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Abstract

We clarify the links between scaling and self-organized criticality in demonstrating that
multifractal processes -with nonvanishing input reach self-organized criticality via the analog of
a first order phase transition. We emphasize that the first order transitions are intrinsic
consequences of the scale and dimension of the observations, whereas second order transitions
arise from finite sample sizes. We point out implications and applications for nonlinear
physical systems.
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1. INTRODUCTION

We consider the defining features of self-organized critical (SOC) phenomena [1] to be
scaling coupled with algebraic probability distributions. While the classical origin of SOC is
both deterministic and with vanishing input (vanishing flux of particles), our alternative is
stochastic with a finite input (e.g. a non zero flux of turbulent energy, see also [2] for non
vanishing flux of particles). In fact, since we do not rely on any specific model, we consider a
rather generic statistical mechanism for open dissipative nonequilibrium systems: the analogue
of a non-zero critical temperature associated with a first order multifractal phase transition [3-
4]. Indeed multifractal behavior is determined by exponent functions which have analogues in
thermodynamics [5-6], and therefore discontinuities of the analogues of the free energy and the
thermodynamic potential correspond to phase transitions. "Frozen free energy” (second order)
transitions [7-8] arise from finite sample sizes [9], whereas much more wild first order
transitions are consequences of the scale and dimension of the observations on large samples

[4].

These transitions are purely scaling phenomena and are thus totally different from the
high temperature transitions found in (low dimensional) deterministic chaos [10-11] which are
basically created by breaks in the scaling symmetry of the probability measure in phase space.
Such transitions can oceur in multifractal fields ranging from strange attractors (12-13],
turbulence [14-16], statistical physics [17], high energy physics [8, 18], astrophysics [19], and
geophysics [20]. They have direct implications for extreme, catastrophic, events in physical
space. They can explain recent results in turbulence [21] and geophysics. Indeed, we survey
empirical evidence from various geophysical sources that show that first order multifractal
phase transitions are actually quite cormmon.
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2. MULTIFRACTAL CODIMENSION FORMALISM AND
THERMODYNAMICS ANALOGUES

The multiple scaling behavior of stochastic field €, at scale ratio A (=L// the ratio the largest

scale L to the scale /), can be either characterized by its probability distribution or by the
statistical moments since they are dual for the Mellin transform, see for instance [22] (here and
below the sign = means equality within slowly varying or constant factors):

Pr(e, 2 %) = 450, <e,® = }K@ = [am-<dc(y) )

the exponent c(y) is [23, 24] a statistical codimension since -as discussed below- the
probability measures the fraction of the probability space occupied by the singularities

exceeding the order v. Each realization corresponds to a finite D-dimensional cut of a process
in an infinite dimensional probability space. Multiplicative processes [14, 23-25] produced by
scaling random multiplicative modulations of larger structures by smaller ones which yield
highly intermittent space/time fields are generic processes of stochastic multifractality.

At scale ratio A, the probability can be estimated as the ratio of the number (N, (y)) of
structures with singularities 2y to the total number of structures (N, ): Pr(g,2 A7) = N, (¥)/N,.
Whenever Dzc(y), c(y) also has a geometrical interpretation over a D-dimensional observing set
A. In this case, not only N, =D, but also, on almost any single realization, N, (Y) =3P,
with a positive D{?y) which is then a geometric fractal dimension. This restrictive geometric
interpretation corresponds to the starting point of [15]. However, the "hard" singularities (see

below) which are the most interesting have c(y)>D and are only present in "canonical”
multifractals [3, 23] whose invariants (e.g. turbulent energy flux) are conserved in the
"canonical" sense, i.e. only on the ensemble average. One may note that recently the need of a
codimension formalism has been implicitly acknowledged by Mandelbrot [26].

