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ABSTRACT

Many geophysical fields show extreme variability over wide ranges of scale. We review
and develep theoretical insights and empirical evidence concerning the multiple
scaling/multifractal behavior of these fields. We emphasize the very singular behavior of
geophysical observables, usually obtained by space-time averaging over scales much greater
than that of the homogeneity. On the one hand we render more direct the link between
statistical singularities (divergence of high order statistical moments}) and singularities per
realization (small scale divergence of densities). We recall also that in order to deal with the
strong (but scaling) anisotropy of these fields we must generalize the idea of scale invariance
beyond the familiar self-similar (or even self-affine) notions. On the other hand we examine
the conditions of the existence of two-parameter universality classes of the generic multifractal
processes. These have many important theoretical and practical consequences: infinite
hierarchies of dimensions depending only on two parameters, the five main subclasses are
determined. These facts greatly facilitate both the empirical characterization of multifractals,
as well as their numerical simulation.

INTRODUCTION

A central and common feature of geophysical phenomena and processes is their extreme
variability over wide ranges of scale, whose ratios easily reach nine orders of magnitude
(earth radius scale/ centimeter scale). Recently it has been increasingly recognized that this
feature provides a powerful unifying problematic of Geophysics whose advance constitutes
key steps both in increasing fundamental knowledge in Geophysics {especially turbulence),
as well as in many practical applications (especially remote sensing techniques). More
precisely the question of scafing behavior -i.e. a common behavior at different scales- became
central simply because this (scale) symmetry assumption is not only the simplest but also the
only assumption acceptable in the absence of more information or knowledge. Since this
behavior is the result of nonlinear interactions -leading to nonlinear (i.e. non-proportional)
response to a given excitation- between different scales (and/or processes), there arises the
general question of scaling nonlinear variability in Geophysics. Mushrooming interest in
geophysical applications of such nonlinear variability has lead to two workshops on the theme
"Scaling, fractals and Nonlinear Variability in Geophysics 1, 2" in August 1986 at McGill
University (Lovejoy and Schertzer 1988, Schertzer and Lovejoy 1989), and at the former
Ecole Polytechnique in Paris France, in June 1988. There was also a session on "Chaos,
Turbulence and Nonlinear variability in geophysics" at the March 1989 European
Geophysical Society meeting where many of these questions were discussed.
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and measurements are nearly always restricted to resolutions much higher than the scale of the
smallest detail (i.e. the inner scale of the process or the scale of homogeneity which is
typically of the order of millimeter or less). Note that full knowledge down to this inner scale
is usually out of our scope due to large number of degrees of freedom involved. When we
are speaking of large numbers, we of course refer to the physicists’ infinity such as the
Avogadro's number (1023): indeed the number of mm?3 involved in the atmosphere is of
order!1010x1010x107= 1027

Let us briefly note that this question of the "details" has a rather long history, as is testified
by the introduction of Perrin in his edited thesis (1913) and especially his valuable quotation
of E. Borel about abstract vs. "real world" measures. We may also note the permanent
question of fine graining vs. coarse graining , or the question of "homogeneization",
“renormalization" (how to define smooth macroscopic "effective” fields from irregular
microscopic ones), the above quoted question of "ultra violet divergences”. Concerning fluid
dynamics, the question of the singularities became more precise with the works of Leray
(1934), and in Von Neuman's review on turbulence (Von Neuman (1963), but also in the
debate between Richarson? and Bjkernes: is the characterization of a few large scale
singularities (the meteorological fronts) sufficient to forecast the evolution of the weather?
The present day debate could be much more precise dealing with characterization of
hierarchies of scaling singularities. In the following we hope to give more easier insights into
this fundamental question with the help of seemingly (at first glance) simple models
(phenomenological models or "mock geophysics"), which nevertheless possess surprising
properties which we argue to be quite general.

Let us also emphasize that the (nonlinear!) path historically followed to explore nonlinear
variability crossed the geometrical world and was maintained 1n its restrictive frontiers for too
long a period. This period created some unfortunate consequences and attempted to bypass
some fundamental problems. Indeed, the development of concrete analytical methods has
tended to show that geometrical frameworks can often be misleading and fractal notions have
been most fruitful when divorced from geometry. In particular, the abandonment of the
dogma of the uniqueness of fractal dimension (Grassberger (1983), Hentschel and Proccacia
(1983), Schertzer and Lovejoy (1983,1984) Frisch and Parisi (1985), Halsey et al. (1986),
Pietronero and Siebesma (1986), Bialas and Peschanski (1986), Stanley and Meakin (1988),
Levich and Shtilman (1989)...) in favour of hierarchies of dimensions and singularities with
their non-geometric generators has been one of the most important recent advances.

These new ideas involve both the possibility of very general anisotropic types of scaling
(necessary, for example to deal with rotation, stratification or "texture"), as well as "multiple
scaling” or "multifractality" associated with highly intermittent processes in which the weak
and intense regions have different scaling behavior. In a general manner, a system may be
said to be scaling (or scale invariant) over a range if the small and large scale structures are
related by a scale changing operation involving only the scale ratio. Hence, scale invariance
is not restricted to the familiar self-similar (or even self-affine) notions and we outline the
nc%cssary formalism (generalized scale invariance discussed by Schertzer and Lovejoy 1985,
1987a-b).

1 Considering the scale of homogeneity of the order of the millimeter, and the (outer) vertical scale of the order
of ten kilometers and the horizontal scale of the order of ten thousand kilometers. In a similar manner the
Reynolds number of atmospheric turbulence is usually estimated as = 1012, taking the ratio of injection (1000
km)/dissipation (1mm) (horizontal) scales as 109, since it is the 4/3 power of this ratio.

2 Recall that Richardson (1926) didn't hesitate to raise the (sacrilegious?) question "does the wind have a
velocity?" (i.e. are the time derivatives regular?), Indeed, he pointed out the very irregular Weierstrass function
as a counter example.
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Fig. 1a . Illustration of the "bare"and "dressed" energy flux densities. The left hand side
shows the construction step by step of the bare field produced by a multifractal

cascade process (the a-model, discussed below) starting with an initially uniform

unit density. At each step the homogeneity scale is divided by a constant ratio A=2
From top to bottom, the number of cascade steps takes the following values n =
0, 1, 2, 3 and 7, with the corresponding length scale values [ = 1, 1/2, 1/4, 1/8,
1/128. When the number of steps n increases, some rare regions of high
intensities ("singularities") appear, most of the space becomes inactive. Atl=1/8,
n=3, one may compare the rather more intense dressed density with the bare
density. The sharp contrast arise from the smaller scales singularities, as seen on
step n=7, which contribute to high fluctuations of the dressed density.

As we will insist that it is now rather obvious that multiple dimensions and singularities
are the rule rather than the exception for fields. However, as we will discuss after having left
the uniqueness for infinity, the important question of existence of universality classes gives
credence to returning to two fundamental parameters!
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Fig. 1b . as in Figure la, illustration of the "bare"and "dressed" energy flux
densities, but on a 2 dimensional space. The dressed energy flux densities, obtained
by averaging, are presented on the right hand side of the figure. At intermediate
scales, level 3 or 4, one may still note the important contributions from smaller
scales singularities to high fluctuations of the dressed density.
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at a given scale. This is the reason why we will insist on the fundamental difference between
"bare” and "dressed" properties at a given (non-zero) scale i.e. the important differences
between a process with a cut-off of small scale interactions and one with these interactions
restored (cf. Fig. 1a-b for illustrations)

The bare properties are related to fine graining (e.g. developing a cascade...) and are the
properties of the process with nonlinear interactions at scales smaller than the observation
scale being filtered out (i.e. truncation of the process at the scale of observation). The
dressed properties are related to coarse graining and are the observed properties at a given
scale of resolution (i.e. linear or nonlinear averaging on the observation scale over the smaller
details of the same process but with all interactions: the process fully developed down to the
smallest scale). In other words, only half the problem has been explored (and even a smaller
fraction of the real problem): the "dressed" truth is the one which counts! The terms "bare"
and "dressed" are borrowed from renormalization jargon, but here due to the extreme
variability, they will become quite different; not only by a renormalizing factor but by
different statistical behavior, thus the overwhelmingly important question of singular statistics
(divergences of statistical moments, Schertzer and Lovejoy 1987a-b) linked to multiple
ultraviolet divergences.

