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Abstract: 
Cascade processes generically lead to multifractal fields and have been used for 

simulating turbulent systems - including clouds, rain, temperature, passive scalars and the 
wind - as well as for solid earth fields such as rock density, magnetization and 
topography.  In spite of their importance, most applications use primitive discrete scale 
ratio processes which singularize scales which are integer powers of integers.  Realistic 
simulations are continuous in scale but suffer from strong “finite size effects” i.e. 
deviations from pure power law scaling which can take surprisingly large ranges of scale 
to disappear.  In this two part series we quantify and show the origin of the problem and 
quantify its magnitude  (part I) while in part II we show how to largely overcome it and 
give a Mathematica code for the corresponding simulations for causal and acausal space-
time simulations. 

1.  Introduction: First generation multifractal models: 
discrete in scale 

In the last 25 years there has been an explosion of interest in multifractals in 
general and in the generic multifractal process: the multiplicative cascade. In spite of this 
motivation there has been surprisingly little attention paid to the numerical modeling of 
realistic multifractal processes which are continuous in scale; indeed nearly all the 
simulations in the literature are of “first generation” type, they are discrete in scale 
([Novikov and Stewart, 1964], [Yaglom, 1966], [Mandelbrot, 1974]), indeed they almost 
invariably use discrete cascade ratio λ0 = 2.   

These largely pedagogical discrete in scale models are constructed by iteratively 
dividing large structures (‘eddies”) into disjoint daughter “subeddies” each reduced in 
scale by the integer ratio λ0. The smaller eddies have intensities which are equal to those 
of their parents but are multiplicatively weighted by independently and identically 
distributed random factors.  They yield visually weird, highly artificial simulations (see 
e.g. fig. 1a).  Other key limitations of these standard “toy model” cascades include a) 
isotropy (self-similarity; although limited self-affine extensions are possible [Schertzer 
and Lovejoy, 1985b]) and b) left-right symmetry (which precludes causal processes).  In 
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addition, most multifractal models are of scale by scale conserved cascade quantities 
whereas the observables typically have exponents with an extra linear term.  A somewhat 
different but still discrete in scale multifractal simulation method is based on iterated 
function systems [Levy-Véhel et al., 1995], [Basu et al., 2004].  Probably the most 
sophisticated discrete in scale approach is the Markov-Switching Multifractal (MSM) 
simulation method; it is available only for pure (1-D) time series [Calvet and Fisher, 
2001], [Calvet and Fisher, 2008].  This model involves causal random transitions but is 
still based on iterating a finite fundamental scale ratio so that it is not yet continuous in 
scale.  We could also mention “bounded cascades” [Cahalan, 1994] but these are in fact 
not multifractal at all. 

While “second generation” continuous in scale multifractal processes based on 
stable (Levy) random variables were proposed over 20 years ago ([Schertzer and 
Lovejoy, 1987]), in many cases they converge frustratingly slowly to their theoretical 
(large scale ratio) form.  This slow convergence has somewhat diminished the appeal of 
these continuous in scale models.  In the first part of this paper we consider spatially 
continuous processes which are also continuous in scale and point out the nontrivial 
origin of the problem.  In part II, we consider the additional effects of spatial 
discretisation and propose improvements which make the models much more attractive. 

Part I is structured as follows.  In section 2 we review the basic continuous in 
scale process cascade properties, its normalization and one point statistics.  In section 3 
we consider the behaviour of the second characteristic function (SCF) of the generator of 
the autocorrelation function showing that the main correction to the dominant log Δx 
behaviour is a slowly decaying Δx-D/α term.  In part II we consider the additional 
complications arising from the spatial discretisation used in numerical work and show 
how to correct for the Δx-D/α  bias.  In section 6 we conclude.  We have also included 
several appendices (all of which are collected at the end of part II) with various technical 
details including a Mathematica code.   

 

2 Continuous in scale universal multifractal 
cascades: deviations from pure power law scaling 

2.1 Basic statistical properties of cascades 
If we denote the scale by scale conserved multifractal field by ελ, they have 

statistics of the form: 

!
"

q
= "

K q( )
 (1) 

where λ = (largest scale) / (smallest resolution scale) is the resolution and the scaling 
moment function K(q) determines the statistical properties of the process and “<.>”  
indicates statistical (ensemble) averaging.  K(q) is the (base λ, Laplace) second 
characteristic function (SCF, sometimes called the “cumulant generating function”) of the 
generator Γλ as can be seen by taking base λ logs of eq. 1: 
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K q( ) = log!
e
"!q ; "

!
= log#

!  (2) 

The scale by scale conservation of the cascade is expressed by !
"

= 1  implying 
K 1( ) = 0 ; it is necessary for the convergence in the small scale limit. If we denote by Λ 
the maximum scale ratio of the model, then Fig. 1a shows the result of a spatially discrete 
and discrete in scale model built up through n = 9 cascade steps each of ratio λ0 = 2; the 
total range is Λ = λ0

n.  If we consider the discrete model at intermediate scale ratios 1<λ 
<Λ then eq. 1 only holds for the integer scales λ = λ0

m (0≤m≤n is an integer).  These 
special scales give rise to unsightly linear artifacts in the simulations (e.g. fig. 1a).  In 
contrast, Fig. 1b shows a spatially discrete but continuous in scale simulation in which 
eq. 1 (nearly) holds for all the intermediate scale ratios λ <Λ (with the same K(q)). 
Clearly, since empirical fields are generally continuous in scale, alternatives to the 
discrete in scale cascades are necessary for realism.   