Typical examples of the multifractal observables are the D-dimensional integrals (T1y(A))
over A:

T, (A) = A[EldDL @

For example, in turbulence II,(A) is the energy flux or in chactic systems it is the
multifractal measure on a strange attractor. Due to the D-dimensicnal integration (on a ball B,

of size L/A), the codimension characterizing €, leads to a dimension characterizing I1,;
similarly, the singularities of €, are related to the singularities of IT, etc.:

Pr(IT, (B, )2 37D = 3D(®D)3D; op=D-y; fp(ap)=D-c(y) 3)

where we render explicit by the subscript “D” the extrinsic D dependencies [3] of the usunal

strange attractor notation [13] for the multifractal measure exponents ¢, f, T. A similar
dependency intervenes for the exponents of the "trace mements” [24] generalizing the partition
function by combining ensemble with spatial averaging ("superaveraging"):
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Fig. la: Schematic diagram of c(y), cd(y) indicating two sampling dimensions Dg1, Ds2 and

their corresponding ¥s1<YD<Ys2<Yd,s2; the critical tangent (slope qD) contains the peint
(D, D).
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summing over A at resolution A, i.e. on a covering of Np(A)=AP disjoint balls B} j
(TT (B3, 1)=&, AD). It is worthwhile to note that op, fp(cip), Tp(q) diverge unfortunately as we

increasingly explore the infinite dimensional probability space (D—3ee; contrary to the finite
phase space dimension D for strange attractors).

If we follow [6,27] (rather than [5]), the probability description (y, c(Y)) is the
multifractal analogue of the (energy, entropy) description of standard thermodynamics,
whereas the moment description (g, K(q)) is the analogue of the (inverse temperature, Massieu
potential) description. Since the free energy analogue is C(q)=K(g)/(g-1)discontinuities (phase
transition analogues) will be apparent in either the free energy or Massicu potential description.
(Entropy, Massieu potential) and (¢ ,K) are Legendre transform [15] pairs:
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Fig. 1b: Schematic diagram of K(qg), with straight lines of slopes ¥s1<YD<Yd,s2<Yd, seo (=22)

indicating the behavior for increasing sample size Ng (Ngeo =o). The line of slope D defining
gD is also shown.

K= m?" qy-cty) e = mg"‘ (qy-K(g)) (5)

these relations establish the one to one correspondence q = ¢’(y), y= K’(q) (Figs. 1a,b).

3. MULTIFRACTAL PHASE TRANSITION ANALOGUES

3.1 Second order multifractal phase transitions
As we increase the number of independent realizations (Ng), each of dimension D and

covering a range of scales A, we gradually explore more and more the probability space;
encountering more and more extreme events that would be almost surely missed on any smaller
sample (Fig. 1a). This corresponds to the fact that we are increasing the dimension of

observation D to an (overall) effective dimension Ag, which may be quantified with the help of

the sampling dimension [28] Ds. This determines the highest order singularity (ys) we are likely
to observe on Ny independent realizations and is estimated by:

c(¥s)=D+Dg=As ; D¢~ logNg/log A (6)
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Fig. 2: A schematic diagram showing a cascade constructed down to scale ratio A, dressed
(averaged) up to ratio A. This is equivalent to a bare cascade constructed over ratio A,
multiplied by 2 hidden factor obtained by reducing by factor & a cascade constructed from 1 to
AL

This follows from the Eq. 1 and the fact that there are a total of N- Ns=7LD+D9 structures in
the sample. More extreme singularities having codimensions greater than this effective

dimension (c2Ag) remain almost surely not present in our sample.
The upper bound ¥, [28] for observable singularities leads to a second order phase
transition. Indeed, the Legendre transform of c(y) with y<ys leads to a spurious linear estimate

K. instead of the nonlinear K for q>qs; qs=c'(Ys) being the maximum moment that can
accurately be esumated:

Ks(q) = 1s(q-gs) + K(qs) . q2gs; Ks(@) =K(q) g=qs €))]

hence there is a second order transition associated with a jump in the second derivative of the
free energy/Massieu potential:

AK"s = -K"(gs) @

and the corresponding (spuricus) free energy Cs(q) becomes quickly frozen at the value ¥s.

