 km, this implies
χ = 11 which seems reasonable (see Fig. 7). We therefore conclude that such a
fractal crust-mantle discontinuity surface can reasonably account for the surface
gravity field all the way up to several thousand kilometers in scale.

Fig. 7 Above: comparison of the global gravity spectrum (magenta), with that simulated from
the global topography (blue) using the parameter Δρ2

mh2
0χ2 = 2.1 × 1017Kg m−2. Putting in

Δρm4×102Kg m−3, h0 = 100 km, we obtain χ = 11. The global gravity and that simulated from
the topography agree over the range of 300–3000 km
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3.5 Buoyancy Forces

One of the interesting properties of scaling models is the very long range of the
implied correlations. In particular, fluctuations of column-integrated densities can
be much larger than one would expect from classical (non scaling, Markov process
type) statistical models. Horizontal variations in column integrated density will give
rise to buoyancy forces; if these are large enough they could play a significant dy-
namical role. In Appendix 3, we also obtain an analytic approximation to the maxi-
mum variance of the difference in column integrated densities. Using the empirical
values of the constants (with zc = 80 km), we estimate that the maximum standard
deviation is the equivalent of about 100 m of rock (this occurs is for distances of
about Δx = 170 km). The corresponding numerically determined spectra and struc-
ture functions are shown in Figs. 4a,b. This is substantially smaller than the observed
topographic variations, and is not likely to be an important effect. However, we see
that the similar calculation for the mantle will give a much larger effect because of
the much greater mantle thickness, in this case we estimate the maximum buoyancy
force to be the equivalent of ≈ 1.5 km of rock. Since extremes may be several times
larger (especially since due to the likely multifractal nature of the density, we expect
long or fat-tailed probability distributions), this may imply a direct role for mantle
convection in orogenesis. Indeed, particularly large fluctuations – perhaps several
times this value – could explain volcanic “hot spots”.

Fig. 4

AU: Please provide
Figures 4a,b and
check the citation
order. 4 Conclusions

The recently published high resolution spectrum of the earth’s geoid shows two
breaks in the scaling at distances of roughly 3000 km and 100–200 km. The first
clue to modeling the corresponding surface gravity field is to note that the contri-
bution to the spectrum at horizontal wave number K falls off exponentially with
the depth of the source. These breaks are therefore naturally associated with fun-
damental changes in the earth’s internal structure: i.e. to the thicknesses of the
crust and mantle. While this classical explanation is valid as far as it goes, it
can do no more than explain the characteristic scales of the breaks. A second
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clue to modeling the geoid is to note the ubiquity of the horizontal and verti-
cal scaling of geophysical fields including the properties of the rocks (e.g. den-
sity, magnetization, radioactivity, seismic velocity). This suggests the use of scaling
models; for scales smaller than tens of kilometers in the crust, this approach has
been adopted by several researchers (e.g. Maus and Dimri 1995; Dimri, 2005) and
would follow if over wide ranges, the nonlinear dynamical processes responsible
for the variability had no characteristic scale; they were scale invariant or “scal-
ing”. The use of scaling models has the great advantage of automatically gener-
ating “red-noise” type scaling regimes similar to that observed in boreholes for
example. In addition, scaling processes have long range correlations, huge non-
classical fluctuations, they display potentially realistic anomalies at all scales. The
first models of this type were isotropic, “self-similar”. However, as we showed
in Sect. 2.3, the high variability (slow spectral fall-off, β ≈ 1) in borehole rock
spectra and the corresponding low variability (rapid spectral fall-off, βh ≈ 5) of
the small scale (< 100 km) surface gravity are not compatible with self-similar
(isotropic) models of rock density. A final flaw of the self-similar models is that
they are not compatible with the observed horizontal/vertical stratification of the
rocks.

Following the approach used in Lovejoy et al. (2001), Pecknold et al. (2001),
Lovejoy and Schertzer (2007) we argue that while scaling is indeed a necessary
ingredient in realistic models it must be anisotropic. Using a simple analytical
model of the scaling spectrum, the first part of this paper (with various technical
appendices) works out the consequences for second order statistics of the surface
gravity field. In addition to the inner and outer breaks associated with any physi-
cal scaling regime, there is an additional source of scale breaking due to two in-
compatible symmetries: that of the isotropic gravitational Green’s function (r−2

law for gravity) and the anisotropic rock density statistics. This introduces a scale
break at the “sphero-scale” (ls) where the density anomalies are roughly isotropic
(“roundish”).

