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Scale Invariance and Multifractals in the
Atmosphere

Scale invariance is a symmetry principle in which the
small- and large-scale properties of a system are related
by a scale changing operation involving only the scale
ratio. Between the corresponding “inner” and “outer”
scales, the system has no characteristic size.
Multifractals are the scale invariant measures generally
obtained when the inner scale of such systems goes to
zero. They provide natural descriptions of many non-
linear dynamical systems ranging from phase space
portraits of chaotic attractors (Berger et al. 1987,
Schuster 1988), to velocity and other fields associated
with turbulent cascades. In the atmosphere, the
governing dynamical equations have no characteristic
length from the outer planetary scale down to an inner
viscous scale of the order of millimeters. Furthermore,
the variability (intermittency) is due to cascade pro-
cesses 1n which the large scale modulates the transfer of
energy and other conserved fluxes to smaller scales.
This phenomenology provides the theoretical basis for
multifractal models of the atmosphere. There is also
considerable evidence that various atmospheric fields
including cloud, rain, temperature, wind and radiation
fields are multifractal although the exact range of scales
over which this is true is still not clear, and is the
ct of ongoing research.

Noleg

1. Discussion

A basic feature of geophysical systems in general, and
of the atmosphere in particular i1s their extreme
variability which involves the appearance of complex
(fractal) structures over wide ranges of scale, and which
raises immediate problems of description, measure-
ment and modelling. This complexity prompted
Richardson (who is best known as the father of numeri-
cal weather prediction) to ask in 1926, “Dogesithe wind
have a velocity?” (are the trajectories of amparticles
smooth énougf] for derivatives to exist?). PUisuing this
idea. Richardson proposed that the x-'ariabilify in the
atmosphere arises through a series of scalesmnvariant
cascade steps in which the energy flux from solar
heating at large scales is redistributed over smaller and
<maller scales by the nonlinear dynamics (SEIg. 1 for

is cascade idea is theésbasis of
a modern model). This Lﬂ\ﬁC']d d

Kolmogorov’s famous “scaling” (power law)k2® spec-
trum (for the energy in the wind at waver_number k), and
for a series of cascade models (:f,ce Mor_nn and Yaglom
(1975) for an early review) culminating in theimultifrac-

tal models described in this article. During roughly the
Richardson, and in apparent €¢ontrast to

hich require a whole series offéddies of

same period as
the cascades W

decreasing size, Bjerknes and the Norwegian school of
meteorology emphasized the importance of a few large
structures for forecasting, particularly the “fronts,”
while Leray and von Neumann in fluid mechanics in the
1930s and 1940s called for a better charactenzation of
the singularities in fluid mechanics. Multifractals, pos-
sessing well-defined hierarchies of singularities—a few
of which can “dominate” the rest—are the natural
framework for studying these issues.

2. Sets, Fractals, Geometry

The simplest illustration of scaling and scale invariance
is to consider the geometric idea of the dimension of a
set of points. The notion of interest here is that which
relates the number of points in the set to its size. The
intuitive (and essentially correct) definition of measure
dimension that will be used here, is that the number of
points n(L) in a (fractal) set S at scale L (e.g., in a
sphere of radius L) varies as

n(L) < LY (1)
where d(S) is the dimension of the set. Defining the

' codimension C=d —d(S) where d is the dimension of

space in which the set is embedded, the set is a “fractal”
if C>0. A simple example is the number of in situ
meteorological measuring stations on the earth in a
circle radius L (see Fig. 2a). If the measuring stations
were uniformly distributed over the surface (d(S) =2),
we would obtain n(L) < L*, however, the actual distri-
bution (Fig. 2b) is highly nonuniform, empirically
yielding n(L)e L'7. Alternatively, the density of
points is proportional to L*/L?=L"° which for
fractal sets decreases with L; the rate of decrease is
characterized by d(S). The fractal dimension of a set
(Mandelbrot 1982, Feder 1988) therefore is a measure

of its sparseness.