3.2. First order multifractal phase transitions
As discussed in [3-4], more violent first order transitions may occur for a multifractal process

typically observed by spatial and/or temporal averaging on scales />>1 (the inner size of the
pracess), i.e. with corresponding ratios A=L/l , A=L/1 with A>>), Indeed, the
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Fig. 3.—General outline of phase diagram in (g,n) plane.

"dressed" [24] variability observed at scale ratio A will generally be wilder than the
corresponding "bare” field obtained by stopping the cascade process at the same scale ratio and
therefore stripped of its small scale activity (see [4] for a striking numerical example). The
much more violent dressed variability results from the “hidden” interactions and fluctuations of
the field on scale ratios between A and A.

The hidden small scale component may indeed contribute as a highly variable prefactor
having occasional avalanche-like effects on the large scale as soon as a singularity of order
greater than D occurs. In the case of multiplicative processes, which are generic multifractal
processes, the dressed field (eg) then factors (see Fig. 2) into a bare € (large scale) and a

hidden &} (small scale) component (g=€&p). ). As soon as the D-dimensional integration cannot
smooth 1t down to the scale of observation, the ebservation scale (/) is no longer effective and

the scale of homogeneity 1 prevails. Since A/A>>1, the dressed singularity (y3) computed
using the observation scale will be much larger. These events will remain statistically

negligible until a critical singularity order vp (2D) which we will estimate below. For y<yp the
dressed cedimension (cg) coincides with the bare codimension (¢), but for v>yp cd will be
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determined [4 by simply maximizing the probability, i.e. minimizing c, with the only constraint
being the convexity, c4 thus follows the tangent (Fig. 1a):

cd(¥a)=qp(Yd-Yp) +<(YD) Ya=YD: cd¥d=<(¥) WS, 9

The inverse of the critical temperature qp=c¢'(yp) is the slope of the algebraic fall-off of the
dressed probability distribution. It is also the critical order of divergence of statistical moments

(q2qp, <epd>=ce =><e4d>=cc) a fact which can be seen by noting that a Legendre transform of
a linear function diverges (Kq(g)=s°, q=qp). As pointed out in [4], the critical exponents ¥p

and gp can be rather easily determined. Indeed, for a given ¥ (and its corresponding q=c'(Y)),
the (statistical) scaling exponent of the trace moment [14, 24] density, (i.e. before performing a
D dimensicnal integration), is given by:

q(v-D) -c(y)=K(q)-gD (10)

the D dimensicnal integration does not prevent divergence (as A—»ee) as soon as q(y-D)-

c(y)zD. As q(y-D)-c(y) in eq. 10 correspends to the equation of the tangency to c(y), the
critical tangent contains the point (D,D) (Fig. 1a):

D=qp(D-yp)+c(yD)=qpD-K(gp) (1)

this yields a simple and direct determination of ¢4(g):

¢a(Yo)= qp(¥a D) +D YYD (12)
and of the corresponding hard behavior [3] of the dressed field:

Prig; ' &5 4) = (g5 4)"9D €;.¢>>1 (13)

which is a fundamental consequence of the D-dimensional integration/dressing. Indeed, as
discussed elsewhere [29] this integration has an action analogous to that of an external field
raising the critical temperature T, from zero 1o a positive value. However, it is important to
remember that the sample size must be large enough (A=D+Ds=c(Yp)) in order to observe this
first -order phase transition. Indeed, following the argument for Egs. 6-7 (see Fig. 1la), the

maximum observable dressed singularity (Y4} is given by the solution of ca(Yus)=4s. By

taking the Legendre transform of ¢q with the restriction Y4<Yy s We then obtain the finite sample
dressed Kqa5(q):

Kas(9)=1a5(q-qp) + K(gp) q>qp: Kas@=K(q@) 9g<qp (14)

In the limit Ng—seo, g s —ee, and for q>qp, Kas(q)—Ka(g)= = as expected. For N; large but
finite, there will be a high q (low temperature) first order phase transition, whereas the scale
breaking mechanism proposed for phase transitions in strange attractors [10-11] is
fundamentally limited to high and negative temperatures (small or negative g). This transition
corresponds 10 a jump in the first derivative of the K(g):
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Fig. 4a.—Phase diagram in (g,n) plane for conditionally soft universal multifractal fields
(o=1/2).