We apply such anisotropic scaling models to both crust and mantle density fields.
First, using (limited) borehole density data (from horizontal and vertical boreholes),
combined with continental (Bouger) gravity survey spectra, we estimate the funda-
mental exponents for the crust as Hz ≈ 3, s ≈ 5.3 and the sphero scale at ls ≈ 250 km
with the corresponding density fluctuations ≈ 215 Kg m−3. Since Hz > 1 at scales
smaller than ls, the rocks will be increasingly stratified. This model can thus read-
ily explain both the horizontal and vertical density statistics and the surface gravity
anomalies up to 100–300 km.

When then considered the contributions to surface gravity coming from the man-
tle (important at larger scales). For this purpose we developed a theoretical model
of rock density variations in the mantle. This model was based primarily on dimen-
sional analysis of the equations of convection at high Prandtl and Rayleigh numbers,
and predicts Hz = s = 3 and ρs = 30 Kg m−3, ls = 20 km. The mantle contribution to
the (mean) surface gravity spectrum predicted by this model was of the same order,
but somewhat smaller than the observed surface gravity spectrum at about 1000 km
scales.
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The final source of surface gravity that we consider arises from the large crust-
mantle density contrast and the topography. Using a simple model combined with
the ETPO5 global topography data (at 5’ of arc), as a surrogate for the crust thick-
ness (corresponding to an assumption of Airy isostacy), we were able to quantita-
tively account for the surface gravity statistics over the range 300–3000 km.

The overall combined density/gravity model advocated here (see Table 5 for a
summary, see Lovejoy and Schertzer 2005 for corresponding multifractal simula-
tions) thus involves separate anisotropic scaling regimes for the mantle and crust
separated by a fractal density discontinuity and seems capable of explaining the
surface gravity statistics from scale of at least meters out to about 3000 km (where
core/mantle boundary and core contributions are important). Since the mantle con-
tribution to surface gravity was found to be smaller than that due to the fractal crust-
mantle boundary, the overall model involved four internal parameters (Hz, s, ls, zc),
and one additional external parameter (the crust/topography thickness ratio χ , see
Table 5). Since the model predicts the second order statistical behaviour of the den-
sity field in both horizontal and vertical directions, as well as the gravity spectrum,
it is still fairly parsimonious. Although this study was deliberately confined to sec-
ond order (spectral) statistics; the full scaling will likely show the density and the
gravity to be multifractals (see Pecknold et al. 2001). They may enable us to make
realistic multifractal models of the density and gravity.

Table 5 The various exponents and values used here. The mantle values are purely theoretical
whereas the crust values are purely empirical, mostly being obtained from Leary (1997) and Shiomi
et al. (1997) density data with a single DNAG (Bouger) gravity constraint

Hz s ls ρ
s

ρ
s
ls

Mantle (from theory) 3 3 20 km 30 Kgm−3 6×105 Kgm−2

Crust (from Leary and Shiomi data) 3 5.3 215 km 250 Kgm−3 5.4×107 Kgm−2

Acknowledgments We especially thank J. C. Mareschal for numerous discussion and for support
at various poionts in the project. We would also like to thank C. Jaupard, W. Peltier, M. Pilkington,
J. Arkani-Hamed and J. Toedeschuk for helpful discussions. This research was performed only for
scientific purposes, it was unfunded.

Appendix 1: Details of the Crust Density Formulae

1.1 The Basic Scaling of the Crust Density: Infinite Crust
Thickness Results

For Hz �= s, the horizontal spectrum is:
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Eρ(K) = 2πP0K ·2
ko∫

kc

dkz
((

K
ks

)Hz
+ kz

ks

)s/Hz

= −4πP0K
Hz

s−Hz
ks

((
K
ks

)Hz

+
kz

ks

)−s/Hz+1
∣
∣
∣
∣
∣
∣

ko

kc

(48)

where kc, ko are the inner and outer crust scales (there is a factor of 2 for the negative
kz). Taking kc = 0, ko = ∞, we have:

Eρ(K) = Cc2(2π)4 Hz

s−Hz
ρ2

s k−1
s

(
K
ks

)1+Hz−s

s > Hz (49)

i.e. βx = s−Hz −1 (the subscript “c” is for “crust”). Similarly, for the vertical spec-
trum:

