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Abstract. The classical models of volcanic eruptions assume
that they originate as a consequence of critical stresses or
critical strain rates being exceeded in the magma followed
by catastrophic fragmentation. In a recent paper (Gaonac’h
et al., 2003) we proposed an additional mechanism based on
the properties of complex networks of overlapping bubbles;
that extreme multibubble coalescence could lead to catas-
trophic changes in the magma rheology at a critical vesic-
ularity. This is possible because at a critical vesicularityPc

(the percolation threshold), even in the absence of external
stresses the magma fragments. By considering 2-D perco-
lation with the (observed) extreme power law bubble distri-
butions, we showed numerically thatP2c had the apparently
realistic value≈0.7.

The properties of percolating systems are, however, sig-
nificantly different in 2-D and 3-D. In this paper, we dis-
cuss various new features relevant to 3-D percolation and
compare the model predictions with empirical data on explo-
sive volcanism. The most important points are a) bubbles
and magma have different 3-D critical percolation points;
we show numerically that with power law bubble distribu-
tions that the important magma percolation thresholdP3c,m

has the high value≈0.97±0.01, b) a generic result of 3-D
percolation is that the resulting primary fragments will have
power law distributions with exponentB3f ≈1.186±0.002,
near the empirical value (for pumice)≈1.1±0.1; c) we re-
view the relevant percolation literature and point out that the
elastic properties may have lower – possibly more realistic
– critical vesicularities relevant to magmas; d) we explore
the implications of long range correlations (power law bub-
ble distributions) and discuss this in combination with bubble
anisotropy; e) we propose a new kind of intermediate “ellip-
tical” dimensional percolation involving differentially elon-
gated bubbles and show that it can lead to somewhat lower
critical thresholds.

Correspondence to:H. Gaonac’h
(gaonach.helene@uqam.ca)

These percolation mechanisms for catastrophically weak-
ening magma would presumably operate in conjunction with
the classical critical stress and critical strain mechanisms. We
conclude that percolation theory provides an attractive theo-
retical framework for understanding highly vesicular magma.

1 Introduction

Bubbles play a crucial role in controlling the style and in-
tensity of volcanism: when reaching a free surface they can
relieve pressure – possibly violently – and when they are
trapped in the ascending magma, they can weaken its struc-
ture. In order for this weakening to lead to an explosive rather
than an effusive eruption style, one assumes that the sys-
tem responds discontinuously/catastrophically to a small in-
crease in some physical parameter. Two main fragmentation
mechanisms are proposed. The first supposes that the bub-
ble gas pressure increases sufficiently to overcome the ten-
sile strength of the surrounding magma (e.g. Aldibirov, 1994;
Zhang, 1999; Alidibirov and Dingwell, 1996); whereas the
second is based on the idea that viscous strain rates could
become higher than the relaxational strain rate of the melt
(Dingwell and Webb, 1989; Papale, 1999). In both cases,
the rheology changes catastrophically even though a physical
parameter (gas pressure or strain rate) may only change by
the (possibly) small amount necessary to exceed a threshold.
The theoretical calculations underlying these models invari-
ably make artificial assumptions about the geometry of bub-
bly magma such as ignoring multibubble interactions, assum-
ing regular arrays of non-overlapping bubbles, the sphericity
of bubbles, etc. While these assumptions may be valid at low
vesicularities, they become questionable at larger ones where
extreme bubble – bubble “overlap” and interaction must oc-
cur.

In all cases, the role of bubbles is important; recent ad-
vances in their understanding include studies of textural
aspects of volcanic products issued from bubbly magmas
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Table 1. Definitions of variables used in the text.

P Vesicularity of the magma

Pex Vesicularity at explosion

P3c,b, P3c,m,P2c (or P2c,b) Critical vesicularity at percolation in a system. The subscript indicates the di-
mensionality, “b” indicates “bubbles”, “m” magma”

A∗, V ∗ The area and volume of largest bubbles (this diverges atPc)

n(A), n(V) Number density of bubbles with areas betweenA andA+dA, (with volumes
betweenV andV +dV in 3-D)

B2, B3 Initial bubble size distribution scaling exponent in 2-D and 3-D, respectively

B3f Universal fragmentation exponent in 3-D, valid nearP3c,m

Vex , <Vex> Effective excluded volume, ensemble average of the effective extruded volume

P2e,BB , P2e,CF , P3e,BB , P3e,CF Critical bond occupation fraction for central force (CF) and bond bending (BB)
elasticity on lattices, the number indicates the dimensionality

L Linear size dimension of the system

Del=2+Hz Elliptical dimension

(Klug and Cashman, 1994; Polacci et al., 2001; Klug et
al., 2002; Gaonac’h et al., 1996a, b, Lovejoy et al., 2004);
these studies have brought out the importance of coalescence
and anisotropy of bubbles. Laboratory studies were also im-
portant for refining theories of magma fragmentation, espe-
cially Ichihara et al. (2002), Spieler et al. (2004), Namiki
and Manga (2005, 2006). At an empirical level, Spieler et
al. (2004) have established that at least for low to moderate
vesicularities (below≈20%–30%), that for a fixed bubble
overpressure, there is a roughly linear relation between the
yield strength and the vesicularityP of the bubbly fluid (the
critical overpressure is proportional to 1/P ; see Table 1 for
parameter definitions). Although the authors do not discuss
this in much detail, for largeP , the yield strengths inferred
from their experiments are seemingly nearly independent of
P even if the relation is hard to discern due to the large ex-
periment to experiment variability. Indeed it would be sur-
prising if high vesicularity conditions could be successfully
modelled without taking into account complex multibubble
interactions.

In Namiki and Manga (2005), magma was simulated by
a gum rosin solution. Over a large range of initial vesicu-
larity and pressure differentials they conducted rapid decom-
pression experiments. The effects of the decompression rates
on the eruption styles of the bubbly elastic fluid was inves-
tigated, demonstrating the important role of bubbles and de-
formation during expansion of the magma. In Namiki and
Manga (2006) the effects of decompression rate on expan-
sion style and velocity of the bubbly fluids were explored
when viscosity was low enough to allow the expansion of the
bubbles.