AK'(gp) = K'g (apK'(ap) = YasTo = “o 22 1s)

On small samples (Ag=c(yp)), this transition will be missed, the free energy simply becoming
frozen and we obtain: Kd s(q)=(q-1)D, which was already discussed with help of some
precipitation experiments [9], whereas eq. 14 corresponds to an improvement of earlier works
on "pseudo scaling" [14, 24]. Note that the above relations, especially eq.14, were tested
numerically with the help of lognormal universal multifractals [4].

3.3. Multifractal phase transitions of (normalized) powers of a
multifractal process:

We may now consider the normalized 1-power of a multifractal process, defined as the
following process:

g;MN (16)

E;\_[T] Y=
<gy>

These various powers are introduced because they are fundamental to the study of 17-powers of
a multiplicative process € measured at ratio of scale A., which bare counterpart is:

ex A= gy Mi<g N> (17)

and which trace moment corresponds to the double race moment [9,21] of €, and gives
therefore more directly access to properties of the double trace moment.
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Fig. 4b—Phase diagram in (q.n) plane for unconditionally hard universal multifractal field
(a=2).

Multifractal phase transitions can be best studied on either the (q,n) or {v.n) planes, in
which we have merely to determine the phase transition lines gs™), gp™ (or equivalently

Ns(q), Np{(Q)). Fig. 3 gives a general outline. For very large 1 (>7p) we have only the
degeneracy phase, i.e. almost surely the process converges to zero, after having huge
fluctuations. Indeed, for conserved processes with codimension of the mean singularity Cy
(=¢(Cy)), the process is “degenerate” for D<Cj, therefore the transition line to degeneracy

corresponds to C;(M0)=D,
The behaviour is particularly easy to investigate in the case of universal multifractals, [23-

24, 30-31] which are characterized by only two basic parameters, the Levy index O<o<2 and
the codimension of the mean singularity C; (for nonconservative processes there is a third basic

parameter H). Universal multifractals have the following bare K{(g}, c():

€1 o ¥ 1Y 11
= —1(q%-q); =|—=+— —+==1 (17
K(g) a-lq q) e(y) {C._a’-'-a] where a’+a {17)

It is rather trivial to check that the only transformation required to obtain K{q,n) and
¢(y,n) from the corresponding K(g) and c(y) is the following:

This transform allows us to derive all the statistical properties of the n-power of €, e.g.
No=(D/C1)1/@, whereas it was unfortunately perceived as an indetermination problem in [9].
We next consider the maximusm observable singularity (™ (for second order phase



334

K(q)
3.0 7

25

2.0

aedal oy ug

0.5 +——E14 e q

0 1 2 3 4 5
Fig. 5: Empirical observation of first order multifractal phase transition in turbulence [39]: the
slope of the observed asymptotic dressed Ky (q), g>qp=2.3 increases with sample size.
Indeed, open circles correspond to the observed Kgy, (q) for a number of samples N,=4,
whereas closed triangles for N;=700, solid line corresponds to the theoretical bare K(q)

(a=.1.45, Cl= .25).

transitions) as well as the critical order for the first order ransition gp(™):

clysMm*)=Agn® (19
K(gp{™) = (O/M®) (@pM-1 (20

whereas the corresponding second order phase transition cccurs at 2 mement of order qgM:
gsM= (AgC1M) e @n

With the help of the mivial rescaling of C; already discussed, (eq. 18), the distinctive
features between the cases o<1 and o1 are given by:

ql0; Np(@)=q! (o<1); Nplg)=g 1/ (x>1)
qTeo : Nplg) + n1="ng (1-01) (e<1); Mplg-q! (o>1) (22)

which is shown in Figs. 4a-b (using the examples a=1/2, 2). One may note the existence of
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the asymptote 11 (which should be renamed M..) which corresponds to the conditional soft
behaviour of o<1 processes.