Eρ(kz) = 2π
∞∫

0

KdK
((

K
ks

)Hz
+
(

kz
ks

))s/Hz
(50a)

Eρ(kz) =
Cc(2π)4Γ

(
2

Hz

)
Γ
(

s−2
Hz

)

HzΓ
(

s
Hz

) ρ2
s k−1

s

(
kz

ks

)(2−s)/Hz

; s > 2 (50b)

i.e. βz = (s−2)/Hz. We can calculate the (2-D) horizontal structure function using:

S(ΔX ,0) =
2

(2π)2

∞∫

0

(1− J0(KΔX))E(K)dK (51)

and the (1-D) vertical structure function with:

S(0,0,Δz) =
2
π

∞∫

0

(1−Cos(kzΔz))E(kz)dkz (52)

(there is an extra factor of 2 from the integration from −∞ to 0). Using ls = 2π
ks

we
obtain:

Sρ(ΔX ,0) = ρ2
s

(
ΔX
ls

)s−Hz−2

s > Hz +2 (53)

(i.e. Sρ(ΔX ,0) ∝ ΔXβx−1). If Cc is chosen to be equal to:

Cc =
πHz−s(s−Hz)Γ

(
s−Hz

2

)

8Hz

(
−Γ
(

1+ Hz−s
2

)) (54)
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then Sρ(ls,0,0) = ρ2
s i.e. ρ2

s is the sphero-scale fluctuation variance. Since there is a
low wave number divergence, this is the only natural choice of reference scale for
defining ρs. Putting s = 5.3, Hz = 3, we obtain Cc = 8.66×10−4. With this choice
for Cc in Eq. (54), we obtain the following for the vertical structure function:

Sρ(0,0,Δz) = Bρzρ2
s

(
ksΔz
2π

)
(

s−2
Hz

)
−1

= Bρzρ2
s

(
Δz
ls

)
(

s−2
Hz

)
−1

; s−2 > Hz (55)

with the constant Bρz given by:

Bρz = Cc(2π)2+
(

s−2
Hz

)Γ
(

2
Hz

)
Γ
(

s−2
Hz

)
Γ
(

s−2
Hz

+1
)

sin
(

π
2

(
s−2
Hz

))

HzΓ
(

s
Hz

) (56)

(i.e. Sρ(0,0,Δz) ∝ Δzβz−1). Putting s = 5.3, Hz = 3, we obtain Bρz = 0.124. The
fact that this dimensionless constant is not unity reflects the fact that the real space
and Fourier space sphero-scales are not identical. Indeed, if we define the real space
sphero-scale lrs as the scale at which the vertical and horizontal structure functions
are equal, (S(lrs,0,0) = S(0, lrs,0) = S(0,0, lrs)) then we obtain:

lsr

ls
= B

1
βx−βz
ρz (57)

which with the above values i.e. βx = 1.3, βz = 1.1 yields a ratio 2.96× 10−5. Us-
ing ls = 250 km, this predicts lsr ≈ 1 m, but this value is so sensitive to the small
difference βx–βz that it should not be taken too seriously. In addition, this estimate
does not take into account the finite crust thickness which will affect lrs as deter-
mined by the structure functions as defined here (but will not affect ls). However the
smallness of the difference does indicate that direct (real space) measurements of lsr

(from rock outcrops for example) are thus likely to be highly variable.

1.2 The Effect of Finite Crust Thickness on Density
and Gravity Statistics

The finite thickness of the lithosphere is important so that we must consider the
case kc �= 0 (the results will be insensitive to the high wave number cut-off which
we therefore put at ∞). For the horizontal density spectrum, from Eq. (48), we have:

Eρ(K) = 4πP0
Hz

s−Hz
ksK

((
K
ks

)Hz

+
kc

ks

)−s/Hz+1

s > Hz (58)
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With respect to the infinite lithosphere behaviour, we see that there is a new
Eρ(K) ≈ K regime for K < ks(kc/ks)1/Hz.

For the corresponding horizontal structure function, there is no simple analytic
expression, however, for the total variance:

Rρ(0,0,0) = 〈ρ2〉 =
∞∫

0

Eρ(K)dK =
∞∫

kc

Eρ(kz)dkz

= 2Cc(2π)4ρ2
s

(
kc

ks

)1+ 2−s
Hz Γ

(
2

Hz

)
Γ
(

s−2
Hz

−1
)

HzΓ
(

s
Hz

−1
) (59)

This expression diverges as kc− > 0 (explaining why we did not take ρs to be
defined as the total variance). This determines the maximum of the density structure
function.

