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Abstract

State-of-the-art airborne lidar data of passive scalars have shown that the spatial stratification of the atmosphere is

scaling: the vertical extent (Dz) of structures is typically � DxHz where Dx is the horizontal extent and Hz is a stratification

exponent. Assuming horizontal isotropy, the volumes of the structures therefore vary as DxDxDxHz ¼ DxDs where the

‘‘elliptical dimension’’ Ds characterizes the rate at which the volumes of typical non-intermittent structures vary with scale.

Work on vertical cross-sections has shown that 2+Hz ¼ 2.5570.02 (close to the theoretical prediction 23/9).

In this paper we extend these (x, z) analyses to (z, t). In the absence of overall advection, the lifetime Dt of a structure of

size Dx varies as DxHt with Ht ¼ 2/3 so that the overall space-time dimension is Dst ¼ 29/9 ¼ 3.22y. However, horizontal

and vertical advection lead to new exponents: we argue that the temporal stratification exponent HtE1 or E0.7 depending

on the relative importance of horizontal versus vertical advection velocities. We empirically test these space-time

predictions using vertical-time (z, t) cross-sections using passive scalar surrogates (aerosol backscatter ratios from lidar) at

�3m resolution in the vertical, 0.5–30 s in time and spanning 3–4 orders of magnitude in scale as well as new analyses of

vertical (x, z) cross-sections (spanning over 3 orders of magnitude in both x, z directions). In order to test the theory for

density fluctuations at arbitrary displacements in (Dz, Dt) and (Dx, Dz) spaces, we developed and applied a new Anisotropic

Scaling Analysis Technique (ASAT) based on nonlinear coordinate transformations. Applying this and other analyses to

data spanning more than 3 orders of magnitude of space-time scales we determined the anisotropic scaling of space-time

finding the empirical value Dst ¼ 3.1370.16. The analyses also show that both cirrus clouds and aerosols had very similar

space-time scaling properties. We point out that this model is compatible with (nonlinear) ‘‘turbulence’’ waves, hence

potentially explaining the observed atmospheric structures.
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1. Introduction

A fundamental aspect of atmospheric turbulence is its spatial anisotropy, in particular its vertical
stratification associated with gravity. Even the most recent progress achieved in studying anisotropy in
(gravity free) incompressible Navier–Stokes turbulence [1–5] (see below), does not solve the fundamental
deficiencies of the ageing but still mainstream model of (gravity induced) atmospheric stratification. This
model postulates a superposition of small-scale isotropic 3-D and large-scale isotropic 2-D turbulence
separated by an ‘‘energy mesoscale gap’’ somewhere near the meso-scale (�10 km). It was theoretically and
empirically shown that these deficiencies called for a drastic change of the notion of scaling [6,7], i.e. to first
postulate the relevance of scaling, then study the resulting symmetries, instead of the classical approach that
first postulates isotropy.

Several arguments favour this new anisotropic picture. First, the postulated energy gap which was expected
to be a sharp ‘‘dimensional transition’’ between the 3-D and 2-D regimes, had no compelling empirical
support whereas it is indispensable in preventing the small scale 3-D regime from destabilizing the large scale
2-D regime [8]. Second—in spite of many proposals—it is still not clear how to plausibly distribute the various
sources and sinks of energy and enstrophy. Third, the assumption that any atmospheric turbulent regime
might be isotropic, seems rather academic since gravity acts at all scales, not only at the meso-scale. As a
consequence, over the last 20 years, most of the scientific community involved in statistical analysis of
atmospheric stratification data have gradually opted for (strongly anisotropic) scaling stratification models in
which there is no 2-D/3-D transition (scale break) and which has different spectral exponents in the horizontal
and vertical directions.

A first approach [6] was to consider a turbulence whose horizontal wind (v) simultaneously displays
different horizontal and vertical scaling laws for the velocity difference (fluctuation) Dv for, respectively,
horizontal (Dx) and vertical (Dz) displacements: Dv / DxHh ; Dv / DzHv with distinct scaling horizontal (Hh)
and vertical (Hv) exponents. In this framework, an eddy of a given horizontal gradient Dv, has typical
horizontal extent Dx and vertical extent Dz; i.e. its size satisfies Dz ¼ DxHz; where Hz ¼ Hh/Hv. We now see
that if Hv4Hh then Hzo1 and that, therefore, the aspect ratio Dz=Dx / DxHz�1 decreases with increasing Dx

implying that structures become progressively flatter at larger and larger scales in a scaling manner. If we now
assume horizontal isotropy so that the area of horizontal cross-sections is of the order Dx2, then we see that
the volume of structures varies as Dx2DxHz ¼ DxDs with Ds ¼ 2+Hz. Since the mean structures will typically
be ellipsoids, Ds is called the ‘‘elliptical dimension’’ (the subscript ‘‘s’’ is for ‘‘spatial’’ to distinguish it from the
space-time dimension Dst discussed below). Isotropic 3-D turbulence has Ds ¼ 3, while isotropic 2-D
turbulence (i.e. no vertical fluctuations) has Ds ¼ 2, so that Ds characterizes the stratification. In terms of Ds,
the mainstream model still favoured by atmospherists has a meso-scale transition from Ds ¼ 3 to Ds ¼ 2,
whereas as discussed below, the turbulent buoyancy driven unified scaling model [7] has Ds ¼ 23/9, while the
quasi-linear gravity models have Ds ¼ 7/3.

It is worth stressing that here and below, we are not discussing the much weaker anisotropies predicted for
incompressible (gravity-free) Navier–Stokes turbulence [1–5,9] which predict that the wind velocity structure
function is a sum of isotropic scaling laws i.e. with direction independent exponents (hence with Hz ¼ 1,
Ds ¼ 3) i.e. with the effect of anisotropy confined to non-scaling prefactors. Some recent atmospheric
experiments in the horizontal direction [1,3,4,9] determining the structure function of the horizontal wind have
found some support for this approach for horizontal anisotropy—at least up to scales of several meters where
the structure function would become negative.

Another approach to anisotropic turbulence involving isotropic scaling was proposed by Lumley [10].
Lumley considered shear flows with an imposed characteristic (shear) time scale. Using this to non-
dimensionalize the turbulent eddy turn over time and making various smoothness and analyticity
assumptions, he obtained a series expansion in terms of (isotropic) spectral corrections k�7/3, k�9/3 etc. (see
also [11], for similar ideas in atmospheric boundary layer turbulence). Today, in the context of multifractal
turbulence, these assumptions seem somewhat academic; see however [12].

A convenient way of distinguishing the theories of (gravity induced) stratification is thus to measure Ds.
This was first attempted using quite distinct horizontal (e.g. airplane) and vertical (balloon) measurements [7],
in one case with near synchronous measurements [13,14]. Thanks to the advent of high-powered lidars with
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logarithmic amplifiers it is now possible to directly measure vertical atmospheric cross sections over greater
dynamic range and obtain much more convincing results. Indeed, at least for the lower atmosphere (o3–4 km)
cross-sections with over three orders of magnitude in scale in vertical and horizontal directions have been
obtained; analyses yield Hh=Hv ¼ Hz ¼ 0:55� 0:02 hence Ds ¼ 2.5570.02 [15], hence giving strong empirical
support for the 23/9 ( ¼ 2.555yD) model.