In addition to being continuous in scale, realistic models of typical observables 
involve another an extra (linear) scaling.  For example the resolution λ velocity 
fluctuations (Δvλ) in turbulence - vary with λ as !v

"
= #

"

a
"

$H .  If ε is the energy flux and 
a = H = 1/3, this is the Kolmogorov law for isotropic three dimensional turbulence 
[Kolmogorov, 1941].  To model a v field with such statistics, it suffices to take a 
fractional integral (power law filter) of order H of εa; see [Schertzer and Lovejoy, 1987] 
for this “fractionally integrated flux” (FIF) model for the observables (see fig. 1c).   
Finally, realistic systems are rarely if ever isotropic so that we generally require 
anisotropic (“Generalized”) Scale Invariance in which the usual isotropic notions of scale 
are replaced by anisotropic ones, vector norms used on convolutions are replaced by scale 
functions [Schertzer and Lovejoy, 1985a].   For examples, see the site: 
http://www.physics.mcgill.ca/~gang/multifrac/index.htm. 

Since empirical fields are generally continuous in scale, alternatives to the 
discrete in scale cascades are necessary for realism.  The basic method is to construct a 
continuous in scale band-limited noise Γλ directly and then to exponentiate it to obtain ελ 
(eq. 2).  Since Γλ is taken to be a continuous in scale stochastic process, it must be 
“infinitely divisible”.  The original proposal for such continuous in scale cascades 
([Schertzer and Lovejoy, 1987]) used Levy processes for the generators, but other 
infinitely divisible generators such as Poisson processes can also be used ([She and 
Levesque, 1994]; see  [Schertzer et al., 1995] for a comparison and discussion).  The 
Levy generators Γλ are particularly useful since they are the stable, attractive limits of 
additive processes; ελ=eΓλ are thus referred to as “universal multifractals”.  This 
universality is a consequence of the central limit theorem applied to the (additive) 
generator Γλ and corresponds to a multiplicative central limit theorem for the process ελ; 
see [Schertzer and Lovejoy, 1997] for discussion and debate).   The resulting two 
parameter universal form for K(q) is: 

K q( ) =
C
1

! "1
q
!
" q( ); 0 # ! # 2; 0 < C

1
< D  (3) 
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where α is the Levy index characterizing the degree of multifractality and C1 is the 
codimension of the mean characterizing the sparseness of the mean field.  D is the 
dimension of space, and for α <2, K(q) diverges for q<0.  We could also mention that in 
the case α = 1: using L’Hôpital’s rule we must take the limit ! " 1  of eq. 3 to obtain: 

K q( ) = C1q logq; ! = 1; 0 < C1 < D  (4) 
Fig. 2 shows various examples in one and two dimensions showing the effect of changing 
α and C1.  

Although most empirical estimates of the parameters α, C1 have been made for 
atmospheric quantities (see e.g. [Lovejoy et al., 2008b] results in the vertical)  including 
satellite radiances, e.g. [Laferrière and Gaonac'h, 1999], [Lovejoy et al., 2008a]), some 
solid-earth results exist, notably for the topography, surface magnetic field, and ore 
concentration, (see the review [Lovejoy and Schertzer, 2007], and [Cheng and Agterberg, 
1996]).  Although this is not the place to discuss in detail the now numerous results, a 
fairly general finding is that with few exceptions, 2>α>1.5, C1<0.3. 
 

 
Fig. 1a:  A discrete in scale simulation, scale ratio 2, λ = 29, α = 1.8, C1=0.1.  The grey 
scale in proportional to the log of the field, the low values are coloured blue to improve 
the contrast. 
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Fig. 1b:  The corresponding continous in scale simulation using the continuous in scale 
method with Δx-D/α corrections as described part II (with D = 2). 
 

 
Fig. 1c: Same as fig. 1b but with an additional fractional integration of order H = 1/3 (a 
scale invariant smoothing); to simulate a turbulent passive scalar density. 
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Fig. 2a: Multifractal simulations C1=0.1 and α =0.3, 0.5, …1.9 from bottom to top, offset 
for clarity (same random seed).  
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Fig. 2b: This shows isotropic realizations in two dimensions with α  = 0.4, 1.2, 2, (top to 
bottom) and C1 = 0.05, 0.15 (left to right).  The random seed is the same so as to make 
clear the change in structures as the parameters are changed.  The low α simulations are 
dominated by frequent very low values; the “Levy holes”.  The vertical scales are not the 
same. 
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2.2. The cascade internal structure 

Various numerical details and examples of simulations of continuous in scale 
isotropic (self-similar) multifractals, were given in [Schertzer and Lovejoy, 1987] and 
[Wilson et al., 1991].   [Marsan et al., 1996] showed how to extend the framework to 
causal (space-time) processes, and [Pecknold et al., 1996], [Pecknold et al., 1997] 
developped extensions to anisotropic multifractal processes needed for example to take 
into account atmospheric stratification.  As we detail in section 3, the basic method for 
simulating Γ is to fractionally integrate a Levy noise, i.e. to convolve it with a singularity. 
While this method works for large enough scale ranges (i.e. it yields simulations with 
statistics satisfying equation 1, 3 for large enough λ), there are significant deviations at 
small scales (“finite size effects”), especially for α>1 which is the most empirically 
relevant range.  In order to get an idea of the importance of these deviations, consider the 
theoretical form of the normalized autocorrelation functionR

