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GENERALISED SCALE INVARIANCE AND ANISOTROPIC INHOMOGENEOUS FRACTALS IN TURBULENCE!

Daniel SCHERTZER and Shaun LOVEJQY?
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A generalisation of scaling is presented to deal with anisotropy and {multidimensional) intermittency. Implications,

especially for meteorological fields, are discussed.

7. INTRODUCTION

Many geophysical Ffields are extremely
variable over a wide range of time and space
scales. The variability af the atmosphere
is large over at least 9 orders of magnitude
(~ 1mm to ~. 1000 km) and creates strongly
intermittent and anisotropic structures
the energy spectrum (E(k)) of the harizontal
wind in the horizontal is= k=7/3 whereas it
is (roughly) the much steeper ~ k=11/5 in
the wvertical. This difference is the
spectral counterpart of the (large) vertical
stratification.

For both analysing and simulating these
structures, it is necessary to generalise
both the notion of scale invariance and
intermittency, through the introduction of
anisotropic metrics and dimensions, and
scale invariant measures characterised by
multiple (fractal) dimensions. Interesting
consequences are that multidimensionality is
directly connected with the divergence of
high statistical moments of average cascade
quantities, multiplicative processes and new
guestions on detectability and predic-
tability.
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2. GENERALISED SCALE INVARIANCE (G.5.I.)

To avoid the untenable dichotomy 2D/3D

for large/small scales, we have proposed an
alternative scaling madel’-3 (see also 4-3
for non-mathematical reviews) of atmospheric
dynamics: the anisotropy introduced by
gravity via the buoyancy force results in a
differential stratification and a consequent
modification of the effective dimension of
space (from the isotropic value D=3 to
23/9=2.5555...).

In order to take into account this and
other effects such as the differential
rotation introduced by the Coriolis force, a
general formalism of scaling is required.
The fundamental problem is that of finding
a family of "balls" representing the
statistical properties of eddies at dif-
ferent scales, via (mathematical) random
measures, such as the flux of energy

through structures of a given scale.

2.2 Generalised notion of scale

Close examination of the phenomenology of
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turbulent cascades outlined the basic
properties associated with the notion of
scale and leads® to the following abstract
definition in terms of a group (the "scaling
group") of operators T, acting on &
topological space M :

(iy 1 3 is a multiplicative group
{ N e R:) of transformations from M to M:
G Ty 3 BT 335 T ¥ e Ry
(in particular : Tq = 1 = the identity and
TiT:T}-IJ o

(ii) there exists a Ffamily J 1 of
"balls" (open sub-sets of M) such that n
=Ta f}q is a basis for the topology of M

{iii) there exists an increasing function
9‘ from (B to Ry, bounded on .@1 and which
factorizes in (D & R} :

@ T,p= N, V)

(T % 1is naturally defined by : T;?‘{B) =
#(1,8), ¥r,8)

Note the expression )«D results from the
group property of T,‘ since it would be
implied by the assumption of the existence
of a continous function g{X) in (2).

As is easily shown, in case of a metric
space, D plays the role of a dimension and
ﬁ can be taken as the radius of the balls
defined by the distance, T)\ is the usual
dilatation in case of isotropy. More
generally we can use the measurability
property of the balls. For instance on Rd,
we can kake F‘ as the Lebesgue (d- volume)
measure, by supposing that the B's are
Lebesgue measurable, and D equals d if the
balls are the usual spheres or cubes. This
is no longer true with strongly anisotropic
balls (such as self-affine, but not
self-similar, ellipsoids). Even more
anisotropic (and/or irregular) balls can be
dealt with: (anisotropic) fractal sets. In
all these cases ¢ can be taken as the

measure  which is finite and positive on the

balls (Lebesgue or Haussdorff) and the scale
3 E ¢ 1/D
is given by .

2.3 Linear GS] case

The group T o is generated by a
(bounded) linear application G according
to : o
(3) T = exp (Glog A) = ngu(lag ynGn/n!