The classical eruption models focus on the consequences
of the variation of external parameters on a relatively static
magma; it is implicitly assumed that, for a given bubble
overpressure, the rheology (e.g. the critical yield strength)
evolves smoothly with vesicularityP (e.g. in Spieler et al.,
2004, it evolves linearly withP). Yet there are reasons to
believe that the relation may not always be smooth and can
even be singular. This is because it is generally acknowl-
edged that explosions typically occur at such high vesicular-
ities Pex that the bubbles necessarily overlap into complex
networks. For example, Sparks (1978) suggests that at the
moment of explosionPex≈75–77% is quite common and
Gardner et al. (1996) findsP≈0.64 for eruption products
coming from magmas with viscosities higher than 105 Pa s.
Since the most vesicular products (more fragile) are more
susceptible to secondary fragmentation this is presumably a
lower bound onPex (see below).

The geometry of idealized versions of these bubble net-
works – in which all the bubbles are placed uniformly at
random and have various distributions of shapes and orien-
tations – has been extensively studied in statistical physics;
the problem of “percolation” (see Stauffer, 1985, for an intro-
duction). Percolation theory shows that under fairly general
circumstances the superposition of such randomly distributed
shapes results in a geometric phase transition around a criti-
cal vesicularityPc. Applied to bubbles, this means that as the
vesicularityP approachesP2c, (P3c in 3-D) the areaA∗ (or
volumes V∗ in 3-D) of the largest simply connected bubbles
diverges:

A∗
≈ |P − P2c|

−2ν2 ; 2-D
V ∗

≈ |P − P3c|
−3ν3 ; 3-D

(1)
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(ν is the “correlation length exponent”;ν2=4/3 (Den Nijs,
1979);ν3=0.88±0.02 (Grassberger, 1983). In a 2-D system
the largest bubble spans the system and effectively cleaves
it in half so that even if there is no external stress, atP2c

the magma is reduced to a collection of disconnected frag-
ments. In Gaonac’h et al. (2003), this singular behaviour of
percolating systems was used as the basis of a critical rheo-
logical model for explosive volcanism in which the stresses
and strain rates play only passive roles, but in which the
vesicularity plays the role of critical parameter: in a stressed
magma, ifP slowly rises to the critical valueP2c catastrophic
fragmentation will result. Although it is possible that certain
volcanic explosions are purely consequences of this bubble-
based mechanism, the percolation mechanism is clearly not
in contradiction with the classical mechanisms. Indeed vol-
canic explosions may occur because the percolation point is
reached in some particularly porous part of the magma col-
umn which then breaks down locally. This local breakdown
could create a pressure wave that disrupts the surrounding
magma by classical critical stress mechanisms.

The most commonly discussed type of percolation is that
which occurs on a regular lattice. In contrast, the bubble per-
colation we proposed is a type of “continuum percolation”
which is theoretically and numerically harder to investigate.
General percolation theory predicts that the percolation ex-
ponents (νD in Eq. (1), D is the dimension of space; there
are other exponents including a fragmentation exponent; see
below) are “universal” in the sense that they are the same
for virtually any basic shape in both lattice and continuum
percolation. However, the criticalPc is not universal and is
usually determined numerically and after considerable effort.

While standard continuum percolation theory uses
“monodisperse” distributions (all the basic shapes are the
same size), in order to apply percolation theory to a bub-
bly magma, it was on the contrary proposed that a wide
power law distribution of basic bubble sizes should be used.
This was justified on the one hand because the basic bubble-
bubble (binary) coalescence mechanism has no characteris-
tic size and hence leads to power law distributions of gas
vesicles (Gaonac’h et al., 1996b; Lovejoy et al., 2004).
On the other hand it was justified empirically; Gaonac’h et
al. (1996a), Klug et al. (2002) found:

n (A) ≈ A−B2−1
; 2-D

n (V ) ≈ V −B3−1
; 3-D

(2)

wheren is the number density of bubbles with areas between
A andA+dA, (with volumes betweenV andV +dV , in 3-D);
empirically they foundB2≈0.75. This is quite an extreme
distribution indeed, since wheneverB2 or B3<1 it is so dom-
inated by the large bubbles that a cut-off is needed (here taken
as a fixed fraction of the system size) in order to stop the
mean diverging in the large bubble limit (this is necessary
so that the model can be normalized to yield a finite mean
vesicularity). According to the terminology of de Dreuzy et
al. (2000) power law percolation is a “long-range” rather than
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Fig. 1. This shows an accurate estimate of the infinite system
2-D percolation threshold P2c for power law bubble distributions
from simulations. The scale invariant exponent used in the nu-
merical simulation isB2=0.75 (the empirical value). The (finite
sized) percolation threshold is estimated at four different sized

systems L=27, 28, 29, 210 and then plotted againstL
−1
v2 where

ν2=4/3 is the theoretical correlation length exponent; this is a stan-
dard method for dealing with finite size effects. The extrapola-

tion of L
−1
v2 to zero yields the infinite system percolation thresh-

old; here P2c=0.708±0.001. This is close to the approximate value
0.70±0.05 cited in Gaonac’h et al. (2003). The largest bubbles in
the initial distribution had diameters =10% of the system size.

a “short-range” type where all bubbles would be smaller than
the size of the magmatic system. Figure 1 demonstrates that
the observed power law percolation is in the same “universal-
ity” class as the usual monodisperse percolation (same invari-
antν2 exponent) since it is well fit by the theoretical univer-
sal monodisperse exponentν2=4/3 (Den Nijs, 1979). Using
this power law distribution andB2=0.75 on numerical simu-
lations, (Gaonac’h et al., 2003) foundP2c≈0.7±0.05 which
is quite close to the vesicularity (Sparks, 1978; Gardner et
al., 1996) observed in the products of explosive volcanism.