PIXEL WORLDS AND "MOCK GEOPHYSICS"

On the one hand geophysical phenomena (especially when remotely sensed) are more and
more often represented with the help of digitized "images", pixel sets. On the other hand the
"theoretical” representations of the same phenomena are still believed to be of a certain
continucus type. Such continuous representations are thought to be rather obvious limits of
the pixel representation when the resolution (scale of observation) goes to zero. In particular
one usually would associate with such an image, a function, a "density", and the digitized
field corresponding to averages on a pixel of this density. Hence, from a very rough
knowledge of the pixel values, one "naturally"” tries to associate a hypothetical function. Such
a "natural" hypothesis is far from being physically obvious: it requires ample (mathematical)
regularity constraints which are the opposite of the observed strong variability down to
smaller scales. Mathematically, it corresponds to very particular measurable properties; one
considers only regular measures with respect to the usual ling, surface, volume measures, i.e.
Lebesgue measures. Indeed, the simplest illustration of scaling and scale invariance is to
consider the (apparently "metric" in fact "measure”) idea of dimension of a set of points as it
often occurs in geophysics. The intuitive (and essentially correct) definition is that the "size"
of the set n(L) at scale L is given by:

n(L) =< LP (1)

where D is the dimension (e.g the length of a line = L, the area of a plane, e<<L2...or the
number of in situ meteorological measuring stations on the earth in a circle radius L o< L1.75
(Lovejoy et al , 1986a,b), the distribution of raindrops on a piece of blotting paper o< 11.83
(Lovejoy and Schertzer , 1989a) and the occurrence of rain during a time period T e T0.8

(Hubert and Carbonnel (1988), Tessier et al. (1989)) .... The "volume" (actually the
measure of the set) is therefore a simple scaling (power law) function, and the dimension is
important precisely because it is scale invariant (independent of L). We recall that the
Hausdorff dimension D(A) of a (compact) set A may be defined by generalization to non-
integer D of the divergence rule "the length of a surface is infinite, its volume is zero..."
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Hausdorff measure

Fig. 2. Illustration of the divergence rule for Hausdorff measures, generalizing the
divergence rule "the length of a surface is infinite, its volume is zero...". The
transition at D=D(A), from infinity to zero, defines the Hausdorff dimension of
the set A.

with the rather straightforward extensions (to non-integer D) of the d-Lebesgue measure
j,dcfined for integer d) to the D-dimensional Hausdorff measure. Thus we use the notation

AdDPx for the D-dimensional Hausdorff measure of a (compact) set A and the Hausdorff
dimension D(A) of A is hence defined by the divergence rule 1 (see Fig. 2):

J AdPx = oo, for D<D(A); L\de =0 for D>D(A) (2)

One may note that the D(A)-measure of A is not necessarily finite and non-zero: some

logarithmic corrections (exponents Aj on the i-th iterate of the logarithm?, are "sub-
dimensicns") may be needed to obtain fineness and precise determination of the Hausdorff
dimension (they may give rise to the appearance of 'lacunarity', eg. Smith et al. (1986)).

In other words, the "natural” framework for fields is not functional analysis (ror
geometry...!), but (mathematical) measures. Indeed, the use of functions rather than the
(more general) measures is often purely a mathematical artifact. It is unnecessarily stringent
since really what we can empirically measure or describe is not in fact a value at a
(geometrical) point, but rather a value on "nearly any" (small) set surrounding this point .
Such considerations are at the basis of (mathematical) measure theory which renders quite
precise the notion of "nearly any" set 3. Thus geophysics seems more and more associated
with singular measures with respect to Lebesgue measures®. Going a step further we will be
interested in (random) linear operators acting on measures, as fundamental tools to study
nonlinear variability. Such apparently abstract questions can be concretely addressed by
apparently simple-minded geophysical models, but with rather general non-trivial
consequences and properties corresponding to the more abstract tools mentioned above. In
fact we will try to give two approaches to the same problem: one which is constructivist (the
multiplicative processes) and the other one which is non-constructivist ("flux dynamics”).

1 1t is easy to check that Eq. 1 is consistent with this divergence rule. Indeed, interpreting Eq. 1 as the fact
that the number of cubes of size { =L/} needed to cover the fractal set will be of the order AD and since the D
volume of an elemenlary cube is !D', it follows that the sum of their D'-volumes -of the order of the D-
Hausdorff measure- will follow the indicated divergence rule.

2 The volume of an elementary cube (/D) is now ‘corrected” by factors of the type [Logj (1/1)141 ; where Logj
is the i-th iterate of the logarithm.

3 It needs to be member of the "tribe", usually the borelian tribe...

4 Regular (respectively singular) measures with respect 1o Lebesgue measures means that (almost everywhere)
they correspond to a product of a density {a function) and a Lebesgue measure (resp. they don't }.
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Fig. 3. A schematic diagram showing few steps of a discrete multiplicative
cascade.process, here the "o-model” with two pure singularity orders ¥ - (>>-o0)
and y* (corresponding to the two values taken by the independent random

increments, AY "<1 and XY *>1) leading to the appearance of mixed singularity
orders Yy (y-<y< v ).

In both cases, the abstract object studied remains the scale invariant group of geodynamical
equations (e. g. Navier-Stokes equations for flows).

The problematic of nonlinear variability, over wide range of scale, has been considered for
a long time with respect to the mysterious turbulent behavior of fluid dynamics, especially
their asymptotic (and universal) behavior when the dissipation length goes to zero (fully
developed turbulence). Conceptual advances occurred using apparently simple models of
self-similar cascades, as opposed to the frustratingly tedious developments of renormalization
techniques... which still fail to grasp the intermittency problem. From very general
considerations (going back to the famous poem of Richardson (1922)), the phenomenological
models of turbulence have become more and more explicit (to quote a few: Novikov and
Stewart (1964), Yaglom (1966), Mandelbrot (1974), Frisch et al. (1978)...: see for review
Monin and Yaglom (1975)), sometimes in an overly restrictive manner. However their
common theme -how does the energy flux spreads into smaller scales in successive steps
while respecting a scale invariant conservation principle- is far from being restricted to

55



space througn the surface of a sphere ol radius roughly proportional to this scale. In this
sense we can speak of probability flux of points on a strange attractor, e.g. the flux of points
flowing to smaller scales on this strange attractor, hence this generality of "flux dynamics" we
will discuss, paralleling the classical thermodynamics, but with very strong divergences. ...
Note the basic fluxes will respect important scale conservation properties (e.g. the ensemble
average of the energy flux ...) as some corresponding basic quantities (e. g. ensemble
average of the energy ) in the framework of thermodynamics... We will also discuss the
related fields which are not constrained to such scale conservation (such as scalar
concentration, velocity field...).

MULTIPLICATIVE PROCESSES AND FLUX DYNAMICS

The key assumption in phenomenological models of turbulence (which has recently
became more explicit) is that successive steps define (independently) the fraction of the flux
of energy distributed over smaller scales. Note that it is clear that the small scales cannot be
perceived as adding some energy but can only (multiplicatively) modulate the energy passed
down from larger scales (hence the lack of relevance of additive processes which nevertheless
have been sometimes used to simulate such fields (e.g. Voss 1983)). Hence bare densities
£, resulting from cascade processes from outer scale / ¢ (which will be assumed equal 1o 1,

without loss of generality ) to [ (the homogeneity scale)=! (/A are multiplicatively defined (see
Fig. 3 for illustration):

g =Ty (ex) & (3)

T denotes a spatial contraction of ratio A (>1). In the isotropic case, for any point x; T3 x
= x/A ; for any set A: Ta(A)= {T; x /xe A}; for any function f : T [f(x)] = f(Ax): for any

measure | and any set A JdIT;L (W] = Jdp and more generally for any function f (i.e. not

Ta(A)
only for 1, the indicator function of the set A): jfd[Tl (W] = J-Tx(f)dp.