The following conditiansé are necessary
and sufficient to obtain a scaling group:

a) measurable case: Dg1=Trace(G) > O
Dg] can be considered as the effective
dimension of the space, or its elliptical
dimension 1-3. Non-linear examples are given
in 6,

b) metric case: inf Re¢ (G) > 1
where & (G) is the spectrum of G. If the
unit ball is defined by the ellipsoid
generated by a symmetric operator A, the
following condition is obtained:

(5) inf & (sym (AG))>1
(Sym (AG) denotes the symmetric part of AG)

Particularly simple examples of linear
GSI are cbtained by the use of quaternions®,
and used to exploit? the FSP model8-2 to
give examples of (mono-dimensional) fields

respecting linear metric GSI.

3. GSI AND MULTIDIMENSIONAL INTERMITTENCY
3.1 Introduction

Usual stochastiec processes (such as
Brownian motion) are obtained by the
(weighted) addition independent identically
distributed (i.i.d.) random variables (e.g.
integrals of white noise). Conversely, the
multiplicative group T, suggests that in GSI
the most natural type of process to use are
those obtained by multiplication, cor-
responding also to the non-linear breaking
of eddies.

The former case is mono-dimensional,

while the latter generally leads to multiple
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dimensions. Many efforts have been made to
relate the most obvious aspect of inter-
mittency-its "spottiness"10- to a turbulent
support with a single fractal dimen-
sion11,12, However, as pointed out inls2,
phenomenclogical models of intermit-
tency13514,11 lead, generally to multiple
dimensions, corresponding to the different
(tensorial) powers of the measure of the
fFlux of energy. Indeed, a sequence of
dimensions is sasily obtained?,3,15,16 by
considering the divergence of high moments
of the density &€ p of this flux with respect
to different Dp-dimensienal Hausdorff
measures:
(6) < €hg>=%0 for Dp < C(h)=Dg1-D(h)
c(h)=logg Wh >/(h-1)

where W is the random variable which
distributes the density during a step of the
cascade.Note that the condition stated in
Eg.6 corresponds to the one of non-
intersection of sets A and S(h) of co-
dimension C(h) (since, usualy for sets A, B:
D(AN B) = D(A) - C(B), D and C indicating
the dimension and co-dimension of the
referenced sets). Increasing h corresponds
to studying the more intense regions. C(h)
is an increasing function of h, or the most
intense regions are Lthe most sparsely

distributed.

3.2 G5I and multiplicative processes-

multiplicative chaos

Instead of adding random increments of
finer and finer resolution along the cascade
(as in the FSPB-9), one may multiply by
random increments of Ffiner and finer
resolution. This multiplicative procedure
correspands to the non-linear break-up of
eddies into sub-eddies (Mandelbrot's cascade
model of intermittency on a rigid grid
corresponds to a discrete product).

The limit of such processes represents a

mathematical problem -called multiplicative
chaos- where some results have been recently
obtainedl?. Nevertheless, due to the
multiplicative property of both T and the
way the process is constructed, we may
introduce the co-dimension function C{h) (F
being a multiplicative density increment):
(8) « T;‘I £h 3:)\[h—T)C(h) <cfF b

and generalise thus ealier results (Eq.6).

3.3. Implications of multidimensionality

We introduce the "structure integral"
S{h, A), instead of the classical structure
function, to study the behavior of a sto-
chastic measure m:

(9) Sth, A= <m"(A)>/<m(a)> "
where A is a Dp-dimensional measuring-set
(e.g.:on which the averages are taken).
Generalised scale invariance implies :

(10) s(h,TyA) = N PPR) 5 g

For the simple case where the phenomenon
is mono-dimensional with dimension Dg
(co-dimension = Dg1-Dg=Cg) plh, Da) is
linear in h:

(11) plh, D) = Cg.(h - 1), if: Dy > Cg

In other cases, Cg has to be replaced by
the co-dimension function C(h) (hence
p(h,Dp) is no longer linear in h} and the
(physical) measures become sensitively
dependent on Dpj (especialy due to the the
condition of intersection). Such a study on
radar-datal® (with D= 1, 1.5, 2, 3, 4),
supports multidimensional behaviour for the
rain.