The corresponding gravity spectrum is:

Pg(K) = (2πG)22

ko∫

ki

Pρ(K,kz)
dkz

K2 + k2
z

= 2(2πG)2 P0c

K
(Is,Hz(K,ko)− Is,Hz(K,ki)) (60)

where, for s �= Hz:

Is,Hz(K,kz) =
(

Hz

s−Hz

)

2F1Im

[
‖(K,kz)‖Hz−s

‖(K,−iK)‖Hz
2F1

((

1− s
Hz

)

,1,

(

2− s
Hz

)

,
‖(K,kz)‖Hz

‖(K,−iK)‖Hz

)]

2F1(a,b,c,z) =
Γ(c)

Γ(b)Γ(c−b)

1∫

0

tb−1(1− t)c−b−1(1− tz)−adt (61)

(the K−1 is used in the definition of I so as to make the latter dimensionless)
where 2F1 is the hypergeopmetric function with integral representation indicated.
For the case ko = ∞, and large K, we obtain the simple result independent of Hz, as
long as Hz > 1:

Is,Hz(K,∞) ≈ π
2

(
K
ks

)−s

; K >> ks

Is,Hz(K,0) ≈ O

((
K
ks

)1−s−Hz

logK

)

; K >> ks (62)

Hence for any s > 0, Hz > 1 the low kz contribution is negligible, so that:
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Eg(K) = Chρ2
s k−3

s G2
(

K
ks

)−s

K >> ks (63)

with the dimensionless constant Ch, given by:

Ch =
Cc

2
(2π)7 (64)

Using s = 5.3, Hz = 3, we obtain Ch = 167.
Using this formula to estimate the structure function of the surface gravity and

geoid, integrating in the horizontal from high frequencies down to ks, we obtain:

Sg(ΔX ,0) ≈ Ch

8π2 G2ρ2
s k−2

s
(ΔXks)2

s−3
; ΔXks < 1

Sgeoid(ΔX ,0) ≈ Ch

8π2

G2

g2
z
ρ2

s k−2
s

(ΔXks)2

s−1
; ΔXks < 1 (65)

In the case of gravity, the structure function saturates at distances a little larger
than Δx = ls; for the geoid it changes to another power law (see numerics).

Also, for the low frequency regime, we obtain (to leading order):

Is,Hz(K,∞) ≈ π
Cos
(

π
2

(
1− s

Hz

))

Cos
(

π
2

(
1− 2s

Hz

))
(

K
ks

)−s/Hz

; K << ks; (66)

whereas:

Is,Hz(K,0) ≈− Hz

s−Hz

(
K
ks

)−s−1+Hz

; K << ks (67)

hence the contribution from large kz dominates for s < Hz, while for s > Hz > 1, the
small kz contribution dominates, overall, we obtain for the energy spectrum:

Eg(K) = Clρ2
s k−3

s G2
(

K
ks

)−s/Hz
s < Hz

K << ks

Eg(K) = Clρ2
s k−3

s G2
(

K
ks

)−s−1+Hz
s > Hz

(68)

with the dimensionless constant Cl , given by:

Cl = Cc(2π)7
Cos
(

π
2

(
1− s

Hz

))

Cos
(

π
2

(
1− 2s

Hz

)) s < Hz

Cl = 2Cc(2π)6 Hz

s−Hz
s > Hz (69)

Using s = 5.3, Hz = 3, we obtain Cl = 140. Hence for the parameters Hz > s, we
obtain:
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Eρ(K)
Eg(K)

=
Hz

2π3(s−Hz)G2 k2
s

(
K
ks

)1+Hz

; K >> ks

Eρ(K)
Eg(K)

=
K2

(2π)2G2 ; K << ks (70)

For the case Hz = s = 3, see below. This shows clearly that with the exception
of a minor numerical factor Hz, that for Hz > 1, the stratification does not affect the
low wave number regime, while on the contrary, it totally determines the high wave
number behaviour.