The theoretical prediction Hz ¼ 5/9 is the consequence of a horizontal Kolmogorov law: Dv ¼ �1=3Dx1=3

(Hh ¼ 1/3) and vertical Bolgiano–Obukhov law: Dv ¼ f1=5Dz3=5 (Hv ¼ 3/5) where e is the energy flux, f ¼
Df2/t is the buoyancy variance flux (units of distance2/time5; Df ¼ gDlog y is the buoyancy force increment
across a layer thickness Dz, and t is the time scale of the transfer); hence Hz ¼ 1/3/(3/5) ¼ 5/9. Using these two
fluxes, by dimensional analysis, we obtain basic length and time scales:

ls ¼ f�3=4�5=4; ts ¼ f�1=2�1=2, (1)

where ls is the ‘‘sphero scale’’, ts is the eddy turn over time at the sphero-scale (the ‘‘sphero-time’’), see below.
In the original (3-D isotropic) Bolgiano–Obukhov law, the length scale f�3=4�5=4 was called the ‘‘Bolgiano
scale’’ and was considered to be the outer scale of an isotropic 3-D Kolmogorov regime and simultaneously
the inner scale of an isotropic 3-D buoyancy-dominated Bolgiano–Obukhov regime. However, in the stratified
23/9-D model e, f are important at all scales so that it is not a transition from one regime to another, it is
rather the scale at which typical vertical and horizontal fluctuations are equal, hence at which structures will be
more or less isotropic, whence the term ‘‘sphero-scale’’. Since e and f are highly intermittent (multifractal)
fluxes appropriate statistics must be used to determine ls; see [16] and discussion below.

Since the velocity field ‘‘advects itself’’, if it is spatially scaling, then it is also scaling in time (and hence in
space-time); in the absence of an overall advection, the classical Kolmogorov result (essentially dimensional
analysis) yields Dv ¼ �1=2DtHt with the temporal exponent Ht ¼ 1/2 [17,18]. This implies that space-time
volumes scale as DxDyDzDt � Dx1þ1þHzþHt with Ht ¼ Hh/Ht ¼ (1/3)/(1/2) ¼ 2/3. However, when advection is
considered, the temporal scaling has two additional regimes corresponding to horizontal wind domination and
vertical wind domination. In this paper we examine this question empirically with the help of lidar data and
the new ASAT technique.

2. The predictions of the unified scaling model

As discussed above, the unified scaling model for atmospheric turbulence initially postulates:

DvðDx; 0; 0; 0Þ ¼ �
1=3
Dx Dx1=3,

Dvð0;Dy; 0; 0Þ ¼ �1=3Dy Dy1=3,

Dvð0; 0;Dz; 0Þ ¼ f1=5
Dz Dz3=5,

Dvð0; 0; 0;DtÞ ¼ �1=2Dt Dt1=2, ð2Þ

where e is the energy flux, f is the buoyancy variance flux; the subscripts indicate the scale of the increments.
To extend this to an arbitrary space-time displacement DR ¼ ðD r;DtÞ, D r ¼ ðDx;Dy;DzÞ, a ‘‘generalized

scale’’ 1DRU was introduced so as to be linear with respect to the contraction ratio l (see mathematical details
in Ref. [19]):

1TlDRU ¼ l�11DRU (3)

where Tl transforms vectors into vectors reduced by factors of l in scale. Since Tl is a one-parameter (semi-)
group with respect to l it is defined by a generator G:

Tl ¼ l�G. (4)

This ‘‘Generalized Scale Invariance’’ (GSI [6]) is the basic framework for defining scale in anisotropic scaling
systems. In the linear case, G is a matrix and the generalized scale is position independent. When G is the
identity matrix, we have the usual isotropic, self-similar scale changes. In the case of ‘‘linear GSI’’, where G is a
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diagonal matrix, the system is ‘‘self affine’’ and we obtain stratification along a coordinate axis. When G has
off-diagonal elements we have differential rotation and stratification.

To unify horizontal, vertical and temporal turbulent fluctuations as described in Eq. (2), the simplest case,
but not a generic case as discussed below, corresponds to:

Gst ¼
Gs 0

0 Ht

 !
; Gs ¼

1 0 0

0 1 0

0 0 Hz

0B@
1CA; Hz ¼ ð1=3Þ=ð3=5Þ ¼ 5=9;

Ht ¼ ð1=3Þ=ð1=2Þ ¼ 2=3;
(5)

where the rows and columns correspond to the x, y, z and t directions, respectively, Gs is the matrix
corresponding to the spatial part only; stratification exponents Hz, Ht are the ratios of the scaling exponent in
the horizontal over the scaling exponents in the vertical and in time respectively. The general definitions of the
elliptical dimensions characterizing the spatial and space-time anisotropies are respectively ‘Ds ¼ Trace Gs and
Dst ¼ Trace Gst ¼ Ds+H. With the above dimensionally determined exponents we obtain Ds ¼ 23/9,
Dst ¼ 29/9.

We now consider solutions of the scale Eq. (3); it is sufficient to consider diagonal G, non-diagonal G can be
dealt with by linear transformations (as with advection, see below). In this case, we can make the following
nonlinear transformation of variables:

Dx0 ¼ Dx; Dy0 ¼ Dy; Dz0 ¼ lssgnðDzÞðjDzj=lsÞ
1=Hz ; Dt0 ¼ lssgnðDtÞðjDtj=tsÞ

1=Ht . (6a)

In this primed space, we may define:

jDR0 j ¼ Dx0
2
þ Dy0

2
þ Dz0

2
þ Dt0

2
h i1=2

; dDR0 ¼
DR0

jDR0 j
, (6b)

where jDR0 j and dDR0 are the usual distances and direction vectors. Due to Eq. (3), we have: 1l�I DR0U ¼
l�11DR0U i.e. 1DR0U satisfies Eq. (3) with G ¼ I (the identity) and therefore is the usual norm with a possibly
direction dependent prefactor:

1DR0U ¼ YðdDR0ÞjDR0 j. (7)

where YðdDR0Þ is a function of polar angle in the DR0 space and determines the ‘‘trivial’’ anisotropy. We
therefore obtain (for diagonal G):

1DRU ¼ 1ðDx;Dy;Dz;DtÞU ¼ YðdDR0Þ1DRUcan,

1DRUcan ¼ jDR0 j ¼ ls

Dx

ls

� �2

þ
Dy

ls

� �2

þ
Dz

ls

� �2=Hz

þ
Dt

ts

� �2=Ht

 !1=2

, ð8Þ

the subscript ‘‘can’’ for ‘‘canonical’’ indicates that 1DRUcan ¼ DR0
�� �� is the simplest scale function (obtained

with Y ¼ 1). With the scale function 1DRU the anisotropic Kolmogorov–Bolgiano–Obukhov law (2) can be
written for arbitrary space-time displacement vectors:

DvðDRÞ � �1=3
½½DR��1DRU1=3. (9)

If the scale function is indeed the appropriate turbulent notion of scale then it must be used in all the
turbulence laws in the place of the (isotropic) vector norm. In this way, we obtain the anisotropic
generalization of the Corrsin–Obukhov law:

DrðDRÞ � w1=2
½½DR���

�1=6
½½DR��1DRU1=3, (10)

where w is the passive scalar variance flux and Dr is a fluctuation in the concentration of a passive scalar.
Obviously, for DR ¼ ðDx; 0; 0; 0Þ we obtain the usual Corrsin–Obukhov law; however in the vertical with
DR ¼ ð0; 0;Dz; 0Þ we obtain the new law:

Drð0; 0;Dz; 0Þ � w1=2��1=2f1=5Dz3=5. (11)
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In Ref. [15] both this and the standard horizontal Dx1/3 law were well verified on passive scalar surrogates
(pollution aerosols) using airborne lidar data from the lower 5 km of the atmosphere.

