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136 SCIENCE HIGHLIGHTS: Centennial to millennial Climate variability

On scales ranging over a factor of a billion 
in space and over a billion billion in time, 
the atmosphere is highly variable (from 
planetary scales down to millimeters, from 
the age of the planet down to milliseconds). 
This is usually conceptualized in a “scale-
bound” framework famously articulated 
by M. Mitchell (Mitchell 1976) and that 
focuses on specific phenomena operating 
over narrow ranges. At first this served to 
develop simplified mechanisms and models 
but today, problems are usually solved us-
ing full-blown General circulation Models 
(GcM’s) and these have wide-range scaling, 
power law variabilities. by construction, 
GcM respect these spatial and temporal 
scale symmetries. 

In the following brief overview, I describe 
the wide-range scaling view - made possible 
(and necessary) - by modern models and 
paleo data, and helped by new nonlinear 
geophysics analysis techniques. 

We now know that Mitchell was wrong by a 
factor of perhaps as much as a quadrillion 
(see Fig. 1a for details); the great bulk of 
the variability is in the background spectral 
continuum (Wunsch 2003) that Mitchell 
considered to be no more than a series of 
shallow flat “steps”: Gaussian white noises 
and their integrals. 

The continuum can be divided into four or 
five scaling regimes (Fig. 1) in which mean 
absolute temperature fluctuations ΔT vary 

with timescale Δt as ΔT≈ΔtH (for Gaussian 
processes, there are other equivalent defini-
tions of H, see Franzke and Yuan, this issue). 
From fast to slow, these regimes alternate in 
the sign of H from weather, macroweather, 
climate, macroclimate and megaclimate 
(table 1; this is a proposed taxonomy, the 
macroclimate regime is very short and may 
be better considered as a broad quasi-oscil-
latory regime). When H>0, the temperature 
“wanders”, it appears unstable. When H<0, 
successive fluctuations tend to cancel, so 
that as the period Δt is increased, tempera-
ture averages converge, they appear to be 
stable. Such scaling regimes arise whenever 
the dominant dynamical processes respect 
a temporal-scale invariance symmetry. An 
important feature is that scaling processes 
generally exhibit long-range statistical 
dependencies implying potentially huge 
memories that can be used for prediction.

This simple scaling picture took a long time 
to emerge. At first, this was because paleo 
data were limited and our views were scale-
bound. Later, it was because analysis tech-
niques were either inadequate (e.g. when 
fluctuations were quantified via differences 
or from autocorrelations), or were simply 
too difficult to interpret (most wavelets and 
Detrended Fluctuation Analysis), or when 
using spectral analysis whose interpreta-
tions can be very sensitive to “spikiness” 
(Fig. 2) and has lead to numerous ephem-
eral, spurious claims of oscillations. 

The situation is clarified by the systematic 
use of simple-to-interpret Haar fluctua-
tions ΔT(Δt). Over the interval from time t 
to t-Δt, (i.e. at scale Δt), ΔT(Δt) is simply the 
absolute value of the average of the series 
T(t) over the first half of the interval (from 
t-Δt to t-Δt/2) minus the average over the 
second half (from t-Δt/2 to t). When typical 
absolute fluctuations decrease with scale 
(H<0), H quantifies the rate at which anoma-
lies decrease as they are averaged over 
longer and longer time scales. conversely, 
when ΔT(Δt) values increase with scale Δt 
(H>0), H quantifies the rate at which typical 
differences increase. Haar fluctuations are 
useful for processes with -1<H<1 and this 
encompasses virtually all geoprocesses. 
Historically, Haar fluctuations were the first 
wavelets, yet one does not need to know 
any wavelet formalism to understand or 

Applied to numerous atmospheric and climate series, Haar fluctuation analysis suggests a taxonomy with four or five 
scaling regimes that contain most of the atmospheric and climate variability. This includes a new “macroweather” 
regime in between the weather and climate.
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Figure 1: The root mean square (rMS) Haar fluctuation showing the various (roughly power law) atmospheric 
regimes, simplified and adapted from Lovejoy (2015) where the full details of the sources is given. The dashed 
vertical lines show the rough divisions between regimes; the macroweather-climate transition is different in 
the pre-industrial epoch. The high frequency analysis (lower left) from thermistor data taken at McGill at 15Hz 
was added. The thin curve starting at 2 hours is from a weather station, the next (thick) curve is from the 20th 
century reanalysis, the next, “S” shaped curve is from the Epica core. Finally, the two far right curves are benthic 
paleo temperatures (from “stacks”). The quadrillion estimate is for the spectrum, it depends somewhat on the 
calibration of the stacks. With the calibration in the figure, the typical variation of consecutive 50 million year 
averages is ±4.5°c (Δt=108 years, rMS ΔT = 9°c). If the calibration is lowered by a factor of ≈3 (to variations of 
±1.5°c), then the spectrum would be reduced by a factor of 32. On the other hand, the addition of the 0.017s 
resolution thermistor data increases the overall spectral range by another factor of 108 for a total spectral range 
of a factor ≈1023 (for scales from 0.017s to 5x108 years).
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use them. Although the second-order Haar 
fluctuations (the mean of ΔT(Δt)2) have the 
same information as the spectrum, the latter 
was sufficiently difficult to interpret that the 
“background” was badly misrepresented.