In the case of the surface gravity, the finite cut-off leads to a third regime as out-
lined in Lovejoy et al. 2001 for the aeromagnetic case. This can be seen by defining
the variable z:

z =
‖(K,kc)‖Hz

‖(K,−iK)‖Hz
(71)

we then have for kc > ks, have three regimes:

z ≈ 1 K >> ks

(
kc

ks

)1/Hz

z ≈ kc

kc

(
K
ks

)−Hz

ks

(
kc

ks

)1/Hz

> K > ks

z ≈ ikc

kc

(
K
ks

)−1

ks < K (72)

However using the estimate kc/ks ≈ 3 (ks = 2π/250 km, kc = 2π/80 km) we
find that the middle regime (which has k−(s−1) behaviour; see Lovejoy et al. (2001))
holds over a mere factor of 31/3 and is thus is too limited in range to be noticeable.

Appendix 2: Details of the Mantle Density Statistics

2.1 The High Wavenumber Cut-Off

Contrary to the crust case with s > Hz, for the mantle, the convection model gives
s = Hz = 3 which implies high wave number divergences. However, the sphero-scale
plays the role of high wave number cut-off, with the result that many of the statistics
are somewhat sensitive to the exact high wave number details. Given a model for
the cut-off, a related problem is to find the most physically appropriate definition of
the sphero-scale. In this appendix, we discuss both of these issues. The question of
the cut-off will be illustrated by comparing two simple models.

1) Wavenumber truncation:

If we introduce a drastic cut-off in Fourier space at kz = ks, then we obtain the
following horizontal density spectrum:
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Eρ(K) = 2πP0K ·2
ks∫

0

dkz
(

K
ks

)3
+ kz

ks

= 2Cm(2π)4ρ2
s k−2

s K log

(

1+
(

ks

K

)3
)

(73)

(the factor of 2 is from the integration over negative wave numbers) thus:

Eρ(K) ≈ 2Cm(2π)4ρ2
s k−2

s K log

(
ks

K

)3

; K << ks (74)

the above is the (log corrected) βx = −1 behaviour of the mantle convection theory.
We can now calculate the total variance of the density fluctuations:

〈ρ2〉 = R(0,0,0) =
1

(2π)2

ks∫

0

Eρ(K)dK = 2Cmρ2
s (2π)2

√
3
π
6

(75)

The drawback of this drastic Fourier space cut-off is that it is physically unrealis-
tic and mathematically that it leads to a correlation function with artificial nonphys-
ical oscillations about zero:

Rρ(ΔX ,0) =
1

(2π)2

∞∫

0

Eρ(K)J0(KΔX)dK

≈ 2CK(2π)2ρ2
s

ksΔX
J1(ksΔX); ΔX >> k−1

s (76)

2) Exponential cut-off:

It is more physical to use an exponential cut-off which is less drastic and has
the additional advantage of involving a more realistic correlation function. For this
model, we take the modified spectrum:

Pρ(K,kz) = P0e−‖(K,kz)‖3 ‖(K,kz)‖−3 (77)

We thus obtain:

Eρ(K) = 4πP0KksΓ

(

0,

(
K
ks

)3
)

(78)

where Γ(0,x) =
∞∫

x
t−1e−tdt is the incomplete Gamma function. For K < ks, we have

the following expansion:

Eρ(K) ≈ 4πP0Kks

(

−γE − log

(
K
ks

)3

+
(

K
ks

)3

+ . . .

)

(79)

Where γE = 0.57 . . . is the Euler Gamma. Note that the leading behaviour for small K
is K logK3 which is identical to the result for the truncated high frequency spectrum,
but the −2πP0KksγE is new. Also,
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Rρ(0,0,0) = 〈ρ2〉 =
1

(2π)2

∞∫

0

Eρ(K)dK =
2P0k3

sΓ
(

2
3

)

4π
(80)

We also have a more realistic (nonoscillating) correlation function:

Rρ(ΔX ,0) =
1

(2π)2

∞∫

0

Eρ(K)J0(KΔX)dK ≈ 2HzCm

(
2πρs

ksΔX

)2

= 2HzCm

(
ρsls
ΔX

)2

; ΔX >> k−1
s (81a)

(with Hz = 3). This exponential cut-off probably gives us the best estimate of Cm.

2.2 The Definition of ρs

Given the cut-off model, there are three obvious choices of definition of ρs:

ρ2
s1 = Rρ(0,0,0)

ρ2
s2 = Rρ(ls,0,0) = Rρ

(
2π
ks

)

ρ2
s3 =

(
ΔX
ls

)2

Rρ(ΔX ,0,0); ΔX >> ls (81b)

Depending on which we use, we obtain different constants Cm. Rρ(0,0,0) gives
the physically significant total variance. The second and third definitions are not
very different; they only differ because the power law behaviour of the correlation
function is only asymptotically exact. The main choice is between either of these or
the first, with the difference arising because of the non abrupt cutoff in the variance
at the sphero-scale (a fourier space truncation will in fact have variance at scales
< ls comparable to the exponential cut-off). We favour the first definition since it
seems more physically relevant; in any case the differences are large as Table 6
indicates.