3. Measures, Multifractals, Dynamics

Clouds are not sets, dynamics is not geometry; geophy-
sical systems are usually fields (more generally meas-
ures) and their treatment takes us well beyond the
seometry of sets, providing us with dynamical “multi-
fractal” generators. Consider a typical empirical data
set such as a satellite cloud picture, obtained by a
sensor with resolution L where L,.>L>L,, L, is the
outer scale of the variability, and L, the inner scale.
Define the scale ratio A=L,//L>1 and the field
smoothed at scale 4 by

f f(x) dx

o — (2)

f dx
Sa
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Figure 1

The left-hand side shows the stép-by-step construction of a (*bare™) multifractal cascade (called an “a model™) starting
with an initially uniform unitflux density. The vertical axis represents the density of energy (&) flux to smaller scales
which is conserved by the nonlinear terms in the dynamical equations governing fluid turbulence. At each step the
horizontal wale 1S dix'idcd by two, and independent random factors are chosen either >1 or <1, normalized to ensure
that (&) =1, T_hx: developing SpiKes are incipient singularnities of various orders. The right-hand siéle shows the effect of
smoothing (Egn. (2)) over Iafger and larger scales, yielding a “dressed™ cascade
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(a) The locations of the 9563 stations in the global meteorological measuring network showing their high degree of
sparseness (after Lovejoy cral 1986). _(b) Open cnrc!es are the average number of stations within annuli of
geometrically increasing radii, closed circles are the integral of the previous function, the function (n(L)) described in
the text. The straight line has slope 1.75

where S, is an averaging set (e.g., a satellite resolution
element, the denominator is just the area) of scale 4. In
the simplest case, called “self-similarity,” §; is just a
reduced copy of the large-scale region §,; (see Sect. 4
for a discussion of more complex “reductions”). We

have also assumed that f has been nondimensionalized
(normalized) by dividing the original field by its clima-
tological average value so that the statistical average
(fo=1. As A > = f, is an increasingly finer resolution
function; if it represents a satellite image with a sensor
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Figure 3

From top to bottom: average of 15 AVHRR scenes
channels 1-5; average of three Landsat MSS channel
scenes; and average of three Meteosat visible and
three infrared scenes (after Lovejoy et al. 1993)

of increasing resolution, we find that structures in the
fields are more and more sharply defined, occupy
smaller and smaller fractions of the image while
simultaneously brightening (increasing in value) to
compensate.

Over the range of interest, scaling systems have no
characteristic size. A direct consequence will be that
the energy spectrum E(k) will have the power law form
k~? over the corresponding range, where k is the wave
number and g is the spectral exponent. Figure 3 is a
composite showing that such scaling behavior is well
respected by cloud radiances at various wavelengths
over the range of at least 4000 km to 300 m, with b
varying between about 1.4 and 1.9 depending on the
wavelength. If we consider how the probability distri-
butions vary with resolution 4, we obtain the following
basic multifractal relation:

Pr(fi>A") =4~ (3)

where Pr indicates probability, ¥ is the order of the
singularity associated with the “pixel” value Ja, and ¢(y)
s the associated “codimension.” The ‘= sign indicates
equality to within factors dependent on the logarithm
of A. Eqn. (3) expresses the fundamental property of a
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multifractal: the codimension function c(y) simply gives
a scale-invariant characterization of the probability
distribution at all scales. Note that the mathematica]
measure obtained in the limit A - o (L,—0, the varia-
bility goes to arbitrarily small scales) 1s singular since
fi— . c¢(y) and y are the scale-invariant (or, in empiri-
cal data, sensor resolution independent) character-
izations of the probabilities and values of the field, -

respectively (see Fig. 4 for examples with geosta-

tionary satellite data). |
Equation (2) has an equivalent statement 1n terms of

the statistical moments of f;:
\

(fi):lK(qufAW dPrﬁfﬂ.q}'“d”) dy (4)

where () indicates ensemble (statistical) averaging and
dPr/dy is the probability density, the derivative of Eqn.
(3). As A— o, for each moment g, there is a corre-
sponding singularity y, which dominates the average:
qg=c'(y,) (the method of “steepest descents”) and’ we
obtain the following basic multifractal relation:

K(gq) = max (qy —c(y)) (5)

This (Legendre) transformation is equal to its inverse,
hence we also obtain

c(y)= max (gy — K(g)) (6)

showing the complete equivalence between a descrip-
tion in terms of moments (characterized by K(h)) or
probabilities (characterized by c(y)). It is also possible
to define another (“dual”) codimension function (see

Eqn. (12) below for its physical significance) associated
with moments of various orders