It is generally important to take into account the possible mean advection of the system. In order to handle
advection, we only need to perform a Galilean transformation [20,21]:

Gst ! A�1GstA; 1DRU! 1A�1DRU; A ¼

1 0 0 u

0 1 0 v

0 0 1 w

0 0 0 1

0BBB@
1CCCA, (12)

where V ¼ ðu; v;wÞ is the advection velocity. The advection therefore introduces a non-diagonal generator.
However, the relationship between the two Galilean frameworks is straightforward:

DR00 ¼ A�1 DR;
Dx00 ¼ D x�V Dt;

Dt00 ¼ Dt;
(13)

hence:

1ðDx;Dy;Dz;DtÞUadv ¼ lvYðdDR0Þ
Dx� uDt

ls

� �2

þ
Dy� vDt

ls

� �2

þ
Dz� wDt

ls

� �2=Hz

þ
Dt

ts

� �2=Ht

 !1=2

,

(14)

where again YðdDR0Þ determines the ‘‘trivial’’ anisotropy, i.e. simply a function of polar angle in the DR0 space;
below we empirically estimate both G and Y. Note that advection does not change TrGst; the elliptical
dimension is unaffected.

Considering temporal statistics (Dx ¼ Dy ¼ Dz ¼ 0), depending on ls, ts determined by Eq. (1), and
components of wind velocity, the radical in Eq. (14) involves three different types of time development with
exponents of 2 (horizontal wind domination), 2/Ht ¼ 3 (pure temporal development or ‘‘time domination’’)
and 2/Hz ¼ 18/5 (vertical wind domination). This leads to three critical times defined by the Dt’s for which one
term exceeds the other. In Ref. [16] these are investigated with the help of meteorological data. It was shown
that the probability that the transition from horizontal wind domination to vertical wind domination occurs at
time scales less than 102 s is �5% while the same probability of transition from horizontal wind domination to
time domination (according to Eq. (14)) is significant only at scales �105 s i.e. close to the eddy turn-over time
of the largest atmospheric eddies (�106 s). This result is compatible with that of Tennekes [22] based on the
argument that the effect due to the ‘‘sweeping’’ of the small eddies by the large ones that pure temporal
development will not be observable at time scales smaller than the eddy turn-over time (lifetime) of the largest
eddies, about 2 weeks in atmosphere.

Even if we do not expect to see pure temporal development, we must still consider more closely the scaling of
the vertical velocity term (which meteorological analyses indicate can occasionally be dominant). Whereas it is
more or less easy to define a non-zero horizontal mean advection (u, v) at large scale (e.g. by averaging the
horizontal wind on that scale), this is rather different for the vertical wind, the vertical wind w is typically small
and its mean value generally decreases approaching zero for large enough averaging scales, thus it appears on the
contrary to be scale dependent. According to limited analysis of drop sonde data (which as with most
measurement techniques have trouble estimating w), and meteorological analyses (which are also inaccurate), it
appears that the spectrum of w is a power law EwðoÞ�o�bo with exponent bwo1. Indeed, it seems likely that the
w field can be modeled by a fractional integration of order Hwo0 of a conservative multifractal flux (this is thus a
fractional differentiation, c.f. H ¼ 1/3 for the usual Corrsin–Obukhov law). Ignoring intermittency corrections,
this would yield bw ¼ 1+2Hwo1. In the case Hwo0, considering Dx ¼ Dy ¼ Dz ¼ 0, the statistics are:

jðwÞDtj ¼ wL=l

1DtU
l

� �Hw

; 1DtU ¼ 1ð0; 0; 0;DtÞU (15)

(when Hw40 we need to use Dw in place of w in the above) and (w)Dt is the mean vertical velocity in the region
size l over the time Dt; L is the outer scale of the variability. wL/l is the mean vertical wind over the domain size l
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(i.e. over time scale T4Dt) so that the cascade has developed over the scale ratio L/l. Continuing to ignore
intermittency we can roughly see the effect of the scaling Eq. (15): we obtain for Dx ¼ Dy ¼ Dz ¼ 0
Dr�Dtð1þHwÞH=Hz i.e. H 0t ¼ Hz=ð1þHwÞ. We can now see that Hw ¼ �1/6 implies H 0t ¼ Ht ¼ 2=3. Taking into
account intermittency and considering the scale function at a single point, and neglecting the horizontal wind (i.e.
u ¼ v ¼ 0) and pure temporal development terms (i.e. ts is large), we average over the vertical velocity
fluctuations, and obtain [23]:

1DtU ¼ ls
Dt

t0s

� �1=H 0t

; t0s ¼ ts
vs

wL=l

� �
l

ls

� �Hz�H 0t

; vs ¼ ls=ts, (16)

where we have used the shorthand notation 1DtU ¼ 1ð0; 0; 0;DtÞU and H0t depends on the statistics of w; with
HwE�0.1, we can readily have H 0t � Ht [23] so that the vertical wind term can give an ‘‘effective’’ exponent very
close to the pure temporal development exponent. vs is the ‘‘sphero-velocity’’; the typical horizontal velocity at the
sphero-scale (typically of the order of mm/s). For large enough vertical velocities, t0s can be appreciably smaller
than ts so that this velocity term with effective exponent H0t can dominate the horizontal advection terms (i.e.
ðDt=t0sÞ

1=H 0t4ðDt=tsÞ
1=Ht ). Therefore, replacing ðDt=tsÞ

1=Ht with ðDt=t0sÞ
1=H 0t (and putting the ‘‘effective vertical

velocity’’ to zero) we obtain the ‘‘effective scale function’’:

1DRUadvec;eff ;can ¼ 1A�1DRUeff ;can ¼ ls

Dx� uDt

ls

� �2

þ
Dy� vDt

ls

� �2

þ
Dz

ls

� �2=Hz

þ
Dt

t0s

� �2=H 0t
 !1=2

.