Unfortunately, the more realistic 3-D case was not con-
sidered. At the time, it appeared that the change in the 2-
D percolation threshold resulting from the replacement of
monodisperse by power law bubble distributions was very
considerable. According to data in the review (ben-Avraham
and Havlin, 2000), (Table 2.1, p. 17) the monodisperse 2-
D P2c had the value 0.312±0.005 which was only slightly
above the 3-D value 0.2895±0.0005 (Rintoul and Torquato,
1997). It was therefore concluded that the dimensionality
did not have a strong influence onPc, and that the increase
from P2c≈0.3 (monodisperse) to 0.7 (power law) was due
to the strong effect of the power law bubble distribution.
Unfortunately, the review valueP2c=0.312±0.005 turned
out to be a misprint; the correct (and up to date) value is
P2c=0.676339±0.000004 (Quintanilla, 2001). In reality, the
bubble distribution only has a small effect onPc (see how-
ever Sect. 5) whereas the effect of the dimension of space is
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Fig. 2a. A horizontal section through a 2563 power law (B3=0.85)
system just below the magma percolation point at P3c,m=0.97. Bub-
bles are white; the rocky matrix/viscous magma is black. Most of
the bubbles are actually joined via connections out of the plane.

very large. Indeed, a much more precise calculation ofP2c

in the case of power law bubbles (see Fig. 1) taking into ac-
count the size of the finite simulated system shows that the
infinite system has a value ofP2c=0.708±0.001, so that the
effect of changing the distribution – even for a distribution as
extreme as a power law distribution withB<1 – is actually
fairly small. Due to the much lower monodisperse 3-DP3c

value, it is therefore important to re-examine the percolation
model of explosive volcanism. On the one hand, we seek to
verify the effect of power law bubble distributions in 3-D (in
particular on the value ofP3c), on the other, we explore some
new features of 3-D percolation not present in 2-D and some
implications for volcanic systems.

2 3-D continuum percolation: power law and monodis-
perse bubble distributions

Percolation in 2-D is relatively straightforward. BelowP2c,
the largest bubble is of finite extent (A in Eq. 1), the sur-
rounding magma region is infinite and “magma” percola-
tion prevails (a path is possible from one side of the sys-
tem to the other without crossing through bubbles). At
P2c a percolating network of bubbles is formed (a path
is possible from one side of the system to the other only
through bubbles). This path cleaves the magma into fi-
nite sized fragments; the overall system will therefore lose
its tensile strength. The pointP2c, is critical for both
geometric and rheological properties. In 3-D the situa-
tion is more complicated, there are two different percola-
tion thresholds: the percolation threshold of the gas bubble

 

Fig. 2b. A “cloud” rendition of the previous simulation bringing
out the filamentary nature of the magma near the magma percola-
tion point. Here, the intensity (white to saturated blue) depends on
the exponentially weighted total (integrated) magma density along
a column perpendicular to the surface, the brighter regions are those
where most light would pass if lit from the other side, i.e. a repre-
sentation of gas bubbles.

 
 

  

 
 

 
 

 Fig. 2c. Four different view angles showing a simulation of the
percolating magma cluster (largest magma fragment – in grey) with
power law bubble distribution (B3=0.85) on a 643 simulation show-
ing the extremely fragile and complex created structures at such
high vesicularity (P=0.95).
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Fig. 3a.This shows the probability of bubble percolation as a func-
tion of vesicularity of the system for power distributed spheres,
B3=0.85 (blue) and monodisperse (red). The simulations were
made on 2563 grids, in the monodisperse case, the radii were 10
pixels, in the power law case, the large bubble cut-off on the initial
distribution had radius 10 pixels; there were about 100 simulations
in each case. The curves are fits to the semi-empirical function1/2
(1+tanha(P−Pc)) wherea is a constant (determined by the finite
size of the system). The arrows show the values ofPc estimated
here asP3c,b=0.228, 0.259 for the power law and monodisperse
systems, respectively. The latter is slightly below the literature (in-
finite system) value 0.2895±0.0005 due to finite size effects.

network, P3c,b, and the percolation threshold of the sur-
rounding magma,P3c,m (the subscript “b” for “bubbles”,
“m” for “magma”). At the criticalP3c,b=0.2895±0.0005 for
monodisperse spheres (Rintoul and Torquato, 1997), there
is a continuous spaghetti-like fractal bubble spanning the
system, but the magmatic surrounding matrix is – with the
exception of a few small fragments – all connected, in-
finitely large and percolating. However when one reaches
a much higher vesicularityP3c,m≈0.9699±0.0003 (Rintoul,
2000), the magma fragments i.e. the magma stops percolat-
ing; this is another critical threshold with the same “univer-
sal” exponents. For lattice percolation Grassberger (1983)
findsν3=0.88±0.02 for continuum percolation while Rintoul
(2000) givesν3=0.902±0.005 (the two are presumed to be
the same to within numerical error). Figures 2a, b, c exhibit
the fragile filamentary magmatic structures at this high vesic-
ularity.

In the continuum percolation literature, it is traditional to
consider that the complement of the percolating elements are
“voids”. In applications to magmas, this can be confusing
since the percolating medium is a gas bubble, the comple-
ment being the viscous magma – or when analysing volcanic
samples – the solid matrix and crystals. The magma per-
colation cited above is therefore called “void percolation”
or “Swiss cheese percolation”. Although void percolation
hasn’t attracted so much attention, Yi (2006) has investigated
the effect of changing the shape of the basic elements from
spheres to ellipsoids. On 12003 grids, he showed that in-
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Fig. 3b. Same as Fig. 3a except for magma percolation.
P3c,m=0.973, 0.964 for the power law (blue) and monodisperse
(red) respectively bubbles. There were about 120 simulations in
each case. Again the monodisperse value is slightly different from
the literature (infinite) system value due to finite size effects.

creasing the elongation ratio of the (monodisperse) ellipses
to 8:1 (the maximum possible on his grid)P3c,m decreased
by about 1% from the spherical valueP3c,m≈0.9699±0.003
(Rintoul, 2000), toP3c,m≈0.958. This is in contrast with
our simulations in Fig. 3b indicating about a 1% increase
in P3c,m when monodisperse distributions of spheres are re-
placed by power law distributions withB3=0.85. As pointed
out in Gaonac’h et al. (2003), ifB2 is the bubble size expo-
nent of a 2-D cross-section of an isotropic 3-D percolation
process, then when passing from 2-D to 3-D we must use
the relation 2(1–B2)=3(1–B3) so that the empiricalB2=0.75
corresponds toB3≈0.85.