The eoverall behaviour can be summarized as follows: starting at large T>To, we obtain
degeneracy. For moderate 1 {NT<nN<N¢) and large enough q, we obtain a (first order)
transition from a soft to a hard phase, whereas for low enough 1 {<nT) we obtain a transition

to “spurious scaling” (enly a second order transition). The triple point (gT, TT) is obviously
interestng.

4 EMPIRICAL EVIDENCE

In the 1980’s many attempts were made to empirically search for evidence of divergence
of moments, especially in geophysical fields (see the table below for relevant references).
More recently, preliminary results on the mechanism of the first order multifractal transition
gave new impetus to studying algebraic or “fat-tailed” probability distributions in various areas.
In contrast, monofractal processes generally only involve divergence in either an incidental
way! , or the divergence is connected with the distribution of the size of sets (themselves only
indirectly related to the process, a typical example being the size distribution of island areas
which is indirectly related to the topography process-see however [32] for review-, the
moments divergence becomes in the multifractal framework the result of a rather precise and
general space time critical mechanism.

Examples of processes whose fluctuations or averages over various scales were
empirically shown to have a probability distribution with power law tails are relatively recent
and are given in the table 1. With the exception of the Gutenberg-Richter (1944) law for
earthquakes [33] (more on this below) and the purely ad hoc regression performed by [34] , all
the studies were explicitly motivated by efforts to test space-time scaling models of the
processes. In addition, they were all motivated by the connection between multifractals and

divergence of moments (the only exception was the rain analysis [35] interpreting the gqp=1.7
for temporal scaling in terms of (additive) Levy processes, and [36]). The amplitude-frequency
relation for earthquakes (the Gutenberg-Richter law) is - along with the distribution of galactic
lurminosity - in a rather special position since in both cases the phenomena are considered to be
essentially point-like, and aithough the “events” have well defined locations, they have been
invariably analysed either via their marginal probability distributions (i.e. irrespective of the
location of the events), or using the density of events (i.e. irrespective of their intensity). For
the case of earthquakes, (long before it was justified on the basis of scaling models) the
hyperbolic nature of the distribution has been very widely accepted whereas for galactic
luminosity, it was considered exponential, but it is argued in [37] that this was mainly because
of insufficient sample sizes and hyperbolic distributions do indeed give excellent fits to the
large sample sizes now available. However, they have been more recently studied as seismic
and luminosity fields taking both position and intensity into account. In particular, in [37-38],

the normalized n-powers of these fields (see section 3.3) are analyzed and especially the
dependence on 1 of qp{M} (eq. 20), whereas the value in the table below is qp= gp(¥.
Perhaps the two most important features of the results in the table is first that most are for

turbulent atmospheric fields -which have long been recognized to be highly intermittent- and
second, that the exponents are surprisingly low. This is especially true when one realizes that