(17)

This new scale function corresponds to an ‘‘effective generator’’ and effective advection matrix:

Gst;eff ¼

1 0 0 0

0 1 0 0

0 0 Hz 0

0 0 0 H 0t

0BBBB@
1CCCCA; Aeff ¼

1 0 0 u

0 1 0 v

0 0 1 0

0 0 0 1

0BBB@
1CCCA; (18)

Dst;eff ;advec ¼ TrðA�1eff Gst;eff Aeff Þ ¼ TrðGst;eff Þ ¼ 2þHz þH 0t. (19)

We see that as long as H 0to1 that this vertical wind term will eventually (at large enough Dt) dominate the
horizontal wind. In the following, we primarily analyze times series of vertical profiles, i.e. we are most interested
in the (z, t) domain. In addition, we did not observe any cases with a clear break in the temporal scaling, so we
adopt an empirical view: in all cases where there is a single dominant temporal scaling term we expect the (z, t)
scale function to have the following form:

1ðDz;DtÞUadvec;eff ¼ 1ð0; 0;Dz;DtÞUadvec;eff ¼ YðyÞls
Dt

ts;eff

� �2

þ
Dz

ls

� �2=h
 !1=ð2Ht;eff Þ

, (20)

where Y(y) is the trivial anisotropy prefactor, h ¼ Ht,eff/Hz and Ht,eff is the exponent of the dominant temporal
term equal to 1 for horizontal velocity, 2/3 for pure temporal development, H0t for vertical wind dominance.
The scale function can be rewritten in this way since its Ht,eff power is symmetric with respect to the rescaled
generator

G ¼
h 0

0 1

� �
(21)

in the (Dz, Dt) domain. In this form, we seek to verify the above space–time scaling form and determine the value
of h, which determines the stratification in the (Dz, Dt) space.

Finally, we will need the corresponding equation in Fourier space obtained by Fourier transforming the
second order moment (autocorrelation function):

Pðkz;oÞ � ~Yhj2
l i1ðkz;oÞU

�s
¼ ~Yhj2

Lil
�s
s ððkzlsÞ

2=h
þ ðotsÞ

2
Þ
�s=2; s ¼ Dst � 2H � Kjð2Þ, (22)
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where j ¼ w1=2��1=6 and Dst ¼ Tr(Gst) and Kj(2) is the intermittency correction; it is the scaling exponent of
the variance of j : hjq

l i�l�KjðqÞ. Where we have used the ‘‘generalized Tauberian theorem’’:

1ðDz;DtÞUH 2
F :T :

1ðkz;oÞU
�ðDst�HÞ, (23)

where ‘‘F.T.’’ indicates Fourier transform. ~Y is the Fourier trivial anisotropy function (whose argument is the
angle in Fourier space), and Fourier scale function is symmetric with respect to GT rather than G. Integrating
out respectively kz and o to obtain the 1-D spectra, we obtain:

EðkzÞ�k�bv
z ; s4Ht;eff ; bv ¼ ðHt;eff =HzÞðs=Ht;eff � 1Þ,

EðoÞ�o�bt ; s4Hz; bt ¼ ðHz=Ht;eff Þðs=Hz � 1Þ. ð24Þ

This allows us to obtain the exponent s in terms of the 1-D spectral exponents. Solving for s, we obtain:
s ¼ btHt;eff þHz ¼ bvHz þHt;eff which leads to the useful relation: ðbv � 1Þ=ðbt � 1Þ ¼ Ht;eff =Hz ¼ h. Using
the values, btE2, Ht;eff � 0:66 in the case of vertical wind domination, we obtain s�1.88 and using bt ¼ 5/3
and Ht;eff ¼ 1 in the case of horizontal wind domination we obtain s ¼ btHt;eff þHz ¼ 20=9.

3. An overview of existing empirical evidence for temporal scaling

Eqs. (8,9) show that (ignoring intermittency corrections) temporal fluctuations can be of the scaling form
Dv � DtHt with Ht depending on the time scales and the strengths of the horizontal and vertical winds. As
mentioned above, taking into account the temporal scaling of the vertical wind we saw that it leads to H0t close
to Ht so that we expect Ht ¼ 1/3, 0.5 as the two possible exponents. Note that the corresponding (non-
intermittent) spectral exponents are given by bt ¼ 1+2Ht so that this leads to the values bt�5/3, 2.0. In the
atmosphere, experiments commonly find btE5/3 indicating that the horizontal wind is frequently large
enough to be dominant (at least at small lags); although several authors have found btE2 over wide ranges of
altitudes and conditions [24–27]. If we concentrate on the temporal spectrum of passive scalars and wind
measurements made from remote sensing of passive scalars (which are directly relevant to our lidar
measurements below), we find that radar and lidar measurements yield btE5/3 and 2 in lower atmosphere
(troposphere and stratosphere) [24–28] middle [29] and upper middle atmosphere including Na layer (up to
altitudes about of 110 km) [28,30–33]. Most of these experiments cover temporal scale ranges of factors of 103

or larger and collectively cover the range 1min to 100 days.
Since the spatial and temporal scaling of atmospheric fields are dimensionally related by a velocity, if we

assume that the latter is the turbulent wind then we expect the fields to share the same G matrix, hence
same ratio of horizontal to vertical scaling exponents: Ht ¼ Hh/HtE0.7 (low horizontal wind and/or
significant horizontal wind but scaling vertical wind) or Ht ¼ 1 (horizontal wind domination, i.e. Ht ¼ Hh). A
good source of data for this purpose is from precipitation; for example a limited lidar data study of
precipitation by Lovejoy and Schertzer [34], found Ht ¼ 0.570.2. More recently a much larger radar database
studied by Venugopal et al. [35] found similar results (c.f. their ‘‘dynamic scaling exponent’’ z ¼ Ht, which they
found in 5 storms to be 0.6670.09 and in a sixth to be 1.270.1; all are roughly compatible with Ht ¼ 2/3 or
Ht ¼ 1).

In the laboratory, the relatively abundant high Reynolds numbers shear driven flows give the velocity
dominant exponent btE5/3. A more interesting comparison is with convective turbulence (e.g.
Raleigh–Benard) experiments, which have no large scale forcing velocity and thus may allow us to observe
btE2. At present, the empirical situation is not clear because of the typical small range of scales in the scaling
regime (often over only one or two octaves in scale see e.g. [36,37]). Indeed, in order to get around the poor
scaling, it has become common to use extended self-similarity (see e.g. [36]) but this only allows the estimate of
the relative scaling exponents (e.g. structure functions of different orders vs. second order structure function),
not the absolute values we require here. The papers with the widest ranges (factors of E10) are [38,39] both of
whose results are compatible with theoretical temporal exponent btE2.

We thus see that overall, the existing data are compatible with the anisotropic scaling model, but that the
status of the btE2 exponent in particular is not well established.
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4. The experiments

We seek to verify the anisotropic space-time scaling using Eq. (22) and ground-based upward pointing lidar
data of passive scatter backscatter ratio (B). We used data from both airborne lidar (Environment Canada’s
AERosol Imaging Airborne Lidar—AERIAL [40] and ground-based lidar systems (mobile and fixed)
operated out of the CARE facility in Egbert, Ontario. B is the ratio of the aerosol backscatter coefficient to
that of the background molecular scattering; it is a surrogate for passive scalar concentration. Lidar remote
sensing is a time-of-flight technique that uses laser radiation backscattered from atmospheric particulates to
obtain range-resolved backscatter measurement fields. The lasers operated at the fundamental wavelength of
1064 nm, suited for the detection of particles with diameter of the order of 1 mm and had a pulse repetition rate
of 20Hz. B was measured continuously in a 2-D vertical planar section.