The timescales of the transitions from 
one regime to another have fundamental 
interpretations. For example, the inner 
scale τdis for weather is the dissipation 
scale and the outer scale is the typical 
lifetime of planetary structures: τw≈5-10 
days, itself determined by the energy rate 
density (W/kg) due to the solar forcing 
(Lovejoy and Schertzer 2010). The next 
regime, “macroweather” is reproduced by 
weather models (either GcM control runs 
or the low-frequency behavior of stochastic 
turbulence-based cascade models). Without 
external forcings averages converge to a 
unique climate so that macroweather contin-
ues to arbitrarily large time scales. However, 
at some point (τc) external forcings and/or 
slow internal processes become dominant, 
there is a transition to the climate regime. In 
the industrial epoch τc≈20 years; in the pre-
industrial epoch, τc≈centuries to millennia 
(Huybers and curry 2006, see fig. 1). A key 
goal for PAGES’ climate Variability Across 
Scales (cVAS) working group is to clarify the 
spatial (and epoch to epoch) variability and 
origin of τc: it is not obvious that either solar 
or volcanic forcings are sufficient to explain 
it. It seems likely that slow processes includ-
ing land-ice and/or deep ocean currents 
may be needed. At Milankovitch scales, H 
again changes sign and even larger scale 

(megaclimate) regime (far right in Fig. 1) has 
H>0 again.

The scaling has consequences. For example, 
hiding behind seemingly ordinary signals, 
there is often strong intermittency; “spiki-
ness”. This is visually illustrated in Figure 2 
which compares the absolute changes of 
series (top) and transects (bottom), normal-
ized by their means. Also shown are the 
expected levels of the maxima for Gaussian 
processes (bottom dashed lines), and the 
levels expected at a probability level of one 
in a million (top dashed lines). One can see 
that with unique exception of macroweather 
in time, the signals all hugely spiky. This 
“intermittency” has two related aspects: 
extreme jumps (non-Gaussian probabilities) 
with the jumps themselves clustered hierar-
chically: clusters within clusters. As anyone 
familiar with spectral analysis knows, these 
“jumps” have large impacts on the spectra; 
they generate random spectral peaks that 
can be highly statistically significant when 
inappropriate – yet standard - Gaussian sta-
tistical significance tests are used. In climate 
applications, they are regularly responsible 
for ephemeral claims of statistically signifi-
cant periodicities.

If the process is scaling, then in general the 
clustering is different for each level of spiki-
ness, requiring a hierarchy of exponents.  
For example, typical fluctua tions near the 
mean are characterized by the exponent c1 
(technically, c1 is the fractal codimension 
of the typical spike sparseness). Similarly, 

the probability of an extreme fluctuation 
ΔT exceeding a threshold s will be a (“fat-
tailed”), power law probabilities Pr(ΔT>s) ≈ 
s-qD for the probability of a random fluctua-
tion ΔT exceeding a fixed threshold s. qD 
is another exponent; starting with Lovejoy 
and Schertzer 1986, qD has regularly been 
estimated as ≈5 (weather and climate 
temperatures). Depending on the value of 
qD, extreme fluctuations occur much more 
frequently than would classically be ex-
pected. They are easily so extreme that they 
would spuriously be considered “outliers”. 
Such events are sometimes called “black 
swans” (Taleb 2010) and it may be difficult 
to distinguish these “normal” extremes from 
tipping points associated with qualitatively 
different processes, although either might 
be catastrophic.

A key objective of cVAS is to go beyond 
time series, to understand variability 
in both space and in space-time. In the 
weather regime, the spatial H exponents 
are apparently the same as in time. This is a 
consequence of the scaling of the wind field 
and of the existence of a well-defined size-
lifetime relationship (Lovejoy and Schertzer 
2013). However in macroweather – to a good 
approximation (verified empirically as well 
as on GcM and turbulence models) – one 
has “space-time statistical factorization” so 
that the joint space-time statistics such as 
the spectral density satisfies P(ω,k)≈P(ω)P(k) 
and the space-time relationship can be 
quite different than in weather (Lovejoy 
and Schertzer 2013). This is important since 
– without contradicting the existence of 
teleconnections – it statistically decouples 
space and time, transforming the GcM 
“initial value” problem into a much easier to 
handle stochastic “past value” (but fractional 
order) macroweather forecasting problem.

The systematic application of nonlinear geo-
physics analysis and models to climate data 
has only just begun. cVAS will help take it to 
the next level.
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Figure 2: A comparison of the “spikiness” (intermittency) in time (top) and space (bottom), of weather, 
macroweather and climate series and transects. The graphs have 360 points and show the absolute differences 
between consecutive values normalized by their means. Each graph has two parallel dashed lines; the lower one 
corresponds to a Gaussian probability of 1/360, the level of the expected maximum value. The upper dashed 
line corresponds to a (Gaussian) probability of one in a million. While the spatial intermittencies (bottom) are 
strong, the temporal intermittencies are nearly absent from the macroweather series (upper middle). Adapted 
from (Lovejoy, in  press). Upper left: Hourly temperature data from 1-15 January 2006, from a station in Lander 
Wyoming. Upper middle: 20c reanalysis (20cr) from 1891-2011; each point is a four-month average, the data 
are from a single 2x2° grid point over Montreal, canada (45°N). Upper right: GrIP (75°N) paleo temperature 
degraded to 240-year resolution (the present to 86400 years before present, left to right). Lower left: EcMWF 
reanalysis for the average temperature of the 21 January 2000, along the 45°N parallel at resolution of 1° 
longitude. Lower middle: The same as at left but for the temperature averaged over the month of January 2000. 
Lower right: The 45°N 20cr temperatures, averaged since 1871.
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