In case of (scaling) anisotropy, more involved contractions of space are required (see
Schertzer and Lovejoy 1989b for a review). For instance, in order to avoid the classical but
untenable 2D/3D dichotomy between large and small scale atmospheric dynamics, we have
proposed an anisotropic scaling model of atmospheric dynamics (Schertzer and Lovejoy
(1983, 1984, 1985a,b, 1987a,b), Lovejoy and Schertzer (1985), Levich and Tzvetkov!
(1985)). In this model, the anisotropy introduced by gravity via the buoyancy force results in
a differential stratification and a consequent modification of the effective dimension of space,
involving a new "elliptical" dimension (dg], see below), with resulting anisotropic shears. In
isotropy, de]=3, while in completely flat (stratified) flows, dej=2. Empirical and theoretical
evidence were given indicating de] is rather the intermediate value del= 23/9=2.5555...
Indeed, the requisite scale changes T, can be far more general than simple magnifications or
reductions. It turns out that practically the only restrictions on T), are that it has group
properties, viz: Ty, =AG where G is a the generator of the group of scale changing operations,

and that the balls Ey=T)(S1) (S1 being the unit sphere) decreasing with A,. In this
"Generalized Scale Invariance” ("GSI"), G can be either a matrix -"linear GSI" (Schertzer and
Lovejoy 1983, 1984) Ej are self-affine ellipsoids rather than the self-similar spheres of the
isotropic case (G=identity)-, or even a non-linear operator (see Schertzer and Lovejoy 1987b,

1 They also pointed out the possible breaking of mirror symmeltry for atmospheric dynamics, hence the
mmportance of the associated helicity.
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e]- is then defined by the volume of the E;, (hence is a measurable property, rather than a
metric property) This anisotropic framework allows rather straightforward extensions of
Hausdorff measures and dimensions, still based on the divergence rule (Eq. 2), and the
effective dimension of the space, the "elliptical" dimension dg] of the space, is simply the
trace of G2: de]=Tr(G)

Leaving additive (stochastic) processes (which had been used on purely geometrical
grounds, e.g. fractional brownian motions -for modelling landscapes etc...- of the fractal
geometry) to multiplicative processes, one encounters surprising properties: multiplicity of
singularities, scaling and dimensions, rather than uniqueness. Let us discuss these properties
briefly: a priori a fairly direct consequence of Eq. 3 is the existence of a generator for the one
parameter multiplicative (semi-) group of the bare densities:

ey =elh (4)

where I, is its generator, still with the homogeneity scale { =l o/A. T’y is a certain operator
whose main properties (especially its asymptotic behavior, { going to 0 or A going to o) we
will analyze. I'), should in some sense (see below) become independent of X, i.e. approach
its limit I” as the homogeneity scale approaches zero. For positive values 7y of I'y, divergence

of €3, occurs as A tends to e, hence such values correspond to (algebraic) orders (y) of
singularity. Conversely negative values correspond rather to (algebraic) orders of regularity.
Nevertheless for brevity, we will keep frequently the expression singularity (instead of
regularity) in both cases to shorten the expressions. As soon as this generator does not

reduce (Schertzer and Lovejoy 1983 and 1984) to only two values ¥ *+>0 and y-= -ee (the
once celebrated "B-model" (Novikov and Stewart 1964, Mandelbrot 1974, Frisch et al. 1978)

corresponding to the alternative of dead (AY"=0) or alive (and AY*>1) sub-eddies, the pure
singularity ordersy-and y* lead to the appearance of mixed singularity orders. In
particular, as soon as Yy~ > -eo (the "a-model"), mixed singularities of different orders vy, are
built up step by step (cf. Fig. 3) and bounded by y-and y*+ (y-<y<y+,y-and y+

corresponding then to the alternative of weak (1>AY >0) or strong (A¥*>1) sub-eddies). In
other words, as pointed out by Schertzer and Lovejoy (1983), leaving the far too simple

alternative dead or alive ("p-model") to weak or strong ("a-model”) leads to the appearance
of a full hierarchy of levels of survival, hence the possibility of a hierarchy of dimensions of

the set of survivors for these different levels. In this o-model (as in more elaborate ones) the
different orders of singularities (or survival levels) define the multiple scaling of the (one-
point) probability distribution 3:

Pr(ea= A7) = Na(y)/Na=p—c(} 5)

where N) () is the number of occurrences of singularity order greater than v, Ny, is the total
number of events examined. We temporarily postpone discussion on the accuracy of the

L je. inf Re a(G)20; 6(G) being the (generalized) spectrum of G (acting on ®9): o(G)= {peC | G-t1 non-
invertible on CX%R4).

2 However, G needs to be comrectly normalized as discussed by Schertzer and Lovejoy 1987b.

3 Note we are studying a whole family of measures defined by just one density, this the reason why our
notation can't reduce to the very specialized notation (¢, f(tx)) introduced by Halsey et al. (1986), since they
refer al one dimension (the dimension d of the embedding space) and the corresponding specialized measure.
Hence, oo =d-y as singularity of the d-dimensional Lebesgue measure, and f(or))=d-c(y).
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technique to test the the probability distribution multiple scaling (PDMS, introduced by

Lavallée et al 1989) and to determine c(y). For the moment, we would like to insist on the
interest of such a formula in gaining insights in different fundamental aspects of multiple
scaling.

Obviously singularities will prevent convergence in the usual sense, i.e. even if the g are
rather smooth functions (for a given &), they do not admit a function as their limit. Indeed,
their limit will be rather defined by the limit of the fluxes (i.e. integrals of the density) over
differents sets. One may note also that N will be proportional to Ad -the number of boxes,
size A-1, required to cover the relevant region of the embedding space (which can be
fractal...) of dimension d (integer or not)- multiplied by the number (Nj) of realizations (e.g.
images) examined. Hence, when c(y) is smaller than d it has a rather immediate meaning of a
codimension! = d-d(y); Na.(y)= A4, where d(y) (>0) is the dimension of the fraction of the
space occupied by the singularities of order greater than yon "nearly" each realization. Larger
values of ¢(y), which have often been disregarded, correspond to more rare events:
singularities of orders which "nearly" never appear on a realization. At first glance they seem
to correspond to negative dimensions, sometimes mysteriously called "latent dimensions”.
However, there is no mystery at all, since c(y) still has a meaning of a codimension: no any
longer in an individual realization, but in the subspace of the (infinite dimensional)
probability/state space that our finite sample size enables us to explore by a cut of finite
dimension. Indeed the dimension of this subspace can be estimated as d + dg, where ds -
termed as the "sampling dimension" (at scale A-1)- is estimated by writing the number of
images (or realizations) Nj as Ads. Indeed when c(y) is smaller than d +dg , ¥ occupies a
fraction of the accessible subspace having dimension d(y) = d +dg - ¢(y). Of course,
increasing the number of images, hence the sampling dimension, allows us to encounter more
easily higher singularities occupying a fraction of the accessible subspace, with well defined
dimension (d(y) = d +d; - c(y)>0). The corresponding mathematical subtlety underneath the

important difference between cases c(y)<d and c(y)>d, is the "almost surely” or not
properties, the latter do correspond to extremely rare events.

However, these extremely rare events are in fact of overwhelming importance since they
imply divergence of statistical moments, i.e.these singularities prevent convergence of all
statistical orders: by integrating the density over a set A with dimension D (to obtain the flux
through A), the resulting smoothing may be sufficient so that convergence is obtained for low
order statistics, but not for orders higher than a critical order hp of divergence. Indeed, let us
point out this rather immediate consequence of Eq. 5, by introducing first the trace
(paralleling the definition of the trace of the density operator in Quantum Statistical
Mechanics, see below) of the hth power of the flux Iy over an (averaging) set A of

dimension D (integration performed with resolution A-1 on Ay, A measured with the same
resolution):

tray €Al = J'Elh dhDx
Ay

= Zslh 3 hD (6)
Al

! In particular, in the case of the B-model there is a unique codimension ¢, characterizing the fraction of the
space occupied by alive sub-cddies. The parameter B is )<,
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Fig. 4. the twin divergence of trace-moments.

a-priori any singularity of order higher than D, may create divergences of the trace but are

extremely rare (since their frequency of occurrence tends to zero as A-<(¥) ). One may
evaluate the importance of these by considering their statistics (trace-moments introduced by

Schertzer and Lovejoy 1987 a-b) for an arbitrary singularity of order y;
Traj el = <traz eah > 2 Ny (y) Aby - hD = )by -c()]-(h-1)D @)
thus diverges, for some orders of singularity, as soon as:

K(h) 2 (h-1D (8)

where:

K(h) = supyhy-c(y)] {hence: c(y) = supp[hy-K(h)])
or: h=de(y)/dy, K(h) = hy-c(y) {y=dK(h)/dh, c(y) = hy-K(h)) ®

On the one hand, Eq. 9 corresponds to the Legendre transform of c(y) as pointed out by
Frisch and Parisi (1985), Halsey et al. (1986) and as the resulting K(h) does correspond -by
the method of steepest descent to the exponent of the moment of the density of the flux (at
least to first order, i.e. omitting logarithmic corrections):