We analyze ground-based and airborne data sets from B-value of aerosol and cirrus cloud cases (the latter
indicated with asterixes; only optically thin clouds can be analyzed due to the extinction of the beam);
Langley0807 and Langley0808 are data sets acquired during PACIFIC 2001 in Langley, BC on August 7, 8
with resolution of 3m, 1 s (roughly 300� 5000 points each). Egbert 0530*, 0602, 0603 and 0616* are CARE
2003 data acquired in Egbert, Ontario on 30 May, 02 (the plume of Siberian forest fire), 03 and 16 June
(roughly 1000� 800 points, except 0530 which was 900� 11400). Pacific 0815t6, 0815t8, 0815t10, 0815t18,
0815t22, 0814t5, 0814t7, 0814t9, 0814t17 and 0814t20 are vertical cross-sections from PACIFIC 2001 airborne
lidar platform experiments acquired in the Lower Fraser Valley, BC on 14 and 15 (roughly 500� 800 points
each). We also used 7 (z, t) data sets acquired from RASCAL (Environment Canada’s mobile lidar facility
[40]) in Windsor, ON during the Border Air Quality Strategy (BAQS) 2004 experimental campaign. These
data sets have resolution of 3m in vertical and of 1 s in time. They represent turbulence in the boundary layer
(typical altitudes �200 to �1300m).

In order to justify the statement that B is a good surrogate for passive scalar density, consider Fig. 1 which
presents a typical lidar picture. It allows one to make a rough estimate of the apparent vertical wind from the
tangent of the cloud structure. In this particular case 451 lines correspond to �10 cm/s. This speed is much
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Fig. 1. (Color online) This is the Egbert0603 data taken on 3 June 2003. The scale on the bottom is a logarithmic color scale: darker is for

smaller backscatter (aerosol density surrogate), lighter is for larger backscatter. In this panel, the vertical extent is 1.82 km and the

duration is 19,440 s. The time resolution is 30.0 s and the vertical resolution is 3.746m. There is no saturated signal and there is high

sensitivity to low signal return.
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greater than typical sedimentation rates for particles of the size of 1 mm, which is of the order 0.05 cm/s (more
than 100 times smaller).

5. The qualitative analysis

By examining temporal spectra E(o), we found no experimental data sets containing a clear break with (i.e.
with more than one regime). Overall, we found three cases with btE2, the others had btE5/3 (see Fig. 2). We
also found good agreement between experimental vertical spectra E(kz) and Bolgiano–Obukhov power law
k�11=5z over wide ranges of scale. The only exception was in some cases where over a limited high wave number
range over which we observed EðkzÞ � k�11=5�2z . This may plausibly be explained by beam attenuation and the
post-processing, which attempts to remove it via an attenuation correction. Since the correction is obtained by
summing the attenuation coefficients along vertical rays this order 1 integration can readily increase the
vertical scaling exponent in real space by 1: H0 ¼ H+1. For spectral scaling exponent at small kz we have
b0 ¼ 2H0+1 ¼ 2H+3 ¼ b+2 i.e. k�21=5z instead of k�11=5z . Thus, summing the signals over a short range of
scales may lead to the observed.

The functional form (22) suggests the use of the following nonlinear transformation of variables (in analogy
with real space; see [16]):

k0z ¼ jkzj
1=hsgnðkzÞ; o0 ¼ o (25)

in the (kz, o) domain, or:

k0z ¼ jkzj
1=HzsgnðkzÞ; k0x ¼ kx (26)

in (kx, kz) domain.
Thus, the factorization property (22) implies that contour plots of Pðk0zo

0Þ should give contours of the same
shape at any scale (the shape only depends on the polar angle). For horizontal and vertical wind dominated
vertical-time and vertical–horizontal cross-sections (see Figs. 3(a)–(c) respectively), we can clearly see that
the large and small contours after transformation (but not before) have the same shape (only depend on
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Fig. 2. Temporal spectra. The top 3 curves have reference lines with btE2, all the others have btE5/3. The top 6 data sets (triangles) were

acquired during Pacific 2001 and Egbert 2003 experimental campaigns. The bottom 7 sets were acquired during BAQS 2004 (Windsor)

experimental campaign. The spectra are displaced in the vertical for clarity.
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Fig. 3. (a) Contour plots of log(P(kz,o)) (left picture, before nonlinear transformation) and ðPðk0z;o
0ÞÞ (after transformation) for Egbert

0530 data set (the case of horizontal wind ‘‘domination’’). The spectra are smoothed with a radius 4 gaussian smoother in Fourier space;

(b) Same as 2a but for Egbert 0603 data set (the case of vertical wind domination). The spectra are smoothed with a radius 6 Gaussian

smoother in Fourier space; (c) Same as 2a but for Pacific 2001 0815t22 data set ((x, z) cross section). The spectra are smoothed with a

radius 4 Gaussian smoother in Fourier space.
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polar angle). The spectra shown in Fig. 3 have a central symmetry; this is a consequence of the definition of the
spectrum.

In order to see the anisotropic scale invariance more clearly—and to visually verify that the correct
exponents are not far from the theoretical ones—we constructed Fig. 4(a), (b) which shows two successive
‘‘zooms’’ of factor 4 (left to right) on increasingly stratified spaces (lower and lower Hz, bottom to top).
Contours at the second row of plots in Fig. 4(a) (Hz ¼ 5/9) look pretty much the same as well as contours in
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Fig. 4. (a) Contour plots of ðPðk0x; k
0
zÞÞ for Pacific 0815t8 (x, z) cross section transformed with Hz ¼ 1/3 (quasi linear gravity waves), 5/9

(anisotropic 29/9-D model) and 1 (isotropic 3-D turbulence) (from top to bottom) and zoomed with factors 1, 4 and 16 (from left to right);

(b) Contour plots of logðPðk0z;o
0ÞÞ for Egbert 0602 (z, t) cross section transformed with different values of Hz/Ht corresponding to different

theoretical approaches: 1/2 (top; gravity waves), 5/6 (middle; anisotropic 29/9-D model) and 1 (bottom; isotropic 3-D turbulence) and

zoomed with factors of 1, 4 and 16 (from left to right).
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the second row of Fig. 4(b) (h ¼ 5/6; the transformation (26) is used, the scaling exponent is s0 ¼

bt þHz=Ht ¼ 17=6). The last row in both cases corresponds to the isotropic case. The scale independence of
the anisotropy contours after the nonlinear transformation with correct (theoretical) power of transformation
(but scale dependence before) is convincing evidence that Eqs. (25), (26) are valid. In order to see the structure
clearly it was necessary to smooth the spectra. Figs. 4(a), (b) are made using a smoothing technique that
smoothes along a radial (fixed Fourier space angle y0) and which exploits the isotropic scaling properties of the
field in the primed space [41]:

Pðk0; y0Þ ¼
1

2nþ 1

Xn

j¼�n

ljsPðljk0; y0Þ. (27)
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Here, we produce P̄ smoothing over a factor of roughly 1/4 smaller to 4 larger scales using n ¼ 11
and l ¼ 1.14. In Fig. 4(a), comparing the left and right contours for Hz ¼ 1/3 we can see that they
become more ‘‘squashed’’ horizontally while for bottom row (Hz ¼ 1) the squashing makes them more
and more vertically aligned. The Hz ¼ 5/9 (middle) is roughly unchanged. Similarly, in Fig. 4(b), moving
from left to right (zooming) we see that the top row is too flattened while the bottom row is too vertically
aligned.