Table B1 This table shows how two different definitions of ρs and different high wave number cut-
offs affect the constant Cm. Since the exponential cut-off is probably more realistic, and physically,
ρ2

s = total variance is more significant, we thus use the value Cm = 0.0187

ρ2
s1 = Rρ(0,0,0) ρ2

s3 =
(

ΔX
ls

)
Rρ(ΔX) ρs2

ρs1
=
(

Rρ(ls,0,0)
Rρ(0,0,0)

)1/2

Exponential
cut-off

Cm = 1
(2π)2Γ( 2

3 )
= 0.0187 Cm = 1/6 = 0.166 2.98

truncation Cm =
√

3
4π3 = 0.0139 Cm = 0.25 4.23
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Appendix 3: Column Buoyancy

The vertical integral of the density responsible for the total column buoyancy force
for a column thickness lz is given by:

PIlz,ρ(K,kz) =

∣
∣
∣
∣
∣
∣

lz∫

0

eikzzdz

∣
∣
∣
∣
∣
∣

2

Pρ(K,kz) (82)

where the first term is modulus squared of the indicator function of the integration
interval. This yields:

PIlz,ρ(K,kz) =

⎛

⎝
2sin

(
kzlz
2

)

kz

⎞

⎠

2

Pρ(K,kz) =
4sin2

(
kzlz
2

)
P0

k2
z

((
K
ks

)Hz
+ kz

ks

)s/Hz
(83)

To calculate the horizontal spectrum of the vertical integral, we integrate as usual
over the entire crust (due to a low frequency divergence, a low frequency cut-off is
indeed necessary). We use for this the simplest Fourier truncation model at wave
number kc = 2π/lc, lc = crust thickness:

EIlz,ρ(K) = 4πKP0

∞∫

kc

4sin2
(

kzlz
2

)
dkz

k2
z

((
K
ks

)Hz
+ kz

ks

)s/Hz
(84)

If we integrate over the entire column, then lc = lz and we obtain:

EIρ(K) = 4πKP0

∞∫

kc

4sin2
(

kzπ
kc

)
dkz

k2
z

((
K
ks

)Hz
+ kz

ks

)s/Hz
(85)

The sine factor is mostly important for kz < kc, but the latter wave numbers are
cut-off anyway, hence it makes a small change to the results. For many calculations
we can therefore use the following approximation:

EIρ(K) = 4πKP0

∞∫

kc

dkz

k2
z

((
K
ks

)Hz
+ kz

ks

)s/Hz
(86)

Note that the large distance bound on the structure function is:
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Fig. 8 Spectrum of total column density for zc = 10, 20, 40, 80, 160 km with ρs = 250 Kgm−3,
ls = 215 km

AU: Please provide text
citation for Figures 8, 9,
10, and 11.

SIρ(∞) = 2RIρ(0) = 2〈ρ2
I 〉 =

1
π

∞∫

kc

Eρ(kz)
dkz

k2
z

(87)

Using this approximation, we obtain the analytic result:

SIρ(∞) = BIρ(2π)2ρ2
s k−2

s

(
kc

ks

)−
(

s−2
Hz

)
−1

BIρ = Cc

4πΓ
(

2
Hz

)
Γ
(

s−2
Hz

)

(s−2+Hz)Γ
(

s
Hz

) (88)

Fig. 9 The structure function corresponding to zc = 10, 20, 40, 80, 160 km with ρs = 250 Kgm−3,
ls = 215 km. Using a mean lithosphere density of 3×103 Kgm−3, the value SIρ = 1011 Kg2 m−4

corresponds to fluctuations of the order of 100 m of rock. The maximum at 160 km thick is 1012.4

i.e. about 500 m of rock
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Fig. 10 Total vertically integrated fluctuations with ρs = 30 Kgm−3, mantle thickness 3000 km,
sphero – scale 10, 20, 40, 80, 160 km

If we include the sine factors, the corresponding expression is the same as the
above but with corrections involving hypergeometric functions; numerically for
s = 5.3, Hz = 3, the difference is a factor of 1.76.