<gah> = AK(h)<g hs= K(h)Log(M) g hs . (10)

the Legendre transform establishes a well defined relation between orders of singularities and
orders of moments. Note that conservation in ensemble average of the flux requires

conservation of densities (<gp>=<g>) thus K(1)=0. On the other hand, as pointed out by
Schertzer and Lovejoy 1983, the divergence rule, Eq. 8, introduces a hierarchy of critical
codimensions C(h), simply defined as:

C(h) (h-1) = K(h) (11)
since the former divergence rule (Eq. 8) can be rewritten (A—seo, £)—€):

Tra € = o, D<C(h), i. e. h>hp, C(hp ) =D {Tp=dK(h)/dh|hp} (12)
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Conversely, as discussed more thoroughly by Schertzer and Lovejoy 1987b, convergence

of statistical moment of order h (h>1) is assured by the convergence of the hth trace moment ;
for h<l divergence of the trace moment implies degeneracy of the flux (the set A has a so

small dimension (D<C1=C(1)) that almost surely the flux is null). We thus obtain a twin
divergence rule for the trace moments (represented in Fig. 4) implying non-degeneracy of the
flux (h<1) and divergence of the flux (h=hp>1). Note that non-degeneracy of the flux implies
conservation of the ensemble average flux!:

<> =<e1>=1 and D>C; (=C(1)) = <ITy(A)> = <[1(A)> (= [dPx) (14)
A

Note that C; (=C(1) =K'(1), due to Eq. 11) is at same time the codimension of
singularities contributing to the average (h=1) and the order of these singularities, since by

virtue of Legendre transform it is the fixed point of c(Y):

cM =7 = y=C; (=C(1) =K'(1)) (15)

Multiple scaling (for the statistical moments) corresponds to the fact K(h) is no longer

linear (= Cy(h-1)) as in the B-model but depends on a whole hierarchy of codimensions C(h)
(#Ci, for h#1). As the first characteristic function (or moment generating function) Zy,(h)
and second characteristic function (or cumulant generating function) Ky (h) of the generator

I, are by definition:
Z]_(h) - cKl(h) — (e.hrl> (E <E7\_h>) (16)

multiple scaling corresponds to algebraic divergence (A—es) of Zy(h) and thus to logarithmic
divergence of Kj(h) (see Eq. 10), a fundamental property we will exploit below. Note here,
we are dealing with characteristic functions in the Laplace sense, since Z)(h) is obtained by
Laplace transform (instead of Fourier transform) of the probability distribution. In order to
make some crude connections with statistical physics, I'y can be considered as the negative of

a pseudo-hamiltonian (-Hy=I"}), with h as the inverse of temperature (h=1/T, the Boltzmann
constant being set equal to 1), Zy is called a partition function and the "free-energy" (Fy)
would correspond to Kj(h)/h. More generally (in statistical Quantum Mechanics), the
"density operators” pj = e’ HMT (corresponding to £y = eI'A) are considered along with their
trace over different sub-spaces of states, each trace corresponding to a partition function. The
densities pj, and &), are both defined on a fairly abstract space [eg. in quantum mechanics the

space of wave functions]. The trace moments correspond to the trace of the density operator
but here on the space of the measures of (compact) supports (the different sets A, used for

averaging). Finally, as c(y) characterize the logarithm of the probability distribution of T,
they correspond to entropies (Sy) (of the state ¥), and indeed the Legendre duality between

Kx(h) and c(y) does correspond to the same duality between F) (T)/T and S;(E) (the
conjugate variables being 1/T and the energy E).  Let us emphasize that in both cases,
this property simply results from the fact that the Laplace transform of the

1 As it corresponds 1o a "martingale "property, it assures a "weak measurable’ convergence of the process (sce
Schertzer and Lovejoy 1987b for discussion).
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Fig. 5. Spurious scaling obtained with a Gaussian generator, the theoretical line is the

solid line C(h)e< h, squares are observed points and lead to the spurious
appearance of bounded C(h)<C,.<eo!

probability distribution! (or conversely of the partition function) reduces to Legendre
transform of the exponents. In order to develop a nonconstructive approach, which can be

called "fluxdynamics", considering € per se (the limit € of the €y, at zero homogeneity scale,

A going to infinity) as a linear operator on the measures (converting the D-volume, D being
the dimension of A, integer or not, into the flux over the set A) we need to investi gate some
basic properties of this limit and its generator.

WILD/SMOOTH MULTIFRACTALITY AND CANONICAL/MICRO-CANONICAL
CONSERVATION

In this section we emphasize the consequences of divergence of moments before
proceeding to characterizing the generator. Divergence of moments is a wild statistical
behavior very far from gaussianity (or quasi-gaussianity), and is due to "hyperbolic"
(algebraic) fall-off of the probability distribution:

Pr(IXI2s) = s°® (s>>1) = any h=o :<[Xh>=co (17

It turns out, that among these "hyperbolic” random variables some are rather well
defined, since they are mostly (but surprising!) generalizations of gaussian laws. These are
the Lévy stable random variables (0<o<2) satisfying "generalized central limit theorems",
hence intervening in additive processes as discussed in subsequent sections and especially
with the help of Appendix A dealing with a particular type of them. However we (Schertzer
and Lovejoy 1985) already used the expression "hyperbolic intermittency" to describe the
effect of this strong variability for a wider range of o (i.e. ®>2), as we pointed out this
divergence as a general consequence of multiplicative processes and that the corresponding

eritical order of divergence o =hp (theoretically, determined by Eq. 12) has no absolute
bound. Waymire and Gupta (1985) have used the expression "fat-tailed" for such
(asymptotically algebraic) distributions, and "long-tailed" for the log-normal law, to
distinguish these distributions from standard exponential "thin-tailed" distributions. In the
preceding section we showed that hyperbolic behavior is expected from averaging a
multifractal field on a set of too small dimension D. It has been empirically estimated in a

variety of meteorological fields: hp=5, for temperature (Lovejoy and Schertzer 1986a,b,
Ladoy et al 1986), hp= 1.66 in changes in storm integrated rainrates (Lovejoy 1981),
hp=1.06 in radar reflectivity factors of rain (Scherizer and Lovejoy 1987), and respectively

! It implies also the convexity of K(h) (or F((T)/T), hence of c(y) (or S(E)).
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spurious (or pseudo) scaling exponents. Indeed, these methods are based extensively on the
law of large numbers which blows up due to the statistical divergences. Fig. 5 shows how
misleading can be the appearance of spurious scaling, on a well known simulated field:
classical estimation will lead to bounded codimensions C(h)... even though the true C(h)
increases linearly with h! Conversely, clear understanding of spurious scaling can be used to
explain most of the behavior of certain data. For instance we arguc (Schertzer and Lovejoy
1983,1984, 1985, Lovejoy,and Schertzer, 1986a) that the presumed critical moment order

hp=5 for wind speed, may well explain the overall behavior of the observed scalings
exponents of the structure functions of the velocity field collected by Anselmet et al. (1984)!

A direct consequence of the hyperbolic behavior of the dressed densities &), p (obtained by
D-dimensional averaging, at scale A-1) is that their singularity codimensions cp(Y) are quite
different from their bare counterparts c(y), since they become linear for orders greater than the
critical singularity order yp:

cp(Y)= hp(y-Yp): ¥ 2¥YD (18)

this is an immediate consequence of hyperbolic behavior as described by Eg. 17, as well as
from the corresponding divergence of characteristic function (Kj, p(h)=s=, h Zhp) and the
fact that Legendre transform breaks down! for linear functions. Conversely, for the same

reasons, K(h) becomes linear as soon as there is an upper bound (Yp) of the sin gularity order:
c(y)— ==, when y— vy & K(h) = yoh (h>>1), hence Coo=Y0. (19)

However, the hyperbolic behavior is expected only for singularities of order greater than
the dimension of the averaging set A. It obviously can't occur if we are imposing a much
more strict conservation than conservation in ensemble average i.e. a strict conservation on A
of the flux in each realization, since we have in the latter case:

e) AP (A)=T11(A) (20)

Paralleling, once again classical thermodynamics, one can speak respectively of canonical
conservation (or cascade) in the former case, and micro-canonical conservation (or cascade)
in the latter (see for instance? Benzi et al. (1984) Pietronero and Siebesma (1986),
Sreenivasan et Meneveau (1988)). Micro-canonical conservation assumption has many
defects: not only we are usually dealing with open systems (as in thermodynamics), but this
assumption turns out to be quite demanding. Indeed it requires in fact conservation at every
scale, so we can even speak of "pico-canonical” assumption: strict conservation is implied
not only on the largest scale of A, but on the smallest scale due to scaling behavior of the
consider process! Hence, we have rather sharp distinctions® between wild multifractality
associated with canonical conservation on the one hand, and smooth multifractality associated
with micro- (in fact pico-) canonical conservation.