Additional evidence for the theoretical exponents and behavior is provided by Fig. 5(a), (b), which presents
direct evidence of accuracy of Eq. (22), hence by implication Eq. (10) is valid for all (Dz, Dt). Note that no
single direction y0 in Fig. 5 coincides with the axes o0 or k0x, k0z, thus none of the curves represents usual 1-D
temporal or space analysis.

6. Quantitative analysis

The above analyses provide qualitative tests of theoretical exponents but not empirical estimates of their
values. In order to quantify them—i.e. to estimate h ¼ Hz ((x, z) section) and h ¼ Hz/Ht ((z, t) section) we used
a variation on the ‘‘Scale Invariant Generator’’ (SIG) technique developed earlier [41,42]. This technique
estimates h by minimizing the differences between the zoomed Pðlk0Þ and original spectra Pðk0Þ of Fig. 4. This

difference is quantified by the following error function E2 ¼ logðPðlk0Þls
Þ � logðPðk0ÞÞ

� �2
where the factor ls

ðs ¼ btHt; eff þHzÞ takes into account the scaling P̄ / k�s. b is the 1-D spectral exponent in the horizontal
(temporal) direction; as above, the overbar means averaging along a radial in the space ðk0x; k0zÞ or ðk

0
z; o

0Þ and
over all radials (to cover the whole space). Before performing the analysis it was important to remove high
frequencies and/or wave numbers affected by measurement noise.

In order to verify this technique we applied it to various anisotropic multifractal simulations with
known parameters. We found good agreement between the original parameters of the simulations and
those ones calculated with technique described above with the only exception that this technique
systematically slightly underestimates stratification exponent (by about 0.02–0.03). This is a (at least) partial
explanation of the underestimation of the stratification exponent found for the real data we shall show
below.

The dependencies of E2 on h ¼ Hz, (h ¼ Hz/Ht) as well as their quadratic fits are presented on the Figs. 5–7.
A quadratic fit near the minimum was used to accurately obtain the position of minimum of E2 as a function
of h. The results are given by Tables 1 and 2 (Fig. 8).

The mean value of the ‘‘wind dominated’’ cases 4–6 is h ¼ Hz ¼ 0.5770.05, the mean value of the
pure temporal cases 1–3 is h ¼ Hz/Ht ¼ 0.7970.09. Using Ht ¼ 1 or 2/3 we can see that the theoretical values
(5/9, 5/6) are within the confidence intervals in both cases. The mean over the 10 (x, z) cross sections cases
7–16 is Hz ¼ 0.5070.04. In all cases we note a small systematic underestimate of Hz.

In order to estimate Ht from the empirically determined ratio Hz/Ht, we need an estimate of Hz. Using the
empirical value Hz ¼ 0.50 we find Ht ¼ 0.6370.12. Alternatively, if we assume the theoretical value Hz ¼ 5/9,
we obtain Ht ¼ 0.7070.08; both estimates are near the value 2/3. Finally, we can calculate the space-time
dimension of turbulent motions Dst, which is given by the following expression:

Dst;eff ¼ TrðGeff Þ ¼ 1þ 1þHz þHt;eff .

Using the empirical Hz ¼ 0.50 to estimate Ht we obtain Dst,eff ¼ 3.1370.16 or using the theoretical
Hz ¼ 5/9 we obtain alternatively Dst,eff ¼ 3.2570.08. It is important to note that these estimates of
the ‘‘effective’’ elliptical dimension are valid for both cases of horizontal and vertical wind domination
(if we accept that the pure temporal development is never dominant over the observed scale range).
Horizontal wind does not change the trace of the generator G while vertical wind with temporal scaling
does.

Although the underestimate in Hz with respect to the 5/9 value is small and nearly within the one
standard deviation error bar, it may be significant. A possible explanation for the slightly low Hz value is
that at least for the higher altitudes (44–5 km) that the value of Hv may increase from 3/5 to E0.75 ([45]
using state-of-the-art dropsondes to measure vertical profiles of horizontal wind). If this is the case, then a
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pure Hz ¼ 0.75 regime would yield Hz ¼ 0.44 (not 5/9), quite close to some of the values in Table 2. Values
intermediate between 0.44 and 0.55 would result from averaging over thick atmospheric layers including both
regimes.
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RPðkR; y0Þ (i.e. the spectrum compensated by ks

R) on kR along different rays y0 ¼ p/20, 3p/20,y, 19p/20
(top to bottom) the theory is validated when the lines are flat. This is a direct test of Eq. (22) in arbitrary directions in k0 space.

Dependences for different directions are equally offset for clarity. Bottom lines correspond to low values of y0; straight lines are reference
lines parallel to horizontal axis; (a) Langley 0808 dataset (case of horizontal wind domination, s ¼ 20/9), (b) Egbert 0603 dataset (case of

vertical wind domination, s ¼ 1.89).
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Table 1

This compares the RMS exponents for various (z, t) data sets discussed in the text

Data set Type of cloud Resolution (vertical-time) Hz=H�t Dilation factor l

1. Egbert 0602a Cirrus 3.75m by 30.0 s 0.80370.088 16

2. Egbert 0603a Aerosol 3.75m by 30.0 s 0.77870.10 8

3. Langley 0807a Aerosol 3.0m by 1.0 s 0.79470.075 16

Mean, vertical wind domination data sets 0.7970.09

4. Egbert 0530b Cirrus 3.75m by 0.5 s 0.55870.085 16

5. Egbert 0616b Cirrus 3.75m by 30.0 s 0.55270.037 16

6. Langley 0808b Aerosol 3.0m by 1.0 s 0.59170.021 16

Mean, horizontal wind dominated data sets 0.5770.05

The dilation factor used in the estimates was the largest compatible with the data (recall that we require a range of scale of factorX40 after

the zoom in order to make a reliable comparison) and varies slightly as indicated. The values and errors are from the error functions

graphed in Fig. 6.
aHorizontal wind dominates theory is 5/9E0.555y
bPure temporal development, theory is 5/6E0.833y
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Fig. 7. Same as 5 but for (x, z) data sets: Pacific 2001 0814. (Light blue boxes)—0814t5, (blue triangles)—0814t7, (violet diamonds)—

0814t9, (pink stars)—0814t17, (red unfilled boxes)—0814t20.