For the percolating model of explosive volcanism, this sec-
ond P3c,m is the most important in the sense that it is at
this very high level of vesicularity that the magmatic sys-
tem is completely fragmented, where the tensile strength of
the magma completely vanishes. If the system is under stress
and just belowP3c,m , then an imperceptible increase inP
leads to a catastrophic weakening of the system and hence
explosion. In comparison, atP3c,b while degassing will be
enhanced by the percolating bubble network, the magma rhe-
ology will only change imperceptibly and the magma would
continue its ascent without being too disturbed. Unfortu-
nately, the valueP3c,m is quite high, perhaps too high to
be compatible with the observations although – as discussed
below – the observations on explosive products may not be
straightforward to interpret. This is especially true since it
may be enough for a localized region to reach the percola-
tion threshold in order to provoke first a local and then a more
general fragmentation. Before discussing this further, let us
first check that changing from a monodisperse to power law
distribution does not alter theP3c’s very much. Figures 3a,
b show the results of numerical simulations for estimating a
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Fig. 4a. This shows the fragment distribution of 11 non percolat-
ing simulations on 2563 lattice involving power law bubble distri-
butions withB3=0.85 taken at P=0.967 (nearP3c,m). The distri-
butions are normalized by the total number of bubbles so that the
ordinate is actually the relative probability of fragments of a given
volume. The reference slopes have the theoretical universal perco-
lation valueB3/2=0.425 (left) and 1.186 (right). The latter formula
was also found in 2-D simulations in Gaonac’h et al. (2003) but the
formulaB3/2 is only semi-empirical.

monodisperse and power law distribution withB3=0.85. We
can see that not only are the finite monodisperseP3c’s close
to the theoretical infinite system values (P3,m≈0.964 – see
Fig. 3b – i.e. to within 0.6% of the value 0.9699±0.0003
(Rintoul, 2000); this serves as a check on the simulations),
but also that the power law simulations are not very differ-
ent, withP3c,b about 3% lower andP3c,m about 1% higher
than the corresponding monodisperse values. Although we
did not attempt to extrapolate these 2563 values to infinite
system values, the difference is small and is expected to per-
sist in the limit (see the discussion in Sect. 5).

A seductive feature is that this model elegantly ex-
plains the fragment size distributions observed for pumice.
One of the universal features of percolation at the critical
point is indeed the existence of a power law distribution
of fragments with universal percolation exponent in 3-D,
B3f ≈1.186±0.002 (Jan and Stauffer, 1998); “f for “frag-
ment”; B3f =τ–1 whereτ is the usual percolation notation.
Our simulations confirmed that the power law bubble distri-
butions did not alter this value (Fig. 4a) which is very close
to the empirical valueB3,f ≈1.1±0.1 from Plinian fragments
(Kaminski and Jaupart, 1998). Note that in some of the lit-
erature (e.g. Kaminski and Jaupart, 1998; Kueppers et al.,
2006) the exponent 3B3f is used instead. It is denoted by
the symbolD and is incorrectly referred to as a “fractal di-
mension” even though it is not the fractal dimension of any
set of points; indeed, since 3B3,f >3, it could not possibly
represent a set embedded in three-dimensional space. This
valueB3f >1 contrasts with the much smaller value obtained
in 2-D percolation (≈B2/2; see Gaonac’h et al., 2003, for a
discussion). In addition, as noted by Kaminski and Jaupart
(1998) values ofB3f >1 cannot be obtained by simple clas-
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Fig. 4b. This shows the average number distributions of volcanic
fragments from 600 simulations sized 1283 for both monodisperse
(blue) and power law (red) percolation at a P value of 0.7, i.e. be-
low the P3c,m value (note;B3=0.85 was used for the bubble dis-
tribution and natural logs are used on the graph). The radius of
the monodisperse bubbles was 10 pixels, the largest bubble in the
power law simulations was also 10 pixels in radius. This corre-
sponds to a Log(volume)=8.34 corresponding to a characteristic
scale that breaks the scaling (note the basee here). The two steep
reference lines have slopes−1.186. The shallow reference line has
slope−0.85. While the second exponent is the universal prediction
of continuum percolation theory forP close toP3c,m, the former
behaviour (0.85) is nontrivial to explain since it is the bubble dis-
tribution which has a power law withB3=0.85. Since these sim-
ulations were belowP3c,m, the single largest fragments on each
simulation percolate and were removed from the distributions.

sical fragmentation mechanisms (they suggested a series of
fragmentation events happening in the eruptive column) so
that the 3-D percolation explanation forB3f >1 is particu-
larly appealing. We should note that this power law distribu-
tion tail only appears nearP3c,m (≈90%); however Fig. 4b
shows that somewhat below this value (P3c,m=0.7), in the
power law (but not monodisperse case) this theoretical be-
haviour may already be starting to be visible.

3 3-D continuum percolation as a model for explosive
volcanism

We have noted that in the absence of external stress, com-
plete fragmentation of the magma will only occur near the
relatively high (monodisperse) valueP3c,m≈0.9699. While
this seems high, it is worth noting that the evidence for the
critical explosive vesicularityPex being around 0.6–0.7 is in-
direct, being based on the vesicularity of eruption products.
However, according to the percolation model, while the over-
all magma may have a largeP at the moment of explosion,
the individual fragments will have a distribution ofP values
each of which will be quite a bit lower, possibly quite close to
observations. In addition, after the explosion some of the vol-
canic products will stay hot longer so that the bubbles inside
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Fig. 5. Schematic diagrams showing the hypothetical response of porous magma to pressure gradients at varying values ofP (ordinates, in
percentage).

each fragment will continue to expand and coalesce and –
presumably in some cases – continue to fragment after the
initial explosion, e.g. Thomas et al. (1994). While this makes
it difficult to infer thePex in the magma at the moment of the
explosion it does not necessarily change the overall bubble
size distributions.