1 A rather direct consequence of the geometrical interpretation of the Legendre transform as the envelope of
the tangencies.

2 In fact a micro-canonical version of the o—model is often called a "random B—model". The latter expression
(trying to designate that the fraction of the space occupied active sub-eddies is randomly chosen) is somewhat
misleading, since the "B—model" is already a random model...

3 On the other hand, one may note that micro-canonical conservation refers to a given set and dimension: it no
longer holds on scts of smaller dimensions. Hence, micro-canonical conservation is at the same time oo
precise and loo vague...
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generator I -the limit of the T, - is fundamental. Corresponding to the definition of the 'y,
(Eq. 4), we have, at least formally:

e=limit 3 _,.(e))=cl (21)

One may note also we have (corresponding to Eq. 4) the following “dynamical" (and
somewhat formal) equation for the €;:

deyfoh =Ty €, ; Ya= ol /04 (22)

where ¥y, is the infinitesimal generator. This equation gives the cascade dynamical sense
when we are studying a cascade on a space-time domain!. As discused by Schertzer and
Lovejoy (1987a-b, 1989a), the generator must satisfy four main properties:

i) I' is a random noise,with infinite band-width [1, ee]. The bare or (finite resolution)
generator I are rather to be understood as the corresponding filtered noises restricted to the
wave number band [1, A].

if) the second characteristic function (or cumulant generating function) Kj(h) of the bare
generator Iy, has a logarithmic divergence (A—0) in order to assure multiple scaling, i.e.:

Ka(h) = Log(R) K(h). (23)

iii) in order to have some finite moments of positive orders (Z3 (h) and Kj(h)<ee for h>0),

the probability distribution of positive fluctuations of the bare generators Iy must fall off
more quickly than exponentially.

iv) the generator needs to be normalized (K3(1)=0) in order to assure (canonical)
conservation of the flux,

It turns out that properties i) and ii) correspond (Schertzer and Lovejoy 1987b) to the fact
that the (generalized) spectrum Er(k) of the generator should be then proportional to the
inverse of the wave-number:

Er(k) o< k-1 (24)

since the characteristic function will correspond to its integral. Such noises are often called
"1/ noises" or "pink noises". Usually, one considers only gaussian noises or quasi-gaussian
noises. We have already indicated that there is no fundamental reason to restrict our attention
10 quasi-gaussianity, and thus consider hyperbolic noises. Indeed, among the hyperbolic
noises, Lévy stable noises (0<oi<2) are particularly important, since they define a family of
universal generators as we will discuss latter. However, the third property indicated, which
is due to the fact the moments of €, are Laplace transforms of the probability density of I'y,
lead us to restrict our attention to extremely unsymmetric hyperbolic noises, since we can
accept a hyperbolic fall-off of the probability distribution only for the negative fluctuation of

I Considering Lévy stable noises (or hyperbolic noises O<ai<2), one has to generalize the
notion of spectrum (the usual one diverges, since it corresponds to a second order moment)
as discussed by Schertzer and Lovejoy (1987a-b, 1989). The fourth property is easy to

satisfy since if Iy is not yet normalized, we can deduce a normalized generator I 3 by:

elh=el"L f<el"A > (25)

! The scaling is usually then strongly anisotropic on the space time domain.
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Note that the properties of the generator stressed above are on the one hand quite different
from the usual properties of (pseudo-) Hamiltonians, especially their scale dependencyl. On
the other hand, they give a precise definition of multiple scaling, especially by requisite
properties of the second characteristic functional or of the (more or less) equivalent of the free
energy (which might be called "free flux"?).

As in additive processes, one may look for universality classes in the sense that for
whatever generator is used (here the flux generator, the infinitesimal increment in the additive
ones) under repeated iteration -through (renormalized) multiplication or addition- it may
converge to a well defined limit which depends on relatively few of its characteristics.
Appendix A first recalls the classical (but not well enough known) results for additive
processes associated with generalized central limit theorem, here the classes and "basins of

attraction" are primarily? defined by the Levy index o, the critical moment order (i.e. higher
order moments diverge) of the increments

One has to be careful about the definitions of convergence and universality, since it has
been obscured by some misplaced claims (Mandelbrot, 1989)that such universality cannot
exist in multifractal processes. Indeed, it is easy to check that repeated multiplications
corresponding to a process with fixed discretization (i.e. a fixed elementary ratio of scale

Ap>1) fails to create a simplifying convergence to universal generators (eg. the o-model

remains an oi-model), and it seems that this is the reason why Kolmogorov (1962) postulated
a lognormal behavior, without postulating convergence3 to it . However, if we are
discussing continuous cascade processes, i. €. processes which have an infinite number of

cascade steps over any finite range of scales (i.e. elementary ratio of scale Ao = 14), we are
facing quite a different problem. Indeed, such processes may be obtain from a discrete model
(finite number of discrete steps over the given ratio of scales) by introducing more and more
steps up to an infinity of infinitesimal ones and keeping some properties (e.g. the variance of
the generator on this given scale ratio). Obviously while such properties are best
mathematically studied directly on the generator, we should also establish the physical
relevance of doing so. Indeed, -generalizing the test field method introduced in homogeneous
turbulence by Kraichnan (1971)- we may introduce new intermediate scales first as rather
passive components, advected by the others, and then include them in the whole set of
“active" scales. In this respect, the passive scalar example studied by Schertzer and Lovejoy

1987a is illustrative: the density of the flux (@) controlling the passive scalar diffusion is a
product powers of densities the energy flux (€) and the scalar scalar variance flux ()) -mainly

from dimensional arguments, we have: @=x3/2e-1/2, In the first step, ¥ and & can be
considered as rather independent, then in the second step considered of the same type, and

identify ¢ as a more complete €. Hence, we are multiplying densities by densities, or simply
adding generators to generators...

Now, we have to investigate which classes of generator are stable and attractive under

addition and such that for the corresponding density €3 will at least converge for some
positive order moments (i. e. the probability density of the generator admits a Laplace
transform as already discussed). Either we examine those Levy stables -usually studied in a
Fourier framework (e.g. Lévy (1924, 1925, 1954), Gnedenko and Kolmogorov (1954),
Gnedenko (1969), Feller (1971), Zolotarev (1986)- which also satisfy a Laplace transform or

1 However, the related log divergence may be loosely understood as a phase transition at low temperature (i.c.
considering the h Log(}) as the inverse of the temperature 1/T.

2 There are two subsidiary parameters which are fixed in our case: the 'location parameter’ (fixed by the
normalization constraint) and the 'skewness’ (sel 10 its extremal value -1 by the condition iii, as explained
below). The third subsidiary parameter, the 'scale parameter' is defined by C1.

3 Yaglom (1966) seems 10 be less cautious on that point.
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Fig. 6a. universal (bare) singularities Fig. 6b. universal (bare) second
codimension c(y)/C; corresponding characteristic function K(h)/Cy (=
to the five classes; here a=2, 1.5, 1, h.F(h)/Cy, F(h) bt?mg the "fl_'ee
5 0. energy"), corresponding to the five

classes; here =2, 1.5, 1, .5, 0.

we directly study the generalized central limit theorem in the Laplace framework, as done in
Appendix Al. In any case, it is immediately clear that the restriction imposed by Laplace
transform is that we need (as condition iii) already discussed) a steeper than an algebraic fall-
off of the probability distribution for the (positive) orders of singularities, hence with the

exception of the Gaussian case (¢=2), we have to employ strongly asymmetric, "extremal”
Levy laws. In our case, we are not considering random variables but noises, however the
same characterization are relevant (characteristic functionals intervene instead of characteristic
functions).