0.4 0.5 0.6 0.7 0.8 0.9 1

Hz /Ht

0.5

1

1.5

2

2.5

3

E
2

Fig. 6. Error E2 as a function of Hz and the quadratic fit near the minimum for (z,t) data sets. Filled dots represent wind ‘‘dominated’’

cases, non-filled–cases with pure temporal development. (Red filled boxes)—E0530, (violet filled triangles)—E0616, (blue filled

diamonds)—L0808, (red boxes)—E0602, (violet triangle)—E0603, (blue diamonds)—L0807. The curves are offset in the vertical for

clarity. The vertical dashed lines indicate minima of fits. Their values are given in Table 1.
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7. Conclusions

One of the most fundamental aspects of atmospheric turbulence is its space-time stratification. Over the last
20 years the evidence has accumulated that it is scaling over wide ranges of space-time scales. Indeed, the main
competing theories are the scaling quasi-linear gravity wave theories and the anisotropic generalization of
Bolgiano–Obukhov convectively driven turbulence. In the horizontal and vertical directions these theories
predict spectral exponents 5/3, 3 and 5/3, 11/5, respectively; the scaling stratifications implied by these models
can be characterized by the ‘‘elliptical dimensions’’ Ds ¼ 7/3 and Ds ¼ 23/9, respectively. As is often the case,
key breakthroughs come with advent of new technologies; in this case, state-of-the-art lidar backscatter data
from passive scalars which yielded the estimate [15] Ds ¼ 2.5570.02, thus ruling out the competing quasi-
linear gravity wave theories. At about the same time, scaling analyses of aircraft trajectories revealed that not
only can they be fractal, but that the fractality systematically bias the turbulence exponents and—if the
trajectories are not perfectly flat—can introduce spurious length scales and even spurious exponents [23,43].
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Fig. 8. Same as 5 but for (x, z) Pacific 2001 0815 data sets. (Light blue boxes)—0815t6, (blue triangles)—0815t8, (violet diamonds)—

0815t10, (pink stars)—0815t18, (red unfilled boxes)—0815t22.

Table 2

Same as Table 1 but for (x, z) cross-sections

Data set Hz Dilation Factor l

7. P 0814t5 0.45470.053 16

8. P 0814t7 0.51570.033 16

9. P 0814t9 0.49570.034 16

10. P 0814t17 0.46270.068 8

11. P 0814t20 0.47370.019 8

12. P 0815t6 0.53870.060 16

13. P 0815t8 0.54170.034 16

14. P 0815t10 0.48270.035 16

15. P 0815t18 0.52170.034 8

16. P 0815t22 0.51470.033 16

Mean 0.5070.04

All data sets represent aerosol clouds and have resolution 96m (horizontal) by 3m (vertical). The values and errors are from the graphs in

Figs. 7, 8.
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In the absence of overall advection, the Ds ¼ 23/9 model of spatial stratification implies that space-time is
scaling with exponent Dst ¼ 29/9. However, when advection is taken into account, it is found to introduce off-
diagonal elements in the generator of the group of scaling changing operators so that space-time cross-sections
become more complicated than vertical–horizontal cross-sections. Although if one uses appropriate
anisotropic notions of scale, there will only be a unique scaling behavior, if one considers time series and
uses Dt or frequency o (i.e. conventional times and frequencies) we find that there are three different temporal
scaling regimes corresponding to dominance by horizontal advection, pure temporal development and vertical
advection. Viewed in this way, this is a ‘‘cross-over’’ scaling phenomena: the three scalings are always present
but at a given scale—depending on the local values of the turbulent fluxes and horizontal and vertical winds—
one will be dominant.

Analyzing the effects of advection more closely we found that although gradients in the horizontal wind are
scaling, there may still be a roughly uniform advection across our experimental region. However, the vertical
wind is quite different; its space-time averages have non-trivial scaling properties such that averaging it over
larger and larger scales tends to reduce it. Taking this scaling into account, we find that the vertical advection
exponent (which is a consequence of both vertical stratification and the non-trivial scaling of the vertical
velocity) is actually quantitatively very close to the temporal scaling exponent; both lead to btE2. At the same
time, because of the advection effects of smaller eddies by planetary scale ones, pure temporal development—
at least for scales below the eddy turn-over time for the largest eddy (about 2 weeks)—is unlikely to be
observed. We therefore argue that the observed exponents btE5/3, 2 correspond to horizontal or vertical wind
domination. We can reduce the problem to advection with constant horizontal wind and use an ‘‘effective’’
generator Geff temporal stratification exponent Ht,eff which is determined by the scaling properties of the
vertical wind.

Building on the earlier (x, z) (vertical cross-section) lidar work, we test these predictions using passive
scalar surrogates of aerosol and cirrus clouds from thirteen ground based lidar cross sections (vertical-time)
and ten airborne lidar cross sections (vertical–horizontal), thereby directly accessing both vertical and time
(or horizontal and vertical) information.

In order to estimate scaling space-time stratification for density fluctuations, we developed new anisotropic
scaling analysis technique (ASAT) based on nonlinear coordinate (wave numbers and frequency in Fourier
space) transformations. The idea is to use a nonlinear coordinate transformation to transform the data into an
isotropic space so that the spectra become self-similar. Since the spectra in the new space is self-similar, this
allows us to visually validate the theory as well as to quantitatively estimate the stratification exponents.

Our findings of the stratification exponents are based on the analysis in all wave numbers and frequency
directions for space-time scales ranging over roughly 3 orders of magnitude. Using the ASAT technique, we
obtained the estimate of the vertical stratification exponent from vertical–horizontal cross sections close to its
theoretical value of 5/9: Hz ¼ 0.5070.04; i.e. a little smaller than previous estimates based on (real space) first-
order structure functions, but still within the one standard deviation error bars. The ratio of the stratification
exponents Hz/Ht,eff for the cases of the horizontal wind domination (Ht,eff ¼ 1) is also close to the theoretically
predicted value (5/9), we found: Hz/Ht,eff ¼ 0.5770.05. For the cases of vertical wind domination, we have
Hz/Ht,eff ¼ 0.7970.09 and Ht,eff ¼ 0.7070.08. Ignoring intermittency, this implies that the temporal scaling
exponent of the vertical wind is Hw ¼ Hz/Ht,eff�1 ¼ �0.270.1. In an accompanying series of papers,
[16,23,44] we show that this result is fully compatible with numerous existing (sonde, aircraft) data analyses,
we show how to make the corresponding multifractal models including extensions to turbulence/wave models
which although close to the observed wave phenomenology are highly nonlinear consequences of the
anisotropic scaling rather than quasi-linear phenomenon predicted by linear perturbation theory of
the turbulent atmospheric equations. Finally, since horizontal advection does not change the trace of the
generator G the effective dimension of space-time is Dst,eff ¼ 2+Hz+Ht,eff ¼ 3.2570.1 or 3.1370.16
depending on the method of estimation in the two cases.

The classical turbulence approaches to atmospheric dynamics proceed by first postulating isotropy and then
scaling. Since the phenomena are highly stratified in both space and space-time, this greatly reduces the range
over which any given theory is applicable. In addition in order to explain the dynamics over the enormous
range of dynamically important scales, it requires the elaboration of a hierarchy of (often ad hoc) models
including their non-trivial interlinkages. In contrast, modern data has shown that in spite of extreme
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anisotropies, that the space-time scaling of many turbulent atmospheric fields can nevertheless be remarkably
well respected over huge ranges of scale. By showing that the same anisotropic framework (GSI) is adequate
for both spatial and space-time stratification, we vastly extend the range of scales over which turbulence
theory can be applied, and open up the possibility that one day all meteorological phenomena will be
satisfyingly treated as anisotropic turbulent phenomena. This implies the possibility of developing new
families of (anisotropic, multifractal) models—including some with wave-like behaviors (Lovejoy et al.,
2007)—as well as new (stochastic) approaches to meteorological forecasting.