Even with these caveats, real magmas are under stress and
will certainly fragment belowP3c,m. The problem is to de-
termine how the rheology – in particular the yield strength –
of the magma evolves withP . While the percolation model
may indeed provide a good approximation to the magma ge-
ometry – since it is a fairly general model of multibubble
overlap (and we hypothesize, multibubble coalescence) – in
itself it will explain explosive volcanism only if for some
relevant small range of vesicularityP , the rheology varies
extremely rapidly. While we postpone a discussion of the
mechanical properties of percolating systems to a later sec-
tion, we can use our knowledge of 2-D and 3-D percolation
to make a schematic of the plausible behaviour of the bubbly
viscoelastic fluid (Fig. 5). On the left we see the relatively
simple situation in 2-D where a single percolation threshold
exists. As the vesicularity increases from 0% to 70%, less
and less overpressure is needed to fragment the system. At
P2c (close to 70%) fragmentation occurs even at vanishing
surrounding pressure gradients. On the right, we see the sit-
uation in 3-D where there are several criticalP values asso-
ciated with abrupt changes in the yield strength of the mag-
matic system. Starting at low vesicularity, we hypothesize
that whenP exceeds firstP3c,b (≈30%) – where the bubbles
form infinite spaghetti-like fractal networks and allow more
effective degassing – there may be a corresponding weaken-
ing of the still percolating magma. Then, atP=P2c (≈70%)
every planar cross-section will undergo 2-D bubble percola-
tion, hence every plane will be cleaved by an infinite sized
bubble. We hypothesize that this might cause further rapid
weakening of the magmatic rheology near this value, possi-
bly explaining the common observations ofP near 70% in
the volcanic products. Finally, atP3c,m (≈97%) – and this

is not speculation but a sure consequence of 3-D percolation
– the entire magma fragments (the magma no longer perco-
lates) even in the absence of a surrounding pressure gradient.

We have seen that due to 2-D percolation catastrophically
cleaving every planar section atP2c≈0.708, it is possible that
the rheology of the magmatic system will respond abruptly
even at values well belowP3c,m. Figure 4b shows that – at
least in the case of power law bubble distributions – that the
primary fragments have size distributions with long tails not
too far from the theoretical power law with exponentB3f

(hence close to the observations of Kaminski and Jaupart,
1998). The only direct way to test this model would be either
empirically by testing the yield strengths of volcanic prod-
ucts as functions of their vesicularities (something which to
our knowledge has not yet been done systematically), or
to perform (difficult) numerical or theoretical calculations
on percolating systems (see however below). Probably the
best relevant information currently available is from labora-
tory experiments by Namiki and Manga (2005) (see Fig. 6)
which although not conclusive do seem compatible with the
percolation based schematic Fig. 5. The authors conducted
rapid decompression experiments of an analogue of a bubbly
magma varying the initial vesicularity and pressure change
from one experiment to another. They observed various
patterns in response to the experimental conditions such as
“fragmentation” or “partial rupture” regimes and plotted the
estimated observed experimental values in hypothesized re-
gions in accordance to initial vesicularities, pressure changes
and potential energy (assumed to be transformed into kinetic
energy). In order to interpret Fig. 6 in terms of the percola-
tion model, two points must be borne in mind. First, while
the percolation model applies to the vesicularity at the mo-
ment of fragmentation, Fig. 6 refers to the initial vesicularity
i.e. just before a sudden decompression – expansion of the
bubbles. In spite of this, we may note from the figure that
– as expected (cf. Fig. 5) – whenP>70% the pressure gra-
dient need not be very high to cause rupture and fragmenta-
tion. At P3c,m≈95% the system will fragment as discussed
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Fig. 6. A “regime” diagram of laboratory observed bubbly magma
behaviour as a function of initial vesicularityφ and overpressure
1P . The various symbols represent different experimental condi-
tions; adapted from Namiki and Manga (2005). The three vertical
lines show the three different 3-D percolation thresholds identified
in the present paper as critical vesicularities relevant to magmatic
rheology (see Fig. 5). Blue, green, red, pink and light-blue symbols
show cases with fragmentation, partial rupture, detachment, defor-
mation and “nothing”. See Namiki and Manga (2005). Crosses,
circles and asteriks indicate different concentrations of their experi-
mental solutions. Their diagram is divided in five distinct expansion
styles (see Namiki and Manga, 2005, for explanations).

above. Second, in addition to the nontrivial relation between
initial vesicularity and the vesicularity at the moment of frag-
mentation, the straightforward application of the percolation
model to explosive volcanism is under slowly varying condi-
tions with vesicularityP slowly rising – and not under rapid
decompression. Such depressurization – at least in local pla-
nar regions perpendicular to the pressure change variation –
is particularly favourable to fragmentation (Ichihara et al.,
2002) so that in addition to visco-elastic extensions of the
theory we must also take into account anisotropy.

4 Magma Rheology and critical elastic properties in
percolating systems

Magmas are viscoelastic fluids implying that viscous and
elastic properties of the fluid depend on the relevant ex-
pansion and decompression rates (see Ichihara et al., 2002).
While it is possible that 3-D percolation as described above is
already an adequate model of explosive volcanism, it is worth
exploring other avenues for obtaining singular behaviour at
lower more commonly observedPc’s than 90%. If we ap-

proximate the magma as an elastic solid, then we may be able
to apply the theoretical results on the elastic properties of
percolating systems that have been studied since the 1980s.
The key result (Arbabi and Sahimi, 1988, 1993; Sahimi and
Arbabi, 1993; and see the discussion in Craciun et al., 1998)
is that there are two different universality classes (implying
in each class a specific critical vesicularity threshold) for the
elastic properties depending on whether the interacting ele-
ments (e.g. the bonds between the sites in bond percolation)
have elastic properties only along the lines connecting the
sites (“central force”, the CF model), or with resistance tan-
gential to this line (“bond bending”, the BB model).