!
"x( )  for isotropic 

cascades: 

R
!
"x( ) =

#
!
x( )#!

x $ "x( )

#
!

2
= "x

$K 2( )
; "x % 1  (5)  

(as derived on discrete in scale cascades by [Monin and Yaglom, 1975]), x, Δx are D 
dimensional position vectors and lags respectively.  The above uses the convention that 
the process is developed over the range of scales from λ down to 1 unit so that Rλ(1) = 1 
(see section 2.3 on this).  K(2) appears because the autocorrelation is a q = 2 order 
statistic).  Since the spectrum is the fourier transform of the autocorrelation function we 
find that for wavenumber k = k , the power spectrum E(k) of ελ has the scaling form: 

E k( ) ! k"#
; # = 1" K 2( )  (6) 

Fig. 3a shows the power spectrum of the process for α = 2 compensated by 
dividing by the theoretical k-β so that the theoretically expected spectral scaling leads to 
horizontal straight lines on the log-log plots.  From the figure, we can see that the pure 
(power law) fractional integration takes nearly a factor of 103 in scale to completely 
converge (the largest wavenumber for a 214 point long series is k = 213 ≈ 104); fig. 3b 
shows the same basic result for smaller α values.  Although the rate of convergence 
improves as α decreases from 2, it is noticeable for all α.  Also shown in the figure are 
the corresponding spectra of the processes obtained using the improved simulation 
techniques described in this paper.  It can be seen that although the spectral results are 
still not perfect, that they are significantly better.  Fig. 4 compares samples of the original 
process and with the various corrections discussed.  Although the visible differences in 
the realizations are apparently not so large, the statistics as revealed by various scale by 
scale analyses are still quite biased at small scales.  
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Fig. 3a: The compensated power spectrum for 200 realizations of the α = 2, C1 = 0.2 
process (with Λ = 214).  The compensation is using the theoretical power law form k-β 
with β = K(2) = (C1/(α-1))(2α-2).  The cyan is the  result for the pure singularity, red 
corrected for the Δx-1/α terms (section 5.1) and the dark blue the “Δx-1” method (Appendix 
D).  
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Fig. 3b:  Same as Fig. 3a but for α = 0.4, 0.8, 1.2, 1.6 (top to bottom, left to right).  For 
the cases α = 0.4, 0.8, the pure power law Δx-1/α corrected power law (cyan and red) are 
nearly superposed. 
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Fig. 4: A simulation with α = 2, C1 = 0.2, λ = 212.  The black is the raw (pure singularity) 
simulation whereas the blue is the singularity corrected for Δx-1/α terms (section 5.1), and 
the red, using the “Δx-1 method” (part II, section 4.2).  The insert shows a blow up of the 
largest singularity, the region between 500≤ x ≤600. 
 

2.3 Moment analysis using dressed fluxes: 
A simulation of a cascade process proceeding over a scale range factor Λ has 

statistics at the finest simulated scale which indeed obey (or as here, nearly obey) eq. 1 

with λ = Λ, i.e. !
"

q
= "

K q( ) .  This means that the variability at the smallest resolution 
is of the expected form, yet the simulations may nevertheless not be completely 
satisfactory since the internal statistics at larger scales (smaller scale ratios, λ < Λ, 
smaller wave numbers k  < Λ) may be biased.  We saw this in the previous section: by 
using spectral analysis we found that the spectrum for wavenumbers k < Λ was only of 
the theoretically expected power law form for k <<Λ.  However, spectral analysis is a 
second order statistic, it is important to consider the statistics at scales λ<Λ for all orders 
q, not just q = 2.  
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In order to study the larger scale statistics (i.e. λ<Λ) it is convenient to estimate 
the simulated λ scale fluxes by integrating over the corresponding scale (i.e. by degrading 
the resolution by a scale ratio Λ/λ): 

!" ,#, d( ) j( ) =
#
"

$
%&

'
()

!#

j *1( )#
"

+ i
$
%&

'
()i=1

# /"

+  (7) 

In eq. 7 we have taken the realizations !
"
i( )  to be defined over the integer coordinates 

1≤ i ≤Λ so that the length of the realization is equal to the largest scale, and the smallest 
scale (=1) corresponds to the largest scale ratio (Λ).  Similarly, with the definition from 
eq. 7, the low resolution, “dressed”  !

" ,#, d( )  is defined over integer coordinates 1≥ j ≥λ.  

We note that !
" ,#, d( ) j( )  has the same resolution as a pure (non summed/integrated) 

“bare” process ελ with scale ratio λ; we compare the two below.  For simplicity we 
consider 1-D processes but the extensions to the higher dimensions are straightforward.   

Note that this convention that the smallest spatial scale is unity is convenient in 
our present context but is not standard.  Usually when studying cascades, we are 
interested in the statistics as the resolution of a cascade defined on the unit interval is 
progressively increased with the smallest scale resolution =1/Λ decreasing with Λ rather 
than the inner (smallest) scale being fixed at unity and the external scale = Λ.  Here 
however we are more interested in making spatially discrete simulations with a fixed 
outer scale and then examining the small scale limit of the cascade as we increase the 
scale ratio and it is convenient to fix the spatial resolution at unity.  

Since the dressed !
" ,#, d( ) j( )  still has variability from the larger scales (smaller 

scale ratios), we see that the difference between the bare and dressed processes at a 
resolution λ is that the former has some extra variability due to the parts of the which are 
averaged out (“dressed”) in eq. 7.  As shown in [Schertzer and Lovejoy, 1987] with the 
help of “trace moments”, the theoretical relation between the dressed process and the 
corresponding bare process at the resolution λ is: 

!
" ,# d( ) = !

