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The measuring stations of most in sitw geophysical aetworks are
spatiaily distributed in a bighly inhomogeneous maaser, being
mainly concentrated on contineats and popuiation centres. Whea
inhomogeneity occurs over a wide range of scales in a space of
dimension E, it can be characterized by a fractal dimessioa D.
For measuring networks, there is 5o reasoa to assume & priori that
D_ equals E ; it will usually be less than E. The world meteorologi-
cal metwork studied here is an example om s surface for which
E =2 (the surface of the Earth) whereas, the network has as
empirical dimension D, = 1.75. Whenever D_ < E, any sufficieatly
sparsely distributed phemomena (with dimension D,<E-D,
bere 0.25), cannot be detected—even if the network Is imfimite.
Because these rare phesomena are the most intense, this insufficient
dimenrsional resolution is associated with biases in geophysical
statistics, serious difficulties in interpolating measuremeats to a
uniform grid, and problems im calibrating remotely-sensed infor-
matioa.

The intuitive notion of dimension D, of a set (whether fractal
or otherwise) is given by the variation of the number of points
({n(L))) with the size of the region (L):

(m(L))yac LP-

When D_ is less than the dimension ( E) of the space in which
the set is embedded, when L increases, the volume of space
availablc increases as LE which is faster than the number of
points of the set that are available to fill it ((n(L))). Hence,
larger and larger 'holes’ (empty regions) appear and the set is
concentrated on a decreasing fraction of the total space. Further-
more, at a given scale, sets with lower D, are more dominated
by holes, and are hence more sparse.

Although there are many ways of estimating the dimension
of sets of points, many of which have been developed for
studying strange attractors®~* they generally yield similar resuits.
The method used here, actually determines a particular
dimension called the correlation dimension®. To apply this
method to a geophysical network (considered here as a set of
points), determine, for each station in the network, the number
(n(L)) of other stations within various radii L of the point, and
its average (n(L)) over all the stations. We then obtain D, as
the slope of log(n( L)} against log L. Scales over which (n(L))
varies non-algebraically, define the characteristic lengths of the
network.

To apply this technique to a surface network (such as the
highly clustered world meteorological network, Fig. 1), we must
discuss a complication that takes into account the curvature of
the Earth's surface. If the latter is covered uniformly with
stations in a region of area §, then (a(L))x S. Taking S(#) as
the area of the spherical cap defined by two points subtending
an angle @ at the Earth's centre (radius r) we may define the
corresponding scale L(#8) by:

S5(8)=(=/4)L*(8) = 2ar*(1 —cos 8/2)

Note that with this definition of L, for small 8, the formula
reduces to the usual great circle distance ( = rd), and we recover
D, =2 when the stations are homogeneously distributed.
Figure 2 shows (n(L)) calculated using the above L, for the
9,563 stations in this network scparated by at least 0.01° of arc

Fig. 1 The locations of the 9,563 stations in the global meteoro-
logical measuring network (defined as the stations which the Worid
Metcorological Organisation lists as performing at least one
meterological measurement per day), showing their high degree
of non-uniformity. Most are clustered on the continents and major
industrial areas. The dimension (D_) is ~1.75.

(~1 km, the accuracy of the data). Avoiding double counting,
each station defines 9,562/2 = 4,781 values of L, hence there are
9,563 x 4,781 = 45,720,703 independent values that go into the
histogram for estimating (n{L)). Figure 2 shows that roughly
between the minimum resolvable scale, (~1 km) and ~ 2,000 km,

No. o! siations

L I A
1 ] w0? o 0
Distance (km)

Fig.2 O, The average number of stations within annuli of
geometrically increasing radii; @ (the integral of the previous
function), the function {a{ L)) described in the text. Over the scaling
regime, both should be parallel and straight: the L' function is
shown for reference. The scaling regime apparently continues down
to scales comparable with the accuracy of the geographical loca-
tions used to determime L(~ 1 km) which is, therefore, the spatial
resolution of the network. For comparison, the standard analysis
method (which assumes D, =2, a surface area of ~10* km?, and
10* stations), attributes an average area of 10°/10* = 10" km? per
station hence a spatial resolution of ~10? km? which is about 100
times larger than its true resolution.



(ML) L'™, hence Dy~ 1.75. The size of the scaling regime
is limited as the number of points is finite: (m(L)),,, = 4,781
and (A(L))qu~1/9,563~10"". Assuming L""* between these
limits implies L, ~ 7,500 km, L., ~0.3 km, which shows that
the scaling observed in Fig. 2 spans a range nearly as large as
is possible. Similar analysis of the French climatological network
(3,593) stations yielded D, ~ 1.8, while the Canadian meteoro-
logical network (414 stations) yielded D, ~1.5. )
“The fact that D, < E, sets new detectability limits. A network,
dimension D, can detect a phenomenon with dimension D,
only if the two sets intersect. However, a theorem in geometry
shows that this is certain to occur only when D, > £ - D,,. Two
sets, dimension = D, D, embedded in a space dimension= E,
intersect on a set dimension = Dp. (With the co-dimension C =
E = D) according to the following rule:

Cn = Inf((C, +Cy), E)
Example. [ntersection in space (E = 3) of two pianes

(D1-D;=2=\C1-C;=l)

D,'-Z

CP=C1+C1=2:Dn=E—C|’!

Although the example is for two standard sets (planes) it hoids
for most fractal sets. Note that if C, + C,> E, the intersection
set probably has dimension zero (Cnh = E), hence, the sets typi-
cally miss each other. Hence, in the case studied here, sparse
surface phenomena with D, <2~ 1.75=0.25, cannot be detec-
ted. In analogy with the network's spatiai resolution, which is
the minimum detectabie scale, we may define, its dimensional
resolution as E- D, which is the minimum resolvabie
dimension.

The inability to detect sparse phenomena is serious because,
in general, we expect geophysical fields to be characterized by
multiple fractal dimensions®°. In turbulence, fields are generally
characterized by muitiple fractal dimensions'®". In geophysics,

there is empirical evidence for muitidimensionality in the
rainfield"*'*. I a eld is multidimensional, then regions exceed-
ing a threshold T define fractal sets with dimension D,(T)
decreasing with T. Thus, whenever averages are taken over sets
with D < E, then, by the intersection theorem, the most intense
fractals (with D,(T)< E = D_) are missed. While both mono-
and multidimensional fields have statistical properties that are
functions of scale, multidimensional fields are in addition depen-
dent on the dimension (for example, line, plane, volume or
fractal set) over which they are averaged.

We have argued that the characterization of network
inhomogeneity by the fractal dimension (D,) raises new prob-
lems concerning the detectability of sparse phenomena. Since
phenomena (of any size) with D, < E - D, will not intersect
the network, we have obtained a new criterion for evaluating
measuring networks: to detect phenomena, not only must a
network have sufficient spatial resolution it must also have
sufficient dimensional resolution. In general, we expect the
fractal dimension of geophysical fields 10 be a decreasing func-
tion of intensity: thus, any lack of dimensional resolution leads
to biases in the spatial averages. Finally, as information on the
lowest dimensional fractals is lost, similar biases will arise
when measurements are interpolated to uniform grids with
dimension E
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