Acknowledgments

The authors also acknowledge the Center for Atmospheric Research Experiments of Environment Canada
for the close collaboration during this project and in particular the support of M. Travis. We also acknowledge
the Canadian Foundation for Climate and Atmospheric Sciences for financial support.

References

[1] I. Arad, B. Dhruva, S. Kurien, V.S. L’vov, I. Procaccia, K.R. Sreenivasan, Phys. Rev. Lett. 81 (1998) 5330.

[2] I. Arad, L. Biferale, I. Mazzitelli, I. Procaccia, Phys. Rev. E 82 (1999) 5040.

[3] I. Arad, V.S. L’vov, I. Procaccia, Phys. Rev. E 59 (1999) 6753.

[4] S. Kurien, V.S. L’vov, I. Procaccia, K.R. Sreenivasan, Phys. Rev. E 61 (2000) 407.

[5] V.S. L’vov, I. Procaccia, V. Tiberkevich, Phys. Rev. E 67 (2003) 026312.

[6] D. Schertzer, S. Lovejoy, Physico-chem. Hydrodyn. J. 6 (1985) 623.

[7] D. Schertzer, S. Lovejoy, in: B. Launder (Ed.), Turbulent Shear Flow 4, Springer, 1985, p. 7.

[8] P. Bartello, J. Atmos. Sci. 52 (1995) 4410.

[9] A.L. Fairhall, B. Dhruva, V.S. L’vov, I. Procaccia, K.R. Sreenivasan, Phys. Rev. Lett. 79 (1997) 3174.

[10] J.L. Lumley, Phys. Fluids 10 (1967) 1405.

[11] J.C. Wyngaard, O.R. Cote, J.R. Quar, Met. Soc. 98 (1972) 590.

[12] T. Ishihara, K. Yoshida, Y. Kaneda, Phys. Rev. Lett. 88 (2002) 154501.

[13] Y. Chigirinskaya, D. Schertzer, S. Lovejoy, et al., Nonlinear Process. Geophys. 1 (1994) 105.

[14] A. Lazarev, D. Schertzer, S. Lovejoy, et al., Nonlinear Process. Geophys. 1 (1994) 115.

[15] M. Lilley, S. Lovejoy, K. Strawbridge, D. Schertzer, Phys. Rev. E 70 (2004) 036307.

[16] A. Radkevich, S. Lovejoy, K.B. Strawbridge, et al., Quart. J. R. Meteor. Soc. (2006), submitted for publication.

[17] E. Inoue, J. Met. Soc. Jpn 29 (1951) 32.

[18] L.D. Landau, E.M. Lifshitz, Fluid Mechanics, Pergamon, London, England, 1959.

[19] D. Schertzer, M. Larchevesque, J. Duan, S. Lovejoy, Generalized Stable Multivariate Distributions and Anisotropic Dilations, IMA

preprint # 1666, Institute For Mathematics And its Applications, University of Minnesota.

[20] D. Schertzer, S. Lovejoy, F. Schmitt, et al., Fractals 5 (1997) 427.

[21] D. Schertzer, S. Lovejoy, F. Schmitt, et al., in: University Department of Energy (Ed.), Seventh Atmos. Rad. Meas. (ARM) meeting,

San Antonio, 1998, p. 327.

[22] H. Tennekes, J. Fluid. Mech. 67 (1975) 561.

[23] S. Lovejoy, D. Schertzer, M. Lilley, et al., Quart. J. R. Meteor. Soc. (2005), submitted for publication.

[24] A.O. Scheffler, C.H. Liu, Radio Sci. 20 (1985) 1309.

[25] B.B. Balsley, R. Garello, Radio Sci. 20 (1985) 1355.

[26] D.C. Fritts, T. Tsuda, T.E. VanZandt, S.A. Smith, T. Sato, S. Fukao, S. Kato, J. Atmos. Sci 47 (1990) 51.

[27] M.L. Larsen, M.C. Kelly, K.S. Gage, J. Atmos. Sci 39 (1982) 1035.

[28] B.B. Balsley, D.A. Carter, Geophys. Res. Lett. 9 (1982) 465.

[29] R.J. Sica, A.T. Russell, J. Atmos. Sci. 56 (1999) 1308.

[30] C.E. Meek, I.M. Reid, A.H. Manson, Radio Sci. 20 (1985) 1383.

[31] C.S. Gardner, D.G. Voelz, J. Geophys. Res 92 (1987) 4673.

[32] K.H. Kwon, C.S. Gardner, S.K. Avery, J.P. Avery, J. Geophys. Res 95 (1990) 13737.

[33] T.J. Beatty, C.A. Hostetler, C.S. Gardner, J. Atmos. Sci. 49 (1992) 477.

[34] S. Lovejoy, D. Schertzer, Multifractal analysis techniques and rain and cloud fields from 10–3 to 106m. In: D. Schertzer, S. Lovejoy

(Eds.), Scaling, Fractals and Non-linear Variability in Geophysics, Kluwer, Dordrecht, 1991, pp. 111–144.

[35] V. Venugopal, E. Foufoula-Georgiou, V. Sapozhnikov, J. Geophys. Res. 104 (1999) 31599.

[36] L. Skrbek, J.J. Niemela, K.R. Sreenivasan, R.J. Donnelly, Phys. Rev. E 66 (2002) 036303.

[37] J.J. Niemela, L. Skrbek, K.R. Sreenivasan, R.J. Donnelly, Nature 404 (2000) 837.

[38] S. Ashkenazi, V. Steinberg, Phys. Rev. Lett. 83 (1999) 4760.

[39] X.-D. Shang, K.-Q. Xia, Phys. Rev. E 64 (2001) 065301.

ARTICLE IN PRESS
A. Radkevich et al. / Physica A 382 (2007) 597–615614



Aut
ho

r's
   

pe
rs

on
al

   
co

py

[40] K.B. Strawbridge, B.J. Snyder, Atmos. Environ. 38 (2004) 5873.

[41] G.M. Lewis, D. Schertzer, S. Lovejoy, S. Pecknold, Comput. Geosci. 25 (1999) 963.

[42] Q. Cheng, Math. Geol. 36 (2004) 345.

[43] S. Lovejoy, D. Schertzer, A.F. Tuck, Phys. Rev. E 70 (2004) 036306.

[44] M. Lilley, S. Lovejoy, K. Strawbridge, D. Schertzer, A. Radkevitch, Quart. J. Roy. Meteor. Soc., (2005), submitted for publication.

[45] S. Lovejoy, A. Tuck, S. Hovde, D. Schertzer, Geophys. Resear. Lett. (in press).

ARTICLE IN PRESS
A. Radkevich et al. / Physica A 382 (2007) 597–615 615