"
!
" ,# h( )  (8) 

where the “hidden” flux !
" ,# h( )  is a statistically independent multiplier “hidden” by the 

integration/summing.  It has the property that in the large Λ limit it implies the 
divergence of statistical moments: 

lim
!"#

$
% ,! h( )
q

= O 1( ); q < qD

lim
!"#

$
% ,! h( )
q

"#; q > qD

 (9) 

Where the critical qD satisfies the equation C(qD) = D, (D is the dimension of the 
“dressing” D =1 here)  and C(q) is the strictly decreasing “codimension” function defined 
by: 

C q( ) =
K q( )

q !1
 (10) 

Equivalently eqs. 8 and 9 imply: 
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!
" ,# d( )
q

$ "
K q( )
; q < qD

!
" ,# d( )
q

= #; q > qD

 (11) 

where the “≈” sign indicates equality to within slowly varying factors, i.e. it indicates the 
leading scaling behaviour. The interpretation of eqs. 9, 11 is that the hidden random 
variables !

" ,# h( )  are typically of order unity, but from time to time have huge excursions 
such that their higher moments diverge.  This implies that most bare and dressed fluxes 
are “typically” close to each other, so that for moments q < qD, they have the same 
scaling behaviour. 

In order to test the statistics of the simulations directly on the moments (eq. 1), we 
refer the reader to fig. 5a, b.  Here, the simulations are over a total range of scale Λ =214 
and ελ,Λ (d) at intermediate resolution λ<Λ is estimated by degrading the fine resolution 
simulation εΛ with eq. 7 (for all these simulations, qD>5 so that the divergence is not an 
issue for the statistics shown).  Again we see strong systematic deviations over 
surprisingly large ranges of scale, especially for the higher order moments.   However, 
this assessment is somewhat misleading since deviations accumulate from small scales to 
the large scales so that it is more instructive to examine the process scale by scale.  For 
example, we can look at the change in the moments over octaves in scale e.g. between 
resolution λ and 2λ: 

!K
"
q( ) =

log #
2" ,$ d( )
q / #

" ,$ d( )
q( )

log2
 (12) 

Fig. 6a, b shows the results for Λ = 214 series analyzed with λ increasing by 
factors of 4.  The longest curves are those corresponding to the largest scales (smallest λ).  
One can see that – with the exception of the last two curves - as one moves to larger and 
larger scales (smallest λ) that the simulations do indeed become accurate over larger and 
larger ranges of q so that part of the reason for the poor performance of the spectrum was 
that it was a second order moment which required a wider range of scales for 
convergence.  The poor performance at the very largest scales (the two longest curves) is 
due to another finite size effect discussed below which depends on Λ/λ (no corrections 
were made for these large scale, smaller amplitude deviations).  Also shown in the figures 
are the significant improvements made by the corrections.  Fig. 5b in particular shows 
that with the proposed Δx-1/α corrections the statistics are very close to those of a cascade 
with an outer scale somewhat smaller (by a factor of roughly 2 here). 

In this paper we argue that the origin of the large deviations can be discerned by 
considering the two point statistics (the correlation function).  We show that in addition 
to the expected pure power law Δx-K(2), behaviour there are exp(-AΔx-D/α) residual factors 
which die away very slowly and are largest for α = 2 (A is a constant we derive below).  
We then propose several methods of reducing/eliminating these biases.  
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Fig. 5a:  The various (normalized) moments M = !

"

q
/ !

"

q

 for α = 2 (order 0.2, 0.8, 
1.4, 2, 2.6, bottom to top) with the pure singularity (orange), Δx-1/α corrected (blue) and 
Δx-1 method (red).  The theoretically expected behaviour (eq. 1) is shown in black.  For α 
= 2, the q = 0.2, 0.8 curves are essentially identical as theoretically expected (eq. 3; they 
are superposed here).  The reason the variability completely disappears at λ = 1 is the use 
of microcanonical normalization as discussed in part II.  The statistics are based on 200 
realizations of a D =1 process over a total scale ratio Λ = 214 = 16384. 
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Fig. 5b: α = 2, C1 = 0.2, with theoretical Δx-1/α correction compared to theory lines which 
go through λ = 2. 
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Fig. 5c:  Same as fig. 5a except for α = 0.4, 0.8, 1.2, 1.6 (upper left to lower right). 
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Fig. 6a:  For α = 2; averaging over factor 2 in scale, successive curves are separated by 
factor of 4 in scale. Top to bottom, we have the pure singularity, the Δx-1 method 

(middle) and the Δx-1/α correction (bottom).  The theoretically expected behaviour (eq. 3) 
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is shown in black.   Notice the Δx-1 correction over corrects for some of the range, the   
Δx-α correction does not. The shortest curve (corresponding to averaging over 2 pixels, λ 
= 213) is red, the yellow, green is 211, 29, green blue: 27, cyan, 25, dark blue 23, purple, 21 
(λ =1 not shown).  To clarify the graphs, the longer the curve, the larger λ, the smaller the 
scale. 
 

 
 
  
Fig. 6b:  Same as previous except for α = 0.4, 0.8, 1.2, 1.6 (top to bottom).  Columns, left 
to right, we have the pure singularity (left), the Δx-1 method (middle) and the Δx-1/α 
correction (right). 
 