K(q)
C(q)=*—-—q__1 (7)
0.6
0):D
0.4
T
G 0.3

=016 -0 4 b B L O O 2 04

Figure 4

(a) Estimates of the function c(y) obtained from five
Infrared satellite images with resolution 8 km over an
area 1024 x 1024 km. The points indicate the mean of
the six individual c(y) functions obtained at 8, 16, 32,
04, 128, 256 km. The solid curved line is the best fit
regression to the universal form and yields a
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Unlike fragtal sets whose scaling can be characterized
by a single dimension, multifractal measures require a

whole function (c(y)) for their specification. However,
only two or three parameters may be sufficient to
determine the function: the study of turbulent cascade
processes (Schertzer and Lovejoy (1987), see Fig. 1)
shows both that the latter generically yield multifractal
measures in the small-scale limit, and also that under

fairly general circumstances c(y) has the following func-
tional form (also called “universality classes™):

I\«
c)=Ci{ gt ) ®)

a

with C,<d, 0<a=<2, 1/a+1/a’=1. C, and a are the
fundamental parameters: unlike the geometric param-
eter d(S) which describes the sparseness of scaling sets,
C, and a are dynamical, characterizing the (prob-
ability) generator of the process. C, characterizes the

sparseness of the mean field and a the degree of  Figures

nult ] ] : - Multifractal passive scalar cloud from a continuous
glc;lr]lgif:lagclt:ghézn T(tg i: l;lizglsably Kla)inncion;. cores cascade process with a=1.6, on a 512 X 512 point grid

(after Schertzer and Lovejoy (1991) in collaboration
C,a’ with Jean Wilson, Gadje Sarma)

K(q) = (9" —q) (9)

The above functions are for conserved (stationary) Eqgns. (8-9) apply only to these quantities. The experi-
quantities and are the multiplicative analogues of the mentally accessible quantities are different; they are
standard central limit theorem for the addition of  obtained by integrating cascades (e.g., with a
random variables. When a=2, the multifractals measuring device) over scales much larger than the

a

defined by Eqgns. (3, 8) have lognormal probabilities, inner scale of the cascade (which in the atmosphere is
that is, the logarithm has a Gaussian distribution (see, typically of the order of 1 mm). The properties of such
however, the caveat below about “dressed” quantities), spatial (and/or) temporal averages are approximated

so that the multifractal nature of the atmosphere can be by those of the “dressed” cascades, that is, those in
consistent with a lognormal phenomenology (if a is which the cascade has proceeded down to the small-
nearly 2), or a monofractal phenomenology (a single  scale limit and then integrated over a finite scale (see
fractal dimension) when a=0. Empirical values of a the right-hand side of Fig. 1). The small-scale limit of

reported in the literature (see especially Schmitt ef al.  these multiplicative processes is singular and is repon-
1992) include a=1.3, 1.45 (wind speed, in wind tunnel sible for this basic distinction.
and atmosphere respectively), a=1.2 (temperature) Unlike the bare cascade, the dressed cascade displays

and a=1.35 (rain and visible cloud radiances). For the interesting phenomenon of divergence of high-
other quantities, related to these by either dimensional  order statistical moments, that is,
and/or power law relations, the corresponding c(y)

functions can be obtained by the linear transformation {f) = for all g=q, (10)
y—>ay— H. For example in turbulent cascades, the = where g, is the critical exponent for divergence. The
energy flux ¢ is conserved, and fluctuations in com- precise condition for divergence is quite simple
ponents of the velocity field are obtained by Av= (Schertzer and Lovejoy 1987)

'3 -3 hence a= H=1/3. Varying H changes the spec- Cla) = d(S .
tral exponent and hence the smoothness. For passive . (94) =d(S) (11)
scalar clouds (see Fig. 5 for an illustration), the corres- where § is the averaging set (e.g., line, plane, or fractal
ponding quantities are Ap=@'“A™'” where 9 =x*?’¢"'?  in the case of typical measuring networks), over whch
and y is the variance flux of the passive scalar concen- the process is averaged. The phenomenon of diver-
tration p. gence of high-order statistical moments arises directly

Before turning to the problem of anisotropy, we  from the fact that C(q) is often unbounded (see Eqns.
must first discuss a complication which anises because of (7, 9)), and hence for large enough g, C(q)>d(S).

a basic distinction between “bare” and “dressed” multi-  Conversely for a fixed g, divergence will still occur if
fractal properties. The “bare” properties are essentially ~ the set S is sufficiently sparse so that d(S) is small
theoretical: they are typically obtained after a cascade enough. The dressed codimension function is the same
process has proceeded only over a finite range of scales as that of the bare function for y <y4 where ¢’(y4) = q..