! e.g. divergence of D-dimension Hausdorf measures on fractal set of dimension D'>D
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Table 1:
Empirical evidence of first order multifractal phase transitions in geophysics
Field Type Data qp  References
Turbulence, wind fluctuations 1n Radiosonde=50m 5 [14]
field, atmosphere horizontal wind in the .. j co0
vertical 5.2%  [41
fluctuations in Sonic Anemometer 6.9% [40]
horizontal wind, ime  16Hz
Energy flux Aircraft, horizental 1.7 [14]
100m rcsolutlo.n 22%  (42]
=12.5 mresolution
Energy flux Hot wire anemometry  2.2%  [40]
Energy flux Sonic Anemometer 2.3* [40]
16Hz
Temperature field, Potential Temperature, Rpadiosonde=~50m 3.3 [14]
atmosphere flucwuations in vertical . o1 6o
Fluctuations in daily France single station 3, [43], [54]
mearn temperature (Macon)
Regional average (33 5 [44]
stations)
Fluctuations in 1880-1980 from Jones 5 [45]
hemispheric annual etal 1982 series
mean temperature
Fluctuations in paleo- ice cores, 350-22,400 5 [45]
temperatures years
Passive scalar field, UFg 100m resolution, 3 [46]
atmosphere horizontal (in air)
COgat 56m above _3m in the horizontal 5.2 [53]
CIOps
Precipitation, radar horizontal reflectivity  1km resolution 2 [35]
reflectivity isolated 5 minute resolution 1.7 [35]
storm in tirne
Reflectivity (absolute) lkm resolution 1.1 [24]
Rain, gauges Tipping buckets, time  (0.0lmm, 50 stations 2.5t0 [34]
in Canada, 10 years) .5
Daily accurnulations  rain gauges (Nimes, 3- [48]
30 years) 3.5%
Total accumulation of a spatial variability over 4.4 [53]
single storm a gage network
Rivers Daily sireamflow 4096 days, 50 rivers, 3-4* [36], [49]
France
Ocean surfaces Far Red radiances 1m resolution 3= [501
Networks Density of meteo- 8000 stations 3.6%  [51]
rological network
Astrophysics Apparent total galactic 8000 galaxies 1.25 {371.[4]
luminosity
Seismicity Number- amplitude California earthquakes 0.5- [33], ([52]
relation 1.5 for a review;
Gridded total 2X2km resclution, [38]
amplitude 300,000 events, 1980- 0.9%

1990, Parkfield, Ca.
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in many of the cases (indicated with asterisks), the universal multifractal parameters (eq. 17)
have been estimated for the same data sets as qp, which allows us to simultaneously obtain
theoretical estimates of qp as functions of D (using eq. 11 and corresponding to Figlb),

especially the dependency of Y45 on the sample dimension can be tested, whereas gp remains
fixed. Fig. 5 gives an example of such study [39] where the number of samples is increased
from N =410 N,=700.

Without exception, agreement with the empirical values is obtained only when relatively
low values of D are used; often D<1. If the divergence really is a result of a multifractal
dressing mechanism, it will not generally be a trivial matter to determine the effective D: the
dynamically significant D may be smaller (and hence dominate) the one intreduced by the
measuring device. One possible mechanism yielding a dressing with D<1 which may be
relevant in turbulence can be sketched. Recall the Kolmogorov relation between the observed

velocity fluctuations (Avy), and the energy flux (€): Ava=e!3A-13. A simple interpretation of
the linear scaling exponent -1/3 is that it represents a fractional integration of order D=1/3 of
€153 and as elaborated elsewhere the estimates [39-40]- of universal multifractal exponents
support a low qep = 2.3, consistent with empirical estimates going back ten years! [14] as
indicated in the table 1..

5. CONCLUSION

Many nonlinear dynarmical systems found in nature are scale invariant over wide ranges
of scale and exhibit both weak and avatanche-like violent/hard™ events. In this paper we have
considered the possibility of a direct and surprising connection between the mean field and
these extremes events. If we consider a self-organized critical system to be defined by the
combination of scaling with algebraic probabilines (divergence of moments), then we have
argued that SOC is in fact a general feature of such systems and results from a generic first
order multifractal phase transition. With the help of this thermodynamic phase transition
analogue, we obtain a detailed and general understanding of the appearance of SOC, including

for the different (normalized) T powers of a multifractal process. We emphasize that
multifractal processes reach self-organized criticality with nonvanishing input and within a
stochastic framework, whereas classical SOC is both deterministic and with vanishing input.
This alternative route to SOC considerably enlarges its relevance, since in high dimensional
systems scale invariance can be regarded as a basic dynamical symmetry principle, which will
be respected in the absence of symmetry breaking mechanisms. Finally we summarized
various data which substantiate the relationship between multifractality and SOC.
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