3. Continuous in space, continuous in scale cascades: 

3.1 Review  

3.1.1 One point statistics 
As mentioned in the introduction, the basic method of constructing continuous in 

space, continuous in scale universal multifractals is to start with the generator Γ: (eq. 2).  
We now introduce the “unit” (and extremal) Levy random variable γα: 
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e
q! " = e

q
"

" #1( )
; q $ 0

e
q! " = %; q < 0; " < 2

 (13) 

(the “<.>” sign indicates ensemble averaging).  Note that a) for α = 2 we have the 
familiar Gaussian case and the q ≥0 formula in eq. 13 is valid for all q, b) for α = 1 we 
have e

q! " = e
q log q  (q >0, = !  otherwise).  An extremal Levy random variable A with 

amplitude a>0 and  Levy index α therefore satisfies: 
A = a! "  

e
qA

= e

a
!
q
!

! "1 ; q # 0

e
qA

= $; q < 0; ! < 2

 (14) 

(with corresponding exception for α = 1).  This implies that for the sum of two 
statistically independent Levy variables A, B we have: 

c
!
= a

!
+ b

!
; C = A + B  (15) 

where C is also an extremal Levy with the same α.  Eq. 15 expresses the “stability under 
addition” property of the Levy variables and a, b, c are the corresponding amplitudes. 
Equation 15 shows that log e

qF (the SCF) of the random variables F = f! "  are 
additive, a property that generalizes to Levy noises; we use this below.   

To understand the relation of the extremals to the more general Levy variables lα 
with α<2, we note that the latter have algebraic tails for both positive and negative values 
so that: 

l
!

q
"#; q $ !

p l
!( ) % A+

l
!

&! &1
; l

!
>> 1

p l
!( ) % A&

&l
!( )

&! &1

; l
!
<< &1

 (16) 

where p is the probability density and A+ and A- are constants that depend on an 
“asymmetry parameter” (the α = 2 case is the qualitatively different Gaussian).  For 
symmetric Levy’s, A+ = A-; here we require the maximally asymmetric Levy’s without 
algebraic behaviour for l>>0. 

However, to obtain the cascade process ε, we must exponentiate the Levy variable 
Γ and if – as indicated in eq. 16 – Γ is constructed from Levy’s with the long “probability 
tails” for both lα <0 and lα >0 then the random variable el!  has no converging moments: 
e
ql! = "  for all q and hence we would have e

q!
= "  for all q.  In order for the 

process to be normalizable at least some positive order moments must converge, 
therefore we are forced to restrict our attention to the extremal Levy’s γα which are 
exceptional in that they diverge on neither side  (0<α<1) or only on one side (1<α<2; 
here for γα <0).  The qualitative difference between the α>1 and α<1 processes is more 
apparent if we consider the corresponding asymptotic forms of the probability densities: 



DRAFT 
 10/21/09 20 

log p ! "( ) # $
! "

%"
&
'(

)
*+

%"

;
! "

%"
>> 0;

1

%"
+
1

"
= 1

p ! "( ) # $! "( )
$" $1

; ! " << 0; 1 <" < 2

p ! "( ) = 0; ! " > 0; 0 <" < 1

 (17) 

where the key point is that the auxiliary variable α’ changes sign at α =1.  (Note that 
exact closed form expressions for the probabilities of extremals only exist in the “inverse 
gaussian” α = ½ case; symmetric Levy’s are analytic for α = 1 (Cauchy) and α = 2 
(Gaussian)).    

Now consider the noise γ(x), produced by putting i.i.d. extremal Levy 
distributions onto a grid and shrinking the grid size to zero (with appropriate 
normalization).  This is possible because Levy distributions are “infinitely divisible”; see 
[Feller, 1971]  (for the noise we drop the subscript α).  With this noise and with the 
normalization constant ND and weight function g(x), Γ can be constructed as a 
convolution:  

!" x( ) = C
1

1/#
ND

$1/#
g x $ x%( )& %x( )dD %x

1' x '"
(  (18) 

When α<2, g must be non-negative otherwise Γ would a (nonextremal) mixture of 
extremal and nonextremal Levy variables. The constant ND is introduced for 
convenience; it will allow us to always take g as an (asymptotically) unit amplitude 
power law as shown below.  Note that in this paper we will only consider isotropic D 
dimensional multifractals, the only exception being the asymmetric causal processes 
needed in space-time simulations (section 3.2.1).  From eq. 18 we see that the statistics of 
Γ are independent of x so that we can take x = 0 and apply the additivity of the SCF (eq. 
15): 

K! q( ) = log e
q!" =

C1

# $1
q
#
ND

$1
g x%( )

#

d
D %x

1< %x <"
&  (19) 

Since !
"

q
= e

K# q( )  we see that if the SCF of Γ, KΓ(q) = K(q)logλ  then ελ = εΓλ will have 

the desired statistics (eq. 1).  In order to obtain the log divergence for KΓ, it suffices to 
choose g to be a cut-off, isotropic singularity: 

g x( ) = x
!D /"

; x # 1

g x( ) = 0 x < 1
 (20) 

so that: 

!"
q

= e
q#" = e

C1

$ %1
q
$
ND

%1&D log "

; &D = d
D
x

x =1

'  (21) 

where ΩD is the integral over all the angles in the D dimensional space (e.g. Ω1 = 2, Ω2 = 
2π, Ω3 = 4π etc.).   
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3.1.2 Normalization 

From eq. 21, we see that if we choose: 
N

D
= !