(see the left-hand side of Fig. 1); strictly speaking, For y> y,, it is a straightline, slope g4. Empirical values
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R s

of g4 Include 5, §, 1.7 for wind, temperature, and rain,

respectively (see Lovejoy and Schertzer (1986) for a
review). In empirical data sets this implies that
moments increase with sample size: troublesome

“outliers” continue to exist even when the latter is
eNOrmous.

A tormal analogy can be established between multi-
fractals and thermodynamics: c(y) is the analogue of

the entropy, C(g) is the analogue of the free energy and
q is the inverse temperature. Using this analogy, the
qualitative change in behavior associated with the

diver_gence of moments can be considered to be a
multifractal phase transition.

4. Self-Similarity, Self-Affinity, Generalized Scale
Invariance

The example of scaling in fluid turbulence where isotro-
pic scaling ideas have been developed over a consider-
able period of time has been considered so far.
However, the atmosphere is not a simple fluid system,
nor 1s it 1sotropic; gravity leads to differential stratifica-
tion, and the rotation of the earth to the Coriolis force
and to differential rotation; radiative and microphysical
processes lead to further complications. However, even
when the exact dynamical equations are unknown (as is
generally the case in geophysics), it can still be argued
that at least over certain ranges, these phenomena are
likely to be symmetric with respect to scale changing
operations. This view is all the more plausible when it is
realized that the requisite scale changes needed in Eqn.
(2) to transform the large-scale S, to the small-scale S,
can be very general.

To see this, introduce a scale-changing operator T,
defined by: T,$,=35;. “Self-similar” measures will
satisfy Eqn. (3) with T;=1"'=1""1 where I is the
identity matrix, that is, T, i1s a simple reduction by
factor A. However, much more general scaling transfor-
mations are possible; detailed analysis shows that prac-
tically the only restriction on T, is that it has (semi-)
group properties: T, =4"° where G is the generator of
the group of scale changing operations (this formalism
1s called “generalized scale invariance” or GSI,
Schertzer and Lovejoy (1987)). For example, “self-
affine” measures involve reductions coupled with
compression along one (or more) axes; G is again a
diagonal matrix but with not all diagonal elements
equal to one. If G is still a matrix (“linear GSI”) but has
off-diagonal elements, then T, might compress an
initial circle S, into an ellipsoid as well as rotate the
result yielding, for example, cloud texture and morpho-
logy. Linear and nonlinear GSI (where G can vary even
randomly from place to place) has already been used to
model galaxies and clouds (for a review, see Schertzer
and Lovejoy (1989)). Empirically, the trace of G
(called the “elliptical dimension” d_, of the system) has
been estimated in both rain and wind fields to have the
values 2.22 and 2.55, respectively, indicating that the
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ﬁelds:. are neither isotropic (d,,=3), nor completely
stratified (d;=2), but are rather in between, becoming
more and more stratified at larger and larger scales.
GSI is also important for dynamical (space—time)
multifractal processes; G then determines the appropri-
ate space—time transformation which specifies the life-
times of processes as functions of their size. In turbu-
lence and meteorology, this can be regarded as a
generalization of Taylor’s hypothesis of “frozen turbu-
lence.” Knowledge of G, C,, a and H can then be used
to perform dynamical multifractal simulations. It also
provides the basis for multifractal forecasting which
systematically exploits the “stechastic memory” of the
atmosphere to predict the future behavior from time

history information.

Defined by both the function c(y) (or equivalently,
by the probability generator), and the scale changing
generator G, anisotropic multifractals display a tremen-
dous variety of behavior: scaling systems therefore
form a very broad class. Although in meteorolpgy,
there are good theoretical reasons to expect multifrac-
tal behavior, these systems are just beginning to be
explored and there is no consensus about the exact
limits. Systematic multifractal analysis of atmospheric
fields as well as their numerical simulation (which
produces surprising multifractal images, see Fig. 4),
undoubtedly helps us understand atmospheric dyna-
mics, predictability and its limits, as well as contribute
towards quantitative uses of remotely sensed and in situ
data.