Let us examine the universal generator classes (from o =2 down to o =0), recalling that
the corresponding characteristic function K(h) and codimension functions c(y) estimated by
Legendre transform, are (Schertzer and Lovejoy, 1987a-b, 1989a) since h%a and y*/ot' are
Legendre dual (0<a<2, 1/o+1/e'=1):

ozl: K(h) =%(h“—h) (only for h20 when a<2; =e for h<0); (26)
a=1: K(h)= Ci h Log(h) 27

and (restricted to increasing branches when <2, since dc/dy=h):

a#l:  c(y) = Cl[ L4 1—}1' (dc/dy>0 when a<?) (28)
Cia' «
a=l:  c(y)= C exp(g-l-—l) (29)

We recall that C1 (=C(1) =K'(1)) is the fixed point of c(Y), being at same time the
codimension of singularities contributing to the average and the order of these singularities
(sec Eq. 15). We may introduce another convenient characteristic order of singularity :

Hmn——— (30)

1 One may note that only the case O<oe<1 is classically treated by Laplace transform, Appendix A extends the
result for 1<a<2,
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(Yo=K'(0); ac>1) or of the asymptote (Yo=K'(es); @<1) We may then rewrite Eq. 28 (Y0
when 220>1; y<yg when o<l) as:

Cia’

o1, Yo %, come: o) = 00[1 : 1}1’ @31
o Yo
One may note that the c(y) introduced here corresponds rather to the probability density,

instead of the probability distribution. Both are equal when c(y) is increasing (eg. for extreme

singularities: y>>0), but obviously decreasing c(y) (eg. for extreme regularities: y<<0) of the
probability is offset for the probability distribution by its minimum value (see below the role

of g for the gaussian case). On the other hand, the c(y) don't coincide with the log of the
probability density due to (at least!) some logarithmic terms (corresponding to sub-
codimensions) which are missed by the Legendre transform, but are of no fundamental
importance (as easily seen by considering the exact log of the probability density). -

Let us review briefly the main properties of the five classes (o going from 2 to 0, hence o

going from 2 to e, then from -esto 0), from the gaussian generator to the B-model, crossing
three Levy cases (see the corresponding Fig. 6a and Fig. 6b):

i) g=e'=2: the Gaussian generator is almost everywhere (almost surely) continuous.
K(h) and c(y) are parabolae, c(y) is tangent on the 'y axis at Yp=-Cj, C(h) is linear (= C1 h).
The corresponding c(y) of the probability distribution, will remain on the y axis for Y< Yo

ii) 2>a>1 (2<q'<eo): the Lévy generator is almost everywhere (almost surely)
discontinuous and is extremely asymmetric. The lower bound Yo (=-C1 a’/o) of fractal
singularities is decreasing from -Cj to -e, as ¢ decreases from 2 to 1. ¢(y) will remain on the

v axis for ¥< yp and is thus strongly asymmetric (even for the probability density, since
K3 (h)=s> for h<0), the large orders of singularities order give rise to a steeper algebraic
branch than before (c(y) =< ¥, a'>2).

iii) 1>q>0 (-eo<'<0) the generator is everywhere (almost surely) discontinuous, and is
obtained in fact by a one-sided unnormalized generator hence the orders of singularities are
bounded by o (thus decreasing, with o, from -ee to Cy), which defines thus a vertical
asymptote, and now the algebraic asymptote intervenes for the large orders of regularity
(Y= —oo, c(y) o< Y11), As the singularities are bounded, the same occurs for the hierarchy
of critical codimension C(h) of the different moments, since we can now smooth out the
highest singularity on a set A of high enough dimension D. Indeed Yo bounds also C(h) (see
Eq. 19), hence to obtain convergence of every (positive order) moment of the flux it suffices

Cila'l
that: D>Coo=y0= =
a
iv) g=1(a'= Feol): it is the special in-between case, associated with the ambiguity on o'
(note the opposite occurs to o= t-s<), this corresponds in fact to a special case of quasi-
stability (or not strict stability) briefly outlined in Appendix A. Note that the curves K(h) and

c(y) are nevertheless the limits (a— 1+, a'—t —oo) of the two preceding cases, especially

1 This is the negative of the former yp introduced by Schertzer and Lovejoy 1987a-b. The change of sign is
required to obtain dircctly the bounds of singularitics/regularities as explained.
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Fig. 7a. a gaussian white-noise (a=2), fluctuations are symmetric.

Fig. 7b. an extremal Lévy white-noise (o=1.5), fluctuations are extremely asymmetric:
only negative hyperbolic jumps are allowed for the generator, "digging" wild
regularities ("holes")

the former algebraic asymptotes of ¢(y) tend to exponential behavior since: (x/o/'+1)% — eX
when ot'—ee.

v)a=0+ (o'=0-1) : this limiting case corresponds to divergence of every statistical moment
of the generator and seems at first glance very strange, but one of its representations is none

other than the once celebrated -model (Y “=-o0, ¥*=C) =limit ¢_0+(y0))! This fact, in turn,

shows clearly the peculiarities of the B-model, once thought to be a more or less crude
approximation of intermittency. ..

Let us point out briefly some consequences;
- the Levy cases fill the gap between the two more or less classical cases the so-called

lognormal (x=2) and the B-model, which now represent just two extremes of the whole
spectrum of universal generators.

- the very symmetric gaussian case is the exception which assures the existence of negative
order moments, on the contrary the asymmetric "extremal" character of Levy case
corresponds to the fact that we are "digging" wild regularities ("holes") with the algebraic
extremes of the Levy generator which preventing convergence of any negative order moment.
(see the relevant Fig. 7a-b ).
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of C(h) (=e» for a21; =yg<ee for o<1 ) is decreasing with o, leading to the finiteness of all
moments for set A of dimension D>.C.. . However, it is merely due to the fact that the wild
behavior of the generator is restricted to regularities (hence the particular problem of negative
order moments since they interchange regularities with singularities and conversely. The B-
model yields the extreme regularity since: Co= C1=C(h), any set A where the process is not
degenerate,will have regular flux at all positive orders (but still none at negative orders!).

One may note that exact mathematical results have been obtained on the case o=2 (Kahane
1985, 1987) and <1 (Fan, 1989).

MULTIFRACTAL SIMULATIONS AND ANALYSIS

Stochastic simulations

Although concentrating their attentionon a particular problem,the advection of passivescalar
field (eg. concentration of a passive substance) by a turbulent velocity field, Schertzer and
Lovejoy (1987), Wilson et al. (1989) show a rather general procedure for simulation of
multifractal fields. Indeed, we may first readily produce conserved fluxes. Indeed, due to the
existence of universality classes, a Gauss or Lévy generator is rather easily obtained by
"coloring”, via fractional integration, a corresponding Gauss or Lévy white-noise
(represented in Fig. 7a-b in order to obtain a desired Gauss or Lévy pink-noise (most of the
details are given by Wilson et al. (1989), especially the Fourier techniques needed). From
these fluxes, we may build up others by taking products of them or raising them to different
powers. We may even fractionally integrate over them, which is especially desirable when
we want 1o obtain for instance the concentration field itself, rather than the flux of the scalar
variance. However, doing so, we will fundamentally add only an extra parameter (the order

of fractional integration) to our two basic Cj and a. Indeed, a fractional integration (order -b)
on a power (a) of a conserved flux.corresponds (as pointed out by Schertzer and Lovejoy

(1987a)) to an affine transformation on the orders of singularity (leaving c(y) invariant);
Y=ay+b; h'=h/a; K'(h")= K(h) +bh’; c'(¥)=c(Y) (32)

staying in the same type of universality (same c). We could mainly restrict our attention to
transformation with a=1, since it corresponds, at least formally!, to the result of a fractional
integration of order -b'=-(b+K(a)) on a new conserved flux (obtained by power and fractional
integration K(a}).

Fig. 8 shows the two main steps needed to obtain a concentration field over a 28x28 pixel
grid simulated (a=-b=1/3) on a personal computer, Fig. 8a shows the corresponding
conserved flux (identified to €), then the resulting concentration field after fractional
integration. Larger simulations are expected to be quite useful in studying radiative transfer in
highly inhomogeneous (i.e. multifractal) clouds, which could be notably important to
developing remote sensing techniques (cf. Gabriel et al. (1988)). See also Fig. 9a-b

Probability Distribution Multiple Scaling (PDMS)

Inanalyzing empirical data of a field f knownatagiven resolution (A=L//, L being the larger
scale of the sample, eg. the size of a satellite image, / being the smaller scale , eg. the size of
apixel), we seek, as proposed by by Lavallée et al. (1989), to directly apply Eq.5 to

1 Indeed there is no equivalence between the different ways of maintaining conservation of fluxes.
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Fractional
Integration

p=0
plane

Fig. 8 . It shows from top to bottom, over a 256x256 pixels grid,

(a) the density of a conserved flux, obtained with a Lévy generator a=1.5
(b) the associated concentration field obtained by

fractional integration (of order 1/3).
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Fig. 9a. a cloud field obtained with a fractional integration (of order 1/3) and a Lévy
generator (x=1.7). See Wilson et al. (1989) for more discussion,

determine the scale invariant probability distribution (characterized by the codimension
function c(y)). To do this, we must first estimate f at different intermediate scale ratios A (fi;

A2h=1) by coarse graining, eg. averaging on larger and larger pixels (successive factors of 2
can be easily implemented recursively until reaching the whole image) and the corresponding

probabilities distributions with algebraic thresholds < A7, estimating thus the codimensions
of the singularities:

c(y) = -Logy Pr( (Logy(fr)>y) (33)

In order to avoid contributions given by different correcting terms (such as various

logarithmic corrections...), it is often better to estimate c(y) as the slope of the probability
distributions in Log-Log plots as discussed by Lavallée et al. (1989). This method can be
called Probability Distribution Multiple Scaling (PDMS) and be tested on simulated fields
whose codimension function is known. We can check also the validity of our assumptions on
the limit of accuracy given by the sampling dimension we have introduced. Fig. 10 presents
such a simulation, with a gaussian generator, which rather supports this method (cf. Lavallée
et al.(1989) for more discussion).