To understand why there might be differences between CF
and BB elasticity, consider the simple example of bond per-
colation on a square lattice in 2-D. In the pure CF model,
each bond is a spring; however since the springs cannot re-
sist tangential forces, even if all bonds are present (the frac-
tion of bonds =1), the entire lattice will “flop” over with
even an infinitesimal tangential push. On the contrary, in
the pure BB model, we may think of each bond as a flexible
beam rather than a spring, and as the fraction of bonds de-
creases, the structure will maintain its integrity until the geo-
metric phase transition occurs at the usual percolation thresh-
old of the bond network (which is exactly1/2 in this case
(Essam et al., 1978)). In this example, the critical CF point
of the lattice isP2e,CF =1, whereas the critical BB point is
P2e,BB=1/2 (“e” for “elastic” critical threshold). Clearly we
generally havePe,CF ≥Pe,BB ; and in lattices (such as the
triangular lattice) whereP2e,CF exceedsP2e,BB , if we start
at a bond fraction of 100% and decrease it, we find that the
structure - although still geometrically percolating – catas-
trophically loses its ability to resist stresses atP2e,CF . In
real materials of course there will generally be a mixture of
CF and BB, (this is called a “cross-over” behaviour) so that
the BB elasticity will ultimately be dominant at large enough
scales. However if the BB contribution is small, the structure
can still weaken rapidly at the critical CF percolation point
P3e,CF .

If we consider the results on 3-D elastic properties, we find
that the critical threshold in the 3-D bond bending model
– the point where there is a singularity in the elastic mod-
ulii P3e,BB – is low (in most models it is equal to the
correspondingP3c,b i.e. around 20–30%; we use the sub-
script “b” although in this lattice model the bubble ana-
logue is a spring/elastic bond). What is notable is that the
3-D central force model has much higher valuesP3e,CF

thanP3e,BB . For example, in (3-D) body centred cubic lat-
tices with bond percolation Arbabi and Sahimi (1993) find
P3e,CF =0.737±0.002.

However, before concluding that critical elastic properties
could potentially explain critical magma rheology at such
a high percolation threshold, it must be recalled that the
percolation of a system is usually identified with the frac-
tion of gas bubbles, not magma. The criticalP3e,CF how-
ever corresponds to a fraction 0.737±0.002 of (central force
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only) springs on a body centred cubic lattice, i.e. to the
lattice analogue of 1–0.737±0.002=0.263±0.002 voids. In
comparison, on the same body centred cubic lattice Lorenz
and Ziff (1998) found for (bond bending only) springs
P3e,BB=P3c,b=0.1802875 corresponding to the absence of
springs on a fraction 0.8299125. However, we have seen
from the example of continuum void percolation that we
cannot simply takeP3c,b=1–P3c,m (the bubble percolation
threshold is close to 30% while that of the magma is close
to 90%); we must really do a proper elastic calculation
on a continuum model with appropriate microscopic elas-
tic properties, a difficult operation to conduct. At present,
one uses lattice percolation with random individual elastic
bonds distributed with a probability distribution which at-
tempts to mimick the “necks” and other connectivity mor-
phologies which arise in continuum percolation (the mag-
matic analogue would be the walls, plateaus and matrix of the
magma system). Once the lattice elasticity calculation has
been made, the equivalent continuum critical elastic thresh-
old can be estimated using the lattice filling factor method
of Scher and Zallen (1970). In other words, elastic thresh-
old estimates that are directly relevant to percolating magmas
(even ignoring viscous effects) do not exist and will require
explicit modelling. For the moment, we conclude that the
existing lattice based results are mostly suggestive, and that
magma rheology requires much research.

Due to the difficulty of direct calculations, it is relevant to
mention the laboratory results of Meille and Garboczi (2001)
who compare numerical simulations and laboratory results
on gypsum plaster. In at least one of their experimental sys-
tems, they find a critical elastic vesicularityP3c,e≈0.8; they
underline the difference between 2-D and 3-D behaviours
and the importance of 3-D simulations for comparing with
real world systems and point to mechanisms which could
lower criticalP values for magma rheology.

5 The effect of distributions of anisotropic percolation
elements on the percolation threshold

The effect of distributions of anisotropic shapes (with a given
distribution of orientation directions) has classically been
treated using “excluded volume” theory. The idea is to take
into account the fact that the degree of overlap of differ-
ently shaped elements (here, the bubbles) can be statistically
accounted for, and that this determines the efficiency with
which the elements can connect up. Based on this idea Bal-
berg (1985) argued that in 3-D if the critical effective ex-
cluded volume is<Vex>, then the bubble percolation thresh-

old is P3c=1−e−
<Vex>

8 . He then argued that for any distri-
bution of shapes and orientations that 0.7≤<Vex><2.8 (im-
plying the bounds 0.08≤P3c≤0.29). However, de Dreuzy et
al. (2000) argued that this result does not apply in cases with
wide power law size distributions (where for example, vari-
ous statistical moments needed for the excluded volume cal-

culation may diverge). They showed how to handle the ex-
cluded volume in this power law (“long-range correlations”)
case and with the help of numerical simulations, they cal-
culated the effective excluded volumes and corresponding
percolation thresholds for power law element distributions
with 1/2≤B3≤4/3 and with eccentricities 0.01≤e≤1. As B3
decreases they found a generally increasingP3c, a conse-
quence of the stronger long-range correlations present at low
B3 where the system is increasingly dominated by a single
large element (ellipses here) although some of this is prob-
ably due to finite size effects. Perhaps more interesting, is
their finding that for fixedB3, at eccentricities of around 0.5,
P3c reaches a maximum. For a givenB3 they considered the
maximumP3c’s, over all the eccentricities simulated. They
found that this maximumP3c varied monotonically over the
range 0.33<P3c<0.65 asB3 decreases from 4/3 to1/2 (al-
though their higher values ofP3c are subject to larger numer-
ical uncertainty; theseP values were calculated from their
published excluded volume values). Using the experimental
magma valueB3=0.85 their maximumP3c,b (obtained with
their e=0.5) is 0.42. de Dreuzy et al. (2000) noted that using
circular elements does not lead to such strong effects; how-
ever the effect of eccentricity is greatly enhanced by the long
range correlation introduced by the power law distributions.
In addition from their Fig. 5, we infer thatB3≈0.85 (corre-
sponding to theira=2.6) is not low enough for very strong
effects, in agreement with our results in Fig. 3a.