Putting the high frequency cut-off at ∞, we obtain:

EIρ(K) = 2Cc(2π)4ρ2
s k−3

s

(
ks

kc

)1+s/Hz
(

K
ks

)

2

F1

(
s

Hz
,1+

s
Hz

,2+
s

Hz
,−
(

ks

kc

)(
K
ks

)Hz
)

s > −Hz (89)

This has the following low and high wave number regimes:

EIρ(K) = 2Cc(2π)4ρ2
s k−3

s

(
ks

kc

)1+s/Hz
(

K
ks

)

; K << ks

(
kc

ks

)1/Hz

EIρ(K) = 2Cc(2π)4ρ2
s k−3

s
Hz + s

Hz

(
ks

kc

)(
K
ks

)1−s

; K >> ks

(
kc

ks

)1/Hz

(90)

Fig. 11 The structure function of the vertical integral of the rock density with mantle thickness =
3000 km with sphero− scale = ls = 10, 20, 40, 80, 160 km, with ρs = 30 Kgm−3. If ρ0 = 4×
103 Kgm−3, then the equivalent thickness of the rock is Δz = (SIρ (Δx))1/2/ρ0 i.e. 1 km of rock
corresponds to SIρ ≈ 1013.2
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Appendix 4: Estimating the Contribution from the Crust/Mantle
Interface, Topography

If we now consider the case |(R−R′)|> h(R′), we have the following approximation
to the Green’s function in Eq. 2:

gz(R|R′) ≈ Gρc(R′)h(R′)2

2|(R−R′)|3

(

1− 3
4

(
h(R′)

|(R−R′)|

)2

+ . . .

)

;

h(R′) << |(R−R′)| (91)

where gz(R|R′) indicates the gravity at the surface location R due to a column at
R′. We now use the same approximation to a column in the mantle (density ρm),
assumed to lie between depths h and hm >> h. Using the same approximation, and
summing the contribution from the crust and mantle, we obtain:

gz(R|R′) ≈− G
2|(R−R′)|3 (h(R′)2Δρm +h2

mρm); h(R′) << |(R−R′)| (92)

The fluctuations in the column to column average mean column density (h2
mρm)

can be neglected compared to the term h(R′)2Δρm due to the contrast of the means
(Δρm ≈ 400 Kgm−3). This can be seen by estimating the statistics of the column
integrated density fluctuations which for the crust yields ρI ≈ hmρm ≈ 13 Kgm−3

which is much smaller than Δρm (the analogous calculation for the mantle yields a
column averaged variation of only 2–3 Kgm−3).

Neglecting the h2
mρm term we obtain:

gz(R) ≈−GΔρm

2

∫

|R−R′|>H

h2(R′)d2R′

|R−R′|3 (93)

The range of integration must be such as to respect the thin crust approximation
(|(R−R′)| > h(R′) > H; H is the typical thickness; it should be of the order of the
largest h values encountered). For these scales the above power law convolution is a
fractional differentiation of order 1 (integration order –1), so that in Fourier terms,
we have the following relation between 2-D transforms:

g̃z(K) ≈−GΔρm

2
h̃2(K)K; K < 1/H (94)

taking the complex conjugate equation and multiplying the two and ensemble aver-
aging, we finally obtain:

Eg(K) ≈ G2Δρ2
m

4
Eh2(K)K2; K < 1/H (95)
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Where Eh2(K) is the horizontal spectrum of the square of the thickness. We can
estimate the latter by considering that h is a constant thickness h0 plus a fluctuating
part h′:

h(R) = h0 +h′(R) (96)

So that:
Eh2(K) = Eh2

0
(K)+4h2

0Eh′(K)+Eh′2(K) (97)

The term Eh2
0
(K) is proportional to δ (K), and if h0 is larger than the typical

fluctuation, Eh′2(K) < Eh(K) so that:

Eh2(K) ≈ 4h2
0Eh′(K) (98)

To test the consequences for the gravity spectrum, we can use the topography as
surrogate for h′. If we assume that the “roots” of the topography are χ times larger,
then we have:

h′(R) = χht(R) (99)

where ht is the topography. Overall, we obtain:

Eg(K) ≈ G2Δρ2
mh2

0χ2Eht (K)K2; K < 1/H (100)

i.e. in this range, Eht (K) ∝ Egeoid(K) (see Eq. 31).
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