D  (22) 
then we obtain the desired nonlinear part of the multiscaling behaviour: 

!
" ,u

q
= "

Ku q( )
; Ku q( ) =

C
1

# $1
q
#  (23) 

where Ku is the unnormalized exponent scaling function corresponding to the fact that ε 
given by eq. 21 is unnormalized (hence we temporarily add the subscript “u”).  A 
normalized ελ,n can now be easily obtained using:  

!
" ,n

=
!
" ,u

!
" ,u

 (24) 

so that: 

!
" ,n

q
= "

K q( )
; K q( ) = Ku q( ) # qKu 1( ) =

C
1

$ #1
q
$
# q( )   (25) 

 
as required (we temporarily add the subscript “n” to distinguish it from the unnormalized 
process).  The above leads to cascades with the correct statistics at the finest resolution λ; 
unfortunately, we will now see that without corrections the internal structure of the 
realizations is not perfectly scaling. 

3.2  Two point statistics, the second characteristic function of 
the log autocorrelation and its spatial part S(Δx): 

3.2.1  The general problem: 
A simple way to examine the scaling properties of realizations of cascades 

developed over a finite scale ratio Λ is to consider two point statistics such as 
autocorrelation functions, or their Fourier transforms, spectra.  To calculate these, we first 
consider the random variables: from eq. 18 we obtain:   

!" #x( )!" #x $ %x( )( )
q

= e
q & #x( )+& #x $%x( )( )

= e

qC1
1/'
ND

$1/'
g #x $ ##x( )+g #x $%x$ ##x( )( )( ##x( )dD ##x

1) x )"
*

 (26)  
hence we see that ! "x( ) + ! "x # $x( )  is the generator of the autocorrelation.  For the 
statistics we can define the SCF of the generator by taking ensemble averages of the 
above: 

log !
"

#x( )!"
#x $ %x( )( )

q

= log e
q & #x( )+& #x $%x( )( )

=
C1

' $1
q
'
ND

$1
S %x( )

 (27) 
the entire expression is the full SCF of the log of the autocorrelation, the key function 
S(Δx) is its spatial part. Note that we do not need the more complex full two point SCF 
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log !

"

q1 x
1( )!"

q2 x
2( ) .  Using the statistical translational invariance of the process (by 

construction the noise “subgenerator” γα(x) is statistically independent of x), we can take 
x’ = 0 to obtain: 
S !x( ) = g " ##x( ) + g " ##x " !x( )( )

$
d ##x

1% ##x %&
' = g x( ) + g x " !x( )( )

$
dx

1% x %&
'  (28) 

where in the far right we have taken x = -x’’ and used the fact that the domain of 
integration (but not necessarily g) is invariant under inversion.  We have considered 
isotropic multifractals in a D - dimensional space; for anisotropic multifractals we must 
replace the vector norm in the above by the corresponding scale function (see [Pecknold 
et al., 1993; Pecknold et al., 1996] for anisotropic simulations; the extension of the 
present technical discussion to anisotropic cascades will be made in future publications).   
We note that from its definition (and assumed statistical translational invariance, i.e. 
independence from x’ in eq. 27), the autocorrelation function (and hence S) is symmetric 
under inversion: S !x( )= S !"x( ) . Isotropic processes are symmetric under rotation in 
which case S is simply a function of the vector norm !x .  In this case comparing eq. 5, 
23 and 27 we see that the theoretical S !x( )  is: 

S !x( ) = N
D

" #1

C1

log $ x( )$ x # !x( ) = #N
D
2" # 2( ) log !x + N

D
2" log%  

 (29) 

Where we have used log !
"

2
=

C1

# $1( )
2# log"  (eq. 23); the corresponding logλ term is 

absent in the normalized autocorrelation function. 

3.2.2 The general D = 1 case: 
For simplicity, we start with the problem in one dimension.  Due to the inversion 

symmetry of S(Δx) noted above, in 1-D it is sufficient to consider Δx >0.  The general D 
= 1 case is: 

S !x( ) = g x( ) + g x " !x( )( )
#
dx

1< x <$
%

= g x( ) + g x " !x( )( )
#
+ g "x( ) + g "x " !x( )( )

#&
'

(
)
dx

1

$

%
 (30) 

The two basic cases of interest are the symmetric acausal case with g(x) = g(-x), and the 
causal case with g(x) = 0 for x < 0 (see [Marsan et al., 1996]).  The corresponding 
condition for a space-time processes in D+1 dimensions to be causal is g(x,t) = 0, t<0 
where x is a D dimensional (spatial) vector (see part II for numerical implementations). 

For the symmetric acausal case we have: 

S !x( ) = g x( ) + g x " !x( )( )
#
+ g x( ) + g x + !x( )( )

#$
%

&
'
dx

1

(

)  (31) 

We have already seen that in this case with g a truncated power law given in eq. 20 the 
normalization factor ND =2 (eqs. 21, 22).   



DRAFT 
 10/21/09 23 

For the causal case, since g(x) = 0 for x < 0, we have: 

S !x( ) = g x( ) + g x " !x( )( )
#
dx

1

$

%  (32) 

Here it is easy to see that the corresponding normalization factor is simply ND =1.  
 

3.2.3 The acausal α  = 2, D = 1 case: 
In this paper we consider primarily the isotropic cases; in 1-D this is the 

symmetric acausal case; we shall see that it generalizes directly to the higher dimensional 
isotropic cases.  As a pedagogical example, it is useful to first consider the α = 2 case 
which (with α = ½, 1) are the only fully analytically tractable ones (note the α = 1 case is 
actually a function of xlogx not x, see eq. 4).    