See also: Catastrophe Theory; Chaos Theory; Chaotic
Dynamics, Earth—Atmosphere System: Identification of
Optical Parameters; Fractals; Laser Spectroscopy in
Atmospheric Analysis; Remote Sensing and Image
Processing Methods in Geology; Transport Processes in
Heterogeneous Materials: Theory and Measurement
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Seasonal Adjustment

The effect of a natural seasonal cycle present in an
environmental time series is conventionally discounted
by comparing variations with the long-term average for
the relevant time of the year, and the seasonal pattern
itself 1s seldom closely studied. This is unfortunate;
estimation and subtraction of the seasonal cycle, if
carried out correctly, allows for inspection of the pat-
tern and removes the seasonality with minimum distor-
tion of the nonseasonal variations. In this article, it is
shown that the seasonal pattern in a series may be
constructed by recursive fixed-interval smoothing esti-
mation of a dynamic harmonic regression time-series
model incorporating seasonality. The effectiveness of
this seasonal adjustment technique is illustrated by
applying it to a record of atmospheric carbon dioxide
concentration. This reveals some subtle influences that
are not obvious in the original series.

I. Background

It 1s, perhaps, paradoxical that, although seasons are
essentially environmental phenomena, seasonal adjust-
ment 1S a practice more usually associated with socio-
economic time series. It is unfortunate that climatic
records are seldom discussed in seasonally adjusted
terms, not only because it is a convenient and efficient
means of removing seasonal influences, but also
because it involves the construction of the seasonal
variations themselves. In general, natural seasonal
variations have received little attention, presumably
because they are assumed to be highly regular and fully
understood. However, as the example presented below
will show, even the slight changes of seasonal pattern
that do occur may be of great interest.

~ The method of seasonal adjustment described here
IS a specific application of recursive fixed-interval
smoothing algorithms described in other articles (see
Extrapolation, Interpolation and Smoothing of Non-

Stationary Time Series; Spectral Analysis, Time-
Variable). '

Seasonal Adjustment

2. A Model for Seasonal Time Series

The seasonal time series are considered to be repre-
sented by the component model (see Young and Young
1992; Component (Structural) Models of Time Series)

y(k)=t(k)+p(k)+5(k) (1a)

where t(k) is a low-frequency “trend” component; p(k)
is a time-variable-parameter harmonic regression (or
dynamic harmonic regression, DHR) component of the

form
p(k) = ay(k)cos(2afk) + ax(k)sin ) (1b)

and &(k) represents an “‘irregular” component, that is,
that part of y(k) not modelled by #(k) and p(k). If the
seasonal component can be represented by the sum of
harmonic components, then p, = 1/f; will represent tl}f:
fundamental period, and p;=1/f;, i=1,2,...,F, will
be associated with the harmonic periods (e.g., for an
annual cycle with monthly data the fundamental period
p1=12 months and the harmonic periods are p, =06,
p3=4, ps=3, ps=2.4, ps=2 months, with ps represent-
ing the component at the Nyquist frequency of 0.5
cycle/sample).

Distinction between the various components in Eqn.
(1b) i1s made according to their frequency. This is most
straightforward in the case of stationary time series;
that 1s, a series with no trend and a constant seasonal
pattern. In this case, the mean is represented by spec-
tral power at zero frequency, and the spectral
representation of the seasonality consists of discrete
spikes at each of the harmonic frequencies. The irregu-
lar component consists of variation of the remaining
frequencies. Introducing time variability of the mean
level and seasonality means that a range of frequencies
becomes associated with each component. The more
rapidly these components vary, the wider their fre-
quency bands become.

It is unlikely that seasonality and especially trend
components will arise from any simple, readily identifi-
able factor, and spectral analysis of seasonal time series
seldom reveals sharply distinct features associated with
the various components. It is, therefore, inevitable that
the width of the frequency band representing each
component has to be judgementally determined.

3. Estimating the Components of the Seasonal
Model

Only_z _the trend and seasonal components are usually
e_Xpll_mtly estimated, the irregular component being
obtaqu by residual. Seasonal adjustment of the origi-
nal series is achieved by subtracting the seasonal com-
ponent alone.

In the example discussed later, the parameters for
the time-varying trend and each of the harmonic com-
ponents of the seasonal pattern are estimated sepa-
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