Fig. 11a-b show the results when this technique is applied to 5 visible and 5 infra red

GOES (Geostationary Operational Environment Satellite) pictures respectively over Montréal.
The pictures were resampled on an 8X8km grid over a region of 1024X1024km.  As can be
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Fig. 9b. a landscape topography obtained with a fractional integration (of order 1/3) and a
Gauss generator (x=2). See Sarma (1989) for more discussion.

d + Ds(1000)

d + Ds(10)
c(Y)

Fig. 10. Probability Distribution Multiple Scaling estimated on a multifractal field,
generated by a gaussian generator. Solid line is the theoretical curve, for the
probability density, black triangle are estimated codimensions of the probability
distribution with a sampling dimension equals to 10 independent samples, open
squares correspond to 1000 independent samples . Horizontal dashed lines,
indicate the (estimated) upper limit of the validity of the estimations due to their
limited sampling dimensions (resp. Ds(10) and Ds(1000). See Lavallée et al.
(1989) for more discussion.
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Fig. 11a PDMS estimates of the Fig. 11b PDMS estimates of the
singularities codimension c(y) from singularities codimension c(y) from
five visible GOES images over five infra-red GOES images with same
1024x1024 km at 8, 16, 32, 64, range of scales. The error bars indicate
128, 256 km scales. The error bars one standard deviation. The mean
indicate one standard deviation standard error was 1+.023, and the best

regression to universal function (Eq.
31) yielded o'=2.52, o=1.66, with a
standard error of the fit +.015

seen, all the distributions are nearly coincident, in accord with the multifractal nature of the

fields. To judge the closeness of the fits, we calculated the mean c(y) curves as well as the
standard deviations for 8, 16, 32, 64, 128, 256 km, finding that the variation is very small,

being typically about £0.02 in c(y) which is appreciably more accurate than estimates obtained
using functional box counting on very similar data (Gabriel et al 1988 found accuracies of

=10.05).

We have already argued that the resolution independent codimension function ¢(Y) is of
considerably more interest than particular values of the function and may depend only on very
few parameters due the universality classes we discussed: 2 in case of a conserved flux,
mainly 3 in case of fractional integration (order -b) on a power (a) of a conserved flux. As
discussed in the preceding sub-section, we may restrict our attention to a=1 and rewrite
slightly differently this transformation, by introducing the empirically determined fixed point

C; (the subscript "t" indicates "tangent” to a line slope 1) of c(Y) and the corresponding
translation y; necessary to reach it, i.e.

c(Ci-1) =G [c'(Ci-w=1] (34)

The difficulty in testing these ideas empirically is that the key parameter o' (recall
1/o'+1/a=1) characterizes the concavity of c(y) which is only pronounced when ¥ and c(y)
vary over a substantial range. From the point of view of non-linear regression, to fit ¥, Cy,

o' to the data we find that Cy and o' are highly correlated and hence parameter estimates are
not very sharp. In Gabriel et al 1988, functional box-counting was used yielding less

accurate estimates of c(y) than those obtained here. The issue was side-stepped by assuming
o'=2 and testing the consistency of the data with that hypothesis.

Here we outline a very simple graphical method which proves quite accurate. The easiest
parameter to estimate graphically is co=c(0), which yields c(=0.16, 0.20 for visible and IR
curves respectively. However, Cy, y, can also be found rather easily: a line slope 1 is tangent
to c(y) at the point c(y)=C, and will intersect the 7y axis at the point y= -¥;. Note that all three
parameters estimated this way depend on the values of the curve c(y) in the statistically well
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To improve on these results requires nonlinear regression (cf. discussion by Lovejoy and
Schertzer (1989)). Here we determined o' by a least squares regression on the mean of the 8
to 256km curves in Fig. 11a-b. Maximum likelihood estimates for the parameter o were

found to be: 0=0.63+0.035 and 0=1.6620.37 for the visible and infra red data respectively.
The large difference in the maximum likelihood errors cited here is due at least in part to the

fact that we directly estimate o' and A =(1+at)2Aa’ hence this effect alone accounts for a
factor 2.7 in difference. Fig. 11a-b shows the best fit and mean visible and infra red curves.
The standard errors in the fit are £0.011 and £0.015 respectively. These results show the
accuracy of the graphical method. We can also estimate the critical order of moments

divergence hp (cf. Eq. 11) and the corresponding critical order of singularity yp. We find,
(using D=2) hp=13.80, yp=3.50 for infra red images, but for the visible data (with a<l,
recall that the singularities are bounded) Co. =0.42<2, hence no divergence,

One may note also that, due to the fundamental discussion (Schertzer and Lovejoy, 1987b)
on the method of elliptical dimensional sampling, the scaling anisotropy of the field can be
investigated by this method in connection with PDMS, instead of the Functional Box
Counting (as done earlier by Lovejoy et al. (1987)).

CONCLUSIONS

We sharpened the theoretical foundations of the singular statistics of multifractal fields,
discussing in a rather general manner the conditions of their appearance, depending on the
type of the process, as well as on the observation (scale and dimension). Thus we
emphasized the non trivial behavior of geophysical observables. We clarified the fundamental
difference between "bare" and "dressed" properties at a given (non-zero) scale i.e. the
important differences between a process with a cut-off of small scale interactions and one
with all these interactions. We point out also general properties of the generators of
multifractal fields and their links with classical statistical physics notions, emphasizing their
particularities.

We discussed in some detail the basic two-parameter (average singularities Cy, Lévy index
o of the generator) family of universal {(canonical) multifractal fields having strong attractive
properties, with five important sub-classes: gaussian generator (o=2), unbounded Lévy
generator (2>¢¢>1), bounded Lévy generator (1>0>0), a very special in-between case Lévy

generator (@=1)... as well as the once celebrated B-model (@=0)! We also showed that
multifractal fields not subject to some flux conservation will nevertheless depend primarily on
only three parameters.

In our opinion, these findings may provide keys advances in Geophysics, especially in
many practical applications (eg. remote sensing techniques) since they may well lead us to
explore a hidden face of multifractality: bare universality under dressed pandemonium. We
illustrated these ideas with passive cloud simulations and satellite data analysis.
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APPENDIX A

GENERALIZED CENTRAL THEOREM, EXTREMAL LEVY STABLE GENERATORS
(in collaboration with R. Viswanathan!)