We take g as a symmetric singularity, cutoff for x < 1 ; this is easy to implement 
numerically by using an odd integer grid (see section 4 below): 

 g x( ) =
x

!D /"
; x # 1

0; x < 1
; D = 1; " = 2  (33) 

This leads to: 

S !x( ) = 2
dx

x
+

1

"

#
dx

!x $ x
1

!x$1

# +
dx

x $ !x!x+1

"

#
%

&'
(

)*
+

dx

x + !x
+

1

"

# 2
dx

x !x $ x( )1

!x$1

#

+2
dx

x x $ !x( )!x+1

"

# + 2
dx

x x + !x( )1

"

#
 

evaluating the integrals we obtain: 

S !x( ) = 2" + 8 log# $ 4 log !x + 2 1+ !x + 2( ) $ 8 tan$1 1

!x $1

+ log 1$
!x
#

%
&'

(
)*
2%

&
'

(

)
* + 4 log 1+ 1$

!x
#

%

&'
(

)*
+ log 1+ 1+

!x
#

%

&'
(

)*
+

,
-
-

.

/
0
0

(34) 

 
Making series expansions in eq. 34, we obtain: 

S !x( ) = 2" + 8 log2 + 8 log# $ 4 log!x $16!x$1/2 $
6

5
!x$5 /2 +O !x$9 /2( )

$
7

4

!x
#

%
&'

(
)*
2

$
99

128

!x
#

%
&'

(
)*
4

+O
!x
#

%
&'

(
)*
6

 (35) 
Taking λ>Δx>>1, we see that as expected (eq. 29) the leading term is 
!N

D
2" ! 2( ) log #x = !4 log #x  +8logλ with the leading correction -16Δx-1/2 which 

comes from the tan-1 term and the first log term.  This correction is quite large; it 
dominates the logΔx term until Δx > 5, and even when Δx = 100, it is 10% of the value.  
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3.2.4: The acausal 1-D α<2 case: 

Considering the symmetric acausal case in 1-D (eq. 31) and putting the cut-off in 
g at x = ±1 explicitly into the limits of integration, we obtain:

 
S !x( ) = g x( ) + g x " !x( )( )

#$
%

&
'
dx

1

!x"1

( + g x( ) + g x " !x( )( )
#$

%
&
'
dx

!x+1

)

(

+ g x( ) + g x + !x( )( )
#$

%
&
'
dx

1

)

(
 (36) 

This can be rewritten as follows: 

S !x( ) = g x( )
"
1+

g !x # x( )

g x( )

$

%&
'

()

"

dx
1

!x /2

* + g !x # x( )
"
1+

g x( )

g !x # x( )

$

%&
'

()

"

dx
!x /2

!x#1

* + g x # !x( )
"
1+

g x( )

g x # !x( )

$

%&
'

()

"

dx
!x+1

+

*

+ g x( )
"
1+

g x + !x( )

g x( )

$

%&
'

()

"

dx
1

+

*
 (37) 
so that if g is a decreasing function of x  then each ratio in the above is <1 over the 
indicated ranges and the binomial expansion can be used.  

If we take g as a symmetric power law (eq. 33), then, the above integrals can be 
conveniently approached using the following  transformation of variables: 

r =
x

!x " x
; r =

!x " x

x
; r =

x " !x

x
; r =

x

x + !x  (38) 
leading (respectively, term by term) to the following: 

S !x( ) = 1+ r
1/"( )

" dr

r 1+ r( )
1/ !x#1( )

1

$ + 1+ r
1/"( )

" dr

r 1+ r( )
1/ !x#1( )

1

$ + 1+ r
1/"( )

" dr

r 1# r( )
+

1/ !x+1( )

1#!x /%

$

1+ r
1/"( )

" dr

r 1# r( )
1/ !x+1( )

1+!x /%( )#1

$

(39) 

Rearranging we obtain: 

S !x( ) = 4 1+ r
1/"( )

" dr

r 1# r2( )!x#1

1+!x /$( )#1

% + 2 1+ r
1/"( )

" dr

r 1+ r( )
1+!x /$( )#1

1

%

# 1+ r
1/"( )

" dr

r 1# r( )
1+!x /$( )#1

1#!x /$

% +O !x#2( );
 (40) 

We have also used (for Δx>>1) the approximation (1±Δx)-1= Δx-1 ±Δx-2 +… so that using 
(1±Δx)-1≈Δx-1 so that there will be corrections of order Δx-2.  Also, it can be seen that the 
last two integrals cancel to first order in Δx/λ so that they are of order (Δx/λ)2 (indeed, 
due to the evenness of g, the analytic terms in S are symmetric, so that they are also 
even). 

We therefore obtain the key result: 

S !x( ) = 2N
D

1+ r
D /"( )

" dr

r 1# r2( )!x#1

1+!x /$( )#1

% +O !x#2( ) +O !x / $( )
2
; D = 1; N

1
= 2 (41) 
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with the normalization factor N1 = 2 in D = 1 dimensions.  We have written the leading 
expression for S in this more general form (with rD/α in place of r1/α), since will see that 
with !x = !x  the same formula holds for the higher dimensional isotropic cases.   