A dimensional detectability conditioen
results from the condition of non-degeneracy
of the statistics (i.e.:non-zero and finite)
that is (according to Eq.6 or 11) the
intersection of the set of observation (A)
and the support sets S(h). Thus scale
resolution is not sufficient to estimate the

detectability of the phenomena, e.g. the
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most intense phenomena will be lost with a
sparse set of observations. It has been
shown!? that indeed ground networks have
lower dimensions-than 2 {(e.g. the world
meteorological surface network has
Dp 1.75). Due to non-linear interactions,
it turns out to raise new questions on
predictability, which until now has been

studied only in terms of scales.

4, CONCLUSION

Mativated by the strong anisotropy and
intermittency of the atmosphere, we have
developed a formalism called generalised
scale invariance., The formalism is based on
two sets of elements and may be regarded as
an extension of earlier work on cascade
processes (especially10:3}.

The first is a group of general scale
changing operators, whereas the second are
the intermittent measures invariant under
the operators. In a turbulent cascade, the
scale changing operator transforms eddies
into sub-eddies, while leaving the phy-
sically significant energy flux invariant
{here represented by a scaling measure). It
may be worth noting that explicit geometry
is not always required, since measurable
properties are sufficient.

We stressed that multidimensionality is
theoretically the rule for multiplicative
processes, and such a behaviour has been
tested directly on radar determined rain
field'8. It raises new questions on de-
tectability and predictability of turbulent
phenomena because of dimensional de-

pendance.

ACKNOWLEDGEMENTS

We acknowledge fruitful discussions with

G. Austin, D. Lilly, R. Cahalan, P. Muller.

REFERENCES

1. D. Schertzer and 5. Lovejoy, preprint
yval., IUTAM symp. on turhulence and chaotic
phenomenon in fluids, Kyeto, Japan (5-
9/09/1983) pp 141-144.

2. D. Schertzer and 5. Lavejoy, on the
dimension of atmospheric motions in:
Turbulent and chaotic Phenomena in Fluids,
ed. T. Tatsumi, {North-Holland, 1984},
pp.505-512

3. D. Schertzer and 5. Lovejoy, The di-
mension and intermittency of atmospheric
dynamics, in Turbulent Shear Flow &4, B.
Launder Ed. (New York, Springer ,1985)
pp.7-33

4. D. Schertzer and S5. Lavejoy, Sciences et
Techniques (1984) 69.

5. 5. Lovejoy and D. Schertzer, AMS
Bulletin 67 (1985).

6. D. Schertzer and S. Lovejoy, PCH Journal
6, 5/6 (1985) 623.

o S. Lovejoy and D. Schertzer, Wat.
Resour. Res. (1985) 21, 8, 1233.

8. B. Mandelbrot, Fractal Sum of Pulses
(available from the author).

9. 5. Lovejoy and B. Mandelbrot, Tellus 37A
{1985) 209.

10. G.I. Batchelor and A.A. Townsend, Proc.
Roy. Soc., A199 (1949) 238.

11. B.B. Mandelbrot, J. Fluid Mech. 62
(1974) 331.

12. U, Frisch, P.L. Sulem and M. Nelkin, J.
Fluid Mech. 87 (1978) 719.

13 E.A. Novikov and R. Stewart, Izv. Akad.
Nauk. S55R Ser. Geofiz. 3 (1964) 408,

14 A.M. Yaglom,Sov. Phys. Dokl. 2 (1966) 26.
15. D. Schertzer and S. Lovejoy, Note CRMD
N® 69 (Met. Nat., Paris).

16. B.B. Mandelbrot, J. 5tat. Phys. 34
(1984) 895.

17 J.P. Kahane : Multiplicative Chaos (in
preparation}.

18. S. Lovejoy and D. Schertzer, Extreme
variability, scaling and fractals in remote
sensing, in: Digital image processing in
remote sensing. P.J. Muller Ed. (Taylor and
Francis, London, 1985%) Ch.14

19. S. Lovejoy, D. Schertzer and P. Ladoy,
Nature (in press).



	pietronero86001.pdf
	pietronero86002.pdf
	pietronero86003.pdf
	pietronero86004.pdf