Fixed points for sums of independent and identical distributed (i.i.d.) random variables and
central limit theorems

In this sub-section we review briefly the classical features of Lévy stable variables,
stressing that these variables emerge as generalizations of gaussian variables, which then are
seen {0 be a very particular case of Lévy stable variable. Indeed, we are interested in the
universal stable and attractive fixed points of renormalized sum of i. i. d variables, consider
first the stable fixed points of renormalized sum ( =d means equality in probability2):

X;=4 X; i=1,n are stable points under renormalized sum iff (AD)
for any (integer) n (22), ,there exists a (positive) by and a (real) an

Disin Xi =4buX1+ap
The well-known gaussian case corresponds to:
<X12> € 00 = by =n12, ap= (n-1)<X;> (A2)

hence the agsumption of finite variance which has been considered as so "natural” that it has
become a kind of dogma. The usual central limit theorem corresponds simply to the limit

n—ee in Eg. Al:

X =1im nse [(Qi=tn Xi )- 2n/bu (A3)

the X; on the r.h.s. are not assumed to be gaussian but the X will be, hence the Gaussian
law is attractive :

<X2> = <X;2> € oo = by =n12,a,=n <Xj> - <X> (A4)

1 Banque Indo-Suez, Paris, France.
2 Note in order 10 be consistent, the use of this symbol requires that indicated variables should be mutually
independent
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introducing on the contrary an order of divergence (c, O<a<2) for the moments of the X; (a
is often called the Lévy index) which satisfies either A1 or A3;

h<a = <IXjh> < o and h'2a = <Xjh'>=co 1. e.: Pr(X;l2s) ~s® (A5)
Alor A3 & by =nl/® (and, if o>1; ag= n<Xj> - <X>)

the variables X are very often termed "hyperbolic variables" (or even "hyperbolics") due the
algebraic fall-off of their probability distribution tails, which are themselves sometimes
termed "fat tail" due to their (unusually) important contribution. Hence, the Lévy stable
variables are the stable and fixed points of (renormalized) sums of i. i. d. hyperbolic
variables. Note that for o<1, as the mathematical expectations of the X and their sums are

divergent, the required recentring is a bit more involved than that indicated for 1<a<2
(subtracting out the averages) and will be only discussed later. The very special gaussian case

appears as the (extreme) regular case o=2, after a highly critical transition since for any c=2-
€ (e arbitrarily small) we have divergence of all orders greater than o whereas all divergences

are suppressed for o=2. One may note that the stable variables were introduced in a slightly
different form (Lévy 1925, 1954) addressing the stability under any linear combination:

X; =4 X5 are said stable under linear combination iff (AG)
for any (positive) by and by , ,there exists (real) a and (positive)b, such that:
b1X1+ by Xg=4 b Xj+a

It is rather easy to check (by induction) that Eq. A1 and Eq. A6 are equivalent . One may
furthermore note that "any n" in A1l can be equivalently reduced to "n=2,3" due essentially to
the density of numbers 2i 3k among positive numbers, j and k being relative integers, (see
for instance Zolotarey 1986).

Note that there exists a sub-class of stable variables which do not require recentring (i.e.

a=0, -it is rather obvious in the cases 1<0<2). These special cases (to which, Lévy (1925)
restricted his study) are frequently called "strictly stable” (Feller 1971, Zolotarev 1986), more
rarely the complementary cases (i.e. a #0) are called (Lévy 1954) "quasi-stable".

Characteristic functions of Levy laws

With the few notable exceptions =2, 1, 1/2 (and some further restrictions on the two
latter cases, since they must be symmetric) the probability distributions of Levy stable
variables are not expressible in a closed form. However, the second (Fourier or Laplace)
characteristic function is easily expressible due to the basic properties of stability. K(h) is the
logarithm of the first characteristic function Z(h), i.e. the (Fourier or Laplace) transform of
the probability distribution dP(x)) and the argument h is purely imaginary in case of Fourier
(h=ih"), real in case of Laplace (we will discuss later the restrictive conditions under which
such a transform is possible) and a complex number (h-+ih') in the case of Fourier-Laplace (or
two-sided Laplace) transform:

KW= Z(h)= <ehX> = [ehx dP(x) (A7)

the fundamental property of the fixed point (Eq. Al) or the equivalent form (Eq. A6) are
easily transposed for the characteristic functions; .

X;=9X; (i=1,n) of second characteristic function K(h) (A1)
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X; =4 X5 of second characteristic function K(h) (A6")
are said stable under linear combination iff. for any (positive) by and by
there exists a (real) a and a (positive)such that: K(bih)+ K(bzh) = K(bh) + ah

the limit theorems correspond to (K second characteristic function of the X; K second
characteristic function of X):

K(h) = limp—_ses n[Kj (h/bp)- hap/nby] (A3

We may infer, especially from A6/, that these characteristic functions, up to the recentring
term, should be of power law form whose exponent & is bounded above by 2 (the extreme
regular gaussian case) and must of course be positive (to avoid divergence at h=0). It is
obvious that the case o=1 is very special since this hyperbolic exponent becomes equal to the
(linear) recentring term exponent, we may guess that conflict and compensation between the

two terms will introduce logarithm corrections. For other values of « the (linear) recentring
term has no importance and we can restrict our attention to strictly stable cases (ap=0). Ash®

(or h Log(h) for ct= 1) is not analytical (except once again in the gaussian case o= 2) in the
complex plane, we clearly expect on the one hand divergence of moments of order greater or
equal to o, on the other hand that the inferred "power law form" may be rendered more
precise in order to obtain a second characteristic function (e.g. Z(h) must be positive definite
in case of Fourier transform (Bochner's theorem) or absolutely monotone in case of Laplace
transform). Indeed, considering the symmetric (or symmetrized) probability distributions
lead to the following law (partially known... since Cauchy 1853, but essentially obtained by
Lévy (1925) of Fourier characteristic functions, since K(h) must be also symmetric:

K(ih') = -Ag h'e (AB)

with the obvious gaussian case when a=2, and Cauchy case when o=1. The Ag
characterizes the width of the probability distribution as in the gaussian case (Ay = 02 /2) but

doesn't correspond to the evaluation of an o-moment, since it diverges, but rather the rate of
divergence of this moment.

Particular pr ies of extremal law:

The symmetric case corresponds to limit sums of symmetric hyperbolics or mixing with
equal probability (p=q=1/2) positive (with probability p) and negative (with probability q)
one-sided hyperbolic distributions (concretely: just multiplying by a random sign positive
one-sided hyperbolics) Asymmetric cases correspond to p#q. It is time to stress that if we
want to have a Laplace transform. we can only consider extremal (asymmetric) hyperbolics,
simply because algebraic fall-off could not tame an exponential divergence, hence we restrict
here our attention to negative hyperbolics (p=0, g=1). However, note that the corresponding
limits, the extremnal Lévy stables, are not always one sided -precisely one sided probability

distributions only occur for O<u<1.
In order to assess different statements, it is interesting to consider the characteristic
functions under their "canonical form" 1. e:

K(h)= _[(chx -1 +hx) dF(x) = Z(h) -1+a'h (A9)
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development (near h=0) when needed (for 1<a<2) . This form corresponds on the one hand
to a first order term development of log[1+(Z(h)-1)], which is the only term kept in the limit

theorem besides recentring and normalization of K(h) (i.e. K(0)=0 corresponding to

[dP(x)=1). On the other hand, it corresponds to the limit of (Poisson) random (renormalized)
sums of i. i. d. variables, instead of uniform sums as discussed up to now. Indeed
considering the characteristic function of the limit (n—<e) of the Poisson compound
probability distribution generated by renormalized sum of n i. d. d. hyperbolic variables (as
given by A1) lead us to a new version of the limit theorem (earlier stated under the forms A3
and A3") keeping in mind that the second characteristic function K(h) of the Poisson
compound probability distribution is c(Z(h)-1), where ¢ is the parameter of the Poisson
process, Z(h) the first characteristic function of the generating probability distribution):

K(h) = limp_00 Kn(h)
Kn(h)=n[Zn(h) -1]
Zn(h)=Z; (h/bn)exp(- han/nbn) (A3")

the "canonical form" (Eq. A9) is obtained by slightly recasting this equation to take directly
into account arbitrary centering directly on K (no longer on Z; or Z).
Let us consider the negative hyperbolic generation of extremal Lévy stable by negative

hyperbolic, it suffices to put dF(x) o 1yx<0x"® dx/x (1x<p.being the indicator function of the
negative x) and with repeated uses of the identity:

oo

(B)=2B8 JE'ZI!BdU'l ; Re(2) 20 (A10)

and integrations by parts, we obtain easily for dF(x) = 1x0C(2-0) x-%dx/x ;

o1: K(h) =C h¢ I'(3-a)/a(o—1); o=l
a=1: K(h)=C hlog(h) (A11)

one may note that the expressions for the corresponding Fourier transforms are a bit more
complex (i.e. Fourier transforms, so convenient for symmetric laws, are inconvenient for
extremal (and more generally for asymmetric laws), on the contrary Laplace is only fitted for
the extremal, useless for the others):

o£l:

Kth)= hi® C [I'(G-a)/a(a-1)] [cos(roy2) + -i(sgn(h) (p-q) sin(moy/2)]

o=1:

K(h)=-lhl C [r/2 +i (sgn(h)(p-g)log/hl] (A12)

As a last general remark, one may note (from Eq. A1l or Eq. A12) it is only in the case
of extremal stable distribution (p-q=%1) that an analytic extension on the whole complex plane

of K is possible (but with a cut along the ray arg(h)=-3n/4), as it is for a=2, or that the
double-sided Laplace transform applies only to extremal stable variables.
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