We note that for Δx >>1 and λ >> Δx that the lower and upper limits of 
integration are respectively near the r = 0, r = 1 singularities of the integrand, so that to 
estimate the integral we must use separate expansions around each of the singularities. 
(the common region of convergence is the unit interval with endpoints removed).  Hence 
we can exploit the common point r = 1/2 to define the following functions:  

I! r,",D( ) =
d #r
#r

r

1/2

$
1+ #r D /"( )

"

1! #r 2( )
!1
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'
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" 2

D
r
D /" !

" 2 " !1( )

2D
r
2D /"

+O r
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r
2
+O r
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I
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r,!,D( ) =

1

2

d "r
1+ "r( )

1+ "r D /!( )
!

"r
1/2

r

# +
1

2

d "r
1$ "r( )

1+ "r D /!( )
!

"r
$ 2!

%

&
'
'

(

)
*
*

1/2

r

#

= B
+
!,D( ) + 2! $2
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2
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1+

1
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(
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2
+O 1$ r( )

3

0 < r + 1  

 (42) 
where B±(α,D) are only dependent on α, D. 

Using these definitions and expansions, we finally obtain: 

S !x( ) = 2N
D

I" !x"1,#,D( ) " log!x"1 + I+ 1+ !x / $( )
"1
,#,D( )

"2# "1 log 1" 1+ !x / $( )
"1( )

%

&

'
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)

*
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# 2
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$

+
,-

.
/0
2

 (43) 

where  C = 2ND(B-+B+) is constant with respect to Δx, λ and is unimportant; n and m are 
positive integers and D = 1, N1 = 2.  The leading order expression for S is thus = -ND(2α-
2) (logΔx)+ ND2αlogλ as expected (eq. 29) with the leading Δx dependent correction 

!2N
D

"
2

D
#x

!D /" .  

Using the above expansion for S(Δx) we can obtain the following expression for 
the autocorrelation function: 

! x( )! x " #x( ) $ #x"K 2( )
exp "

2C1

D

% 2

% "1
#x"D /%

&
'(

)
*+

 (44) 



DRAFT 
 10/21/09 26 
where we have only kept the (Δx-D/α) correction to the leading power law term.   To 
gauge the importance of this correction, fig. 7 shows the behaviour for D = 1, with C1 
having the moderate value 0.2.  We see that as expected, the effect is particularly strong 
for the larger α, and that for Δx as large as 100 it can still be a 10% effect.  

 
Fig. 7a:  Corrections for the D =1 case, α<1, normalized correctly and using C1 = 0.2. α 
increasing from left to right in increments of 0.1 red (far right) is 0.9. 
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Fig. 7b: Same but for α>1, orange is α = 1.1, red, α = 2.  
 
 

3.2.5:  The 1-D causal case: 
Starting with eq. 32 for the causal S(Δx), we may explicitly take into account the 

truncation in g at x  = 1 by changing the range of integration: 

S !x( ) = g x( )( )
"
dx

1

!x#1

$ + g x( ) + g x # !x( )( )
"
dx

!x+1

%

$ ; !x > 0  (45)  

with: 

g x( ) =
x
!1/"
; x > 1

0; x < 1
; D = 1  (46) 

Using the transformation of variables r = x ! "x

x
 we obtain: 

S !x( ) = log !x "1( ) + 1+ r1/#( )
# 1

r
+

1

1" r
$
%&

'
()
dr

!x+1( )"1

1+!x /*( )"1

+ ; !x > 1  (47) 

we see that to within terms of O(1/Δx) this is half the value of the previous acausal 
expression (eq. 41).  However, we saw in section 3.2.1 that the ND for the causal case was 
half that of the acausal one so that after normalization by ND, the log Δx and Δx-1/α terms 
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are the same, the main difference is that there will now be Δx-1 terms (previously they 
cancelled by symmetry the of g(x)).  
 

4. Conclusions: 
There is a growing body of evidence suggesting that geofields are generally 

multifractal over at least some (possibly very large) range of space-time scales.  This 
motivates the development of techniques for their simulation.  While realistic 
applications are invariably continuous in scale, most multifractal simulations used in the 
literature are discrete-in-scale multiplicative cascades in which integer scale ratios and 
their integer powers play special roles leading to simulations dominated with straight line 
or planar artifacts (in 2-D and 3-D respectively).   

To make the cascades continuous in scale, the basic noise must be “infinitely 
divisible”; the choice considered here being Levy noises (index α) which have the 
additional interest of being the stable, attractive (hence “universal”) cascade processes: 
they arise as a consequence of a kind of “multiplicative central limit theorem”.  In this 
first part, we consider the basic (theoretical) continuous in space, continuous in scale 
process proposed by [Schertzer and Lovejoy, 1987] (developed further in [Wilson et al., 
1991], [Marsan et al., 1996], [Pecknold et al., 1997]), with extensions to causal space-
time processes.   Although the original method works, convergence to the theoretical 
statistical behaviour can be slow, sometimes requiring very significant ranges of scale.  In 
order to quantify these issues and to develop improvements, we considered two point 
statistics (autocorrelations, their SCF and spectra).  We found that in addition to the 
desired power law correlations Δx-K(2) there are spurious correlations which only decay 
slowly (of the form exp(-AΔx-D/α) where D is the dimension of space; there are also other 
terms but this is the most important (especially for 2 ≥ α > 1).  These deviations are 
examples of “finite size effects” since they disappear for Δx >> 1.  We also found large 
scale deviations when Δx/λ ≈ 1 but these were less important.   In part II, we explore the 
consequences of spatial discretisation and show how to remove the leading deviation 
term for isotropic causal and acausal processes.  
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