Caution should be taken before applying these results to
3-D magma percolation. Although de Dreuzy et al. (2000)
used shapes with nonzero excluded volumes, they were inter-
ested in “fault” percolation and hence exclusively used 2-D
shapes (circles, ellipses) with each having zero volumes. The
results presented in our paper are apparently the first to con-
sider finite volume percolating shapes with long range cor-
relations. Assuming that the application of excluded volume
theory is indeed correct, de Dreuzy et al. (2000) showed that
by using power law distributions, it is possible to vary the
percolation threshold over a somewhat wider range than pre-
viously believed. However with the exception of the limited
results presented in Fig. 3b above, the effect of power law
distributions on void percolation thresholdsP3c,m has not
been investigated. Nevertheless, it is interesting – at least
for the spherical elements treated here – that with respect to
the monodisperse value it increases rather than decreases the
value ofP3c,m.

6 Other possibilities: stratified percolation with ellipti-
cal dimension between 2 and 3

The finding that percolation resulting from power law distri-
butions of elements/bubbles is particularly effective at mod-
ifying the percolation threshold when it is combined with
anisotropic shapes motivates further investigation of the role
of the anisotropy of bubbles. Indeed, bubble shapes are
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A Santorini volcano pumiceFig. 7. Here is an example of a natural pumice displaying elongated
large bubbles compared to less elongated smaller ones (from San-
torini volcano). The image is a scanning electronic backscattered
image. This image represents a Santorini volcano pumice.

highly non-spherical due to coalescence (Fig. 7; and Lovejoy
et al., 2004) and magma stratification under stress (for exam-
ple near the conduit walls). Evidence for this comes from
the fragmented layers of elongated fragments found in flow
banding perpendicular to the pressure gradient (e.g. Ichi-
hara et al., 2002; Gonnermann and Manga, 2003; Namiki
and Manga, 2005). If we have a power law bubble distri-
bution, then it is both theoretically meaningful and physi-
cally plausible that the largest bubbles are the most “elon-
gated” in the direction of shear; let us take this direction to
be perpendicular to the z-axis and assume that the flattening
occurs in the z-direction, so that in the x-y plane, bubbles
have circular cross-sections size≈L, but in the z-direction,
they are flattened having extents≈LHz (with 0<Hz<1).
If the bubbles are spheres atL=1, then theirx−z or y−z

cross-sections will be ellipses with eccentricities increasing
with L. The volumes of bubbles will therefore grow with
L as Volume(L)≈L×L×LHz

=LDel where 2<Del<3 and
Del=2+Hz is an “elliptical dimension”; see (Schertzer and
Lovejoy, 1985). In this way the basic bubble structures can
be made to interpolate between 2-D and 3-D. For example,
in the limit of complete flattening into thin 2-D disks (Hz=0,
Del=2), the system will percolate from one side of thexy
plane to the other at the 2-D percolation thresholdP2c. At
the other extreme, (Hz=1,Del=3) the shapes are spheres and
we recover the 3-DP3c,b. The reason that this system can
be treated as having an intermediate dimension between 2-D
and 3-D is because there is a power law distribution of bubble
sizes leading to structures with increasingly flattening over a
huge range of scales (indeed, it is only over this scale range

that its effective dimension isDel). In a monodisperse sys-
tem, the flattening would in contrast have a relatively trivial
effect since all the structures would be flattened by the same
amount independently of their size.

From these extreme cases, we may expect that the percola-
tion threshold will be different in the horizontal and vertical
(z) directions. In addition, it is possible that the criterion
for percolation may need to be appropriately changed with
Del . To get an idea of the problem, Fig. 8a shows a didac-
tic example (without displaying the small bubbles) where we
have takenHz=0.6 (Del=2.6). At a vesicularity ofP=15%
(Fig. 8b;Hz=0), the bubbles spread primarily on thexyplane.
Even if we use the strict percolation criterion thatx−y per-
colation occurs only if a path exists across the system from
a givenz value to an identicalz value on the other side, due
to the connectivity in thez direction (Figs. 8b, c forHz=0,
Del=2), we obtain percolation at a low value nearP3c,b rather
than the much higherP2c (0.67). In this case, Fig. 8c shows
the percolating bubbles: although theirz direction spread is
small, it is enough to drastically lowerPc,b.

To see how much differential anisotropy can affect
the Pc,m values, we show Fig. 9 withHz=0.2, (i.e.
D=2+Hz=2.2), B3=0.85, which uses the standard percola-
tion criterion but applies it to respectively the horizontal and
vertical directions (Hz=0.2 is the lowest that can be reason-
ably simulated with a 2003 lattice). The (finite system) per-
colation thresholds can be estimated by the fitting method of
Fig. 3 yielding roughlyP2.2hor,c,m=0.916,P2.2ver,c,m=0.893.
These can be compared to the (isotropic) valueP3c,m=0.973
(Fig. 3b corresponding toHz = 1; the latter being on a slightly
larger lattice). Although finite size effects will change these
values a little the effect will be small (for monodisperse dis-
tributions it was within 0.6% of the infinite system value, see
Fig. 3b) and this small shift will be not too different for the
different Hz values. We can therefore safely conclude that
differential anisotropy can decrease the magma percolation
threshold by a significant amount, probably taking it below
the 90% level.

7 Conclusions

A few years ago several of us proposed the hypothesis that
multibubble coalescence in magmas could be modelled as
percolation processes with the basic elements being isotropic
bubbles distributed in a power law manner. Near the critical
percolation threshold, a small change in vesicularity could
lead to a catastrophic decrease in the yield strength, catas-
trophic breakdown/ fragmentation of the magma such that
if the magma is under stress it would explode. We demon-
strated the idea with some limited two-dimensional numer-
ical simulations and by comparisons with 2-D data of ex-
plosive volcanism including estimates of critical vesicularity
values for explosive volcanism (Pex≈0.6–0.7) and also the
power law exponent of the distribution of explosive products
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Fig. 8a. The stratified percolation model described in the text is
made from disks which are circular with radiusL pixels in the hor-
izontal andLHz in the vertical with power law volume distribu-
tions (B3=0.85). The simulations are on a 128×128×32 grid, with
Hz=0.6, (corresponding to an “effective” or “elliptical dimension”
of 2+Hz) and the minimum and maximum radius of respectively
10 pixels and 30 pixels (for didactic purposes the smallest bubbles
were supressed). Gas bubbles are the opaque shapes.

 
Fig. 8b. The stratified percolation model described in the text
made from disks 1 pixel thick in thez (vertical) direction and with
power law distributions (B3=0.85 with an initial bubble distribu-
tion with a maximum radius of 10 pixels) in thexy (horizontal
plane), corresponding toHz=0, henceD=2. The simulations are
on a 128×128×32 grid, in the figureP=0.152. It is in fact just
percolating according to the criterion that percolation occurs in the
horizontal plane if and only if a continuous path exists through the
bubbles which starts and ends at the samez value (here =10 pixels
and not simply on opposite sides as is usually the case, see Fig. 8c).

 

Fig. 8c. The percolating cluster from the realization shown in
Fig. 8b. Although only a relatively thin layer of disks participate
in the percolating cluster, the possibility of connecting in the ver-
tical direction is enough to reduce the bubble percolation threshold
Pc well below the 2-D value≈0.6 (which we would obtain in the
limit of planar disks infinitely thin in the z-direction).

(B3f ). This new mechanism could act on its own to trigger
an explosion, or – by causing local structural weakening
– could act in conjunction with classical pressure surge or
strain rate surge mechanisms. Of course, if the magma is
not under stress (more likely at low viscosity), then nothing
special happens at the percolation point, one has a usual pas-
sive degassing, effusive eruption. On the other hand, cases
of basaltic Plinian products with very low vesicularities were
explained as being the result of a sudden collapse of the bub-
ble network (Gardner et al., 1996).

A serious limitation of the proposed percolation hypoth-
esis was its two-dimensional character: real magmas are
three-dimensional, and the change of dimension from two
to three leads to several differences, in particular, to the ex-
istence of a second “magma” percolation threshold (corre-
sponding to “void” or “Swiss cheese” percolation in the lit-
erature). Using the empirical bubble number distribution
exponentB2=0.75 (corresponding toB3≈0.85), we found
that whereas there is a unique 2-D valueP2c≈0.7, in 3-
D, there are two percolation thresholds:P3c,b≈0.25 and
P3c,m≈0.97. From the simulations, we noted that unlike in
2-D where the fragments have exponentB2f ≈0.42, the 3-D
valueB3f ≈1.186 (apparently universal, independent of the
bubbleB3) is very close to the observations:B3f ≈1.1±0.1
reflecting the dominant effects of multibubble coalescence.

The agreement between the observed and predicted
B3f is probably the most convincing direct evidence that
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Figure 9 

 

Fig. 9. This shows the effect of varying the vesicularity on the void
(magma) percolation probability in the horizontal and vertical di-
rections on a finite 2003 lattice (100 simulations for eachP ). With
Hz=0.2 blue and red correspond respectively to vertical and hori-
zontal percolation thresholds.

percolation is relevant to explosive volcanism, especially
since we numerically showed evidence that the exponent
may be observable even atP≈0.7, i.e. somewhat below the
critical P3c,m≈0.97 where the magmatic system will auto-
matically disintegrate (theoretically this exponent need only
be relevant in the vicinity ofP3c,m). In contrast, the key
weakness of the model in its original form, is that the value
P3c,m≈0.97 seems very high for explaining explosive vol-
canism. However, two caveats should be recognized: a) it
may only be necessary for a localized region to reach this
high value; if the whole system is under stress then the re-
sulting local breakdown of the magma could trigger a more
widespread explosion, b) since remnant fragments of an ex-
plosive eruption can be expected to have lower vesicularities
than those of the initial exploding system it is not easy to in-
fer vesicularities at the moment of explosion so that we have
no good knowledge of the criticalPex .

We therefore explored various ways of achieving lower
critical vesicularities including the possible existence of rel-
atively low elastic percolation thresholds and the effects of
anisotropy. In the latter case we explicitly considered bub-
ble and magma anisotropy in differentially stratified mag-
mas. We showed that this nonclassical mechanism could
reduceP3c,m to around 0.9, with a potential for further re-
ductions. In the case of the elastic properties, we pointed out
that critical vesicularities associated with singular rheologies
have been studied in the bond and site percolation literature
and their (sometimes) lower critical values may be relevant
to continuum percolation in visco - elastic magmas.

Clearly, while volcanic eruptions show a wide variety of
styles going from pheatomagmatic to Plinian, the role of gas
bubbles as a trigger to explosion still remains a challenging
question. In any event, given the huge amount of bubble
overlap which occurs even atP=0.7, percolation is likely to
remain an attractive theoretical framework for understanding

highly vesicular magmas involving strong nonlinear bubble-
bubble interactions.

It is probable that percolation is only part of the picture;
it may be that the magma progressively weakens at higher
and higher vesicularityP , but that the trigger for explosion
still comes from the classical critical yield strength limit be-
ing exceeded by a sudden large overpressure or decompres-
sion rate generating large differences between internal and
external bubble pressures (typically of 106 to 109 Pa s) desta-
bilizing the highly viscoelastic surrounding magma which
then fragments. Alternatively, the relevant magma percola-
tion threshold is somewhat lower thanP3c,m≈0.97 and the
mechanism is indeed a rheological singularity at a critical
vesicularityP . In any case, the use of a percolation frame-
work at highP surely represents a step towards realism when
compared to spherical close-packing and other highly artifi-
cial models of highP magmas.
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