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ABSTRACT
We discuss statistical mechanisms leading to phase transitions in high dimensional
multifractal processes. Second order (ransitions naturally arise from finite sample sizes,
whereas first order transitions are consequences of the scale and dimension of the
observations. These transitions are elaborated and their genericity are underscore. We point
out the close first order, low temperature phase transitions relation to self-organized
criticality and its implications for nonlinear physical systems, in particular in astrophysics.

1. Introduction

Multifractal variability crops u;; in fields ranging from strange attractorsl.2,
turbulence3-5, statistical physics6-/, high energy physics8, astrophysics® and
geophysics10, The basic scaling behavior of these dissipative nonequilibrium systems is
determined by exponent functions which have analogues in thermodynamics (for reviews
see refs, 11, we will rather follow12.13). Two distinct statistical mechanisms lead to phase
transitions (discontinuities of the free energy and thermodynamic potential analogue.?.
"Frozen free energy" (second order) transitions’-8 arise from finite sample sizesl4,
whereas much more wild first order transitions are consequences of the scale and
dimension of the observations on large samples>-15, These are totally different from the
high temperature transitions found in (low dimensional) deterministic chaos!16:17 which
are basically created by breaks in the scaling symmetry of the probability measure in
phase space. In our case these phase transitions are generically produced by the scaling
and have direct implications for extreme, catastrophic, events in physical space. They can
explain recent results in turbulence!8 as well as the appearance of self-organized critical
phenomenal?, Finally, we give empirical evidence from astrophysical catalogues that the
integrated luminosity function does indeed have a first order multifractal phase transition.

2. Multiplicative processes and multifractal codimension formalism

To study these transitions, we rely on multiplicative processes3-20,21:22 preduced
by scaling random multiplicative modulations of larger structures by smaller ones which
yield highly intermittent space/time fields (see Fig.1a). Each realization corresponds to a
finite D-dimensional cut of a process in an infinite dimensional probability space.
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Fig la: Construction of a "bare” multifractal field by a multiplicative cascade process

{("lognormal" model with C1=0.9, see discussion below) starting with an initial uniform unit

density. At each step the homogeneity scale [ is divided by 2 and we display from top to bottom /
= 2-3’ 2-7, 2-10’
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Fig. 1b The "dressed" density, obtained by averaging the "bare" density (Fig. 1a) over the
finest resolution scale (/ = 2’10) up to the scales I = 2327, The sharp contrast between the 1a
and 1b arises from smaller scale singularities. As discussed below, among 29 realizations, we

chose the one displaying the

The multiple scaling behavior of this field &

largest scale L to the scale [),

Pr(e,2 A1) = L5,

"hardest" singularity.

at scale ratio A (=L/{ the ratio the

can be either characterized by its probability distribution or
by the statistical moments which are obtained via a Laplace transform (here and below the
sign =~ means equality within slowly varying or constant factors):

<e, 8> = AKQ@ = Jaam-<dey)

M
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Figs 2a: Schematic diagram of c(y), cd(y) indicating two sampling dimensions Dg1, Ds2
gdbt)bexr corresponding Ys]1<YD<Ys2<Yd,s2: the critical tangent (slope qD) contains the point

the exponent c(y) is21,22 a statistical codimension since -as discussed below- the
probability measures the fraction of the probability space occupied by the singularities
exceeding the order 7y (Fig.2a). The probability description (Y, c(y)) is the multifractal
analogue of the (energy, entropy) description of standard thermodynamics, whereas the
moment description (g, K(@)) is the analogue of the (inverse temperature, Massieu
potential) description. Since a free energy analogue is K(q)/(q-1), discontinuities (phase
transition analogues) will be apparent in either the free gnergy or Massieu potential
description. (Entropy, Massieu potential) and (c ,K) are Legendre transform? pairs:

K(@) = MX (qy-c() ) = M2 (qK(@) @

these relations establish the one to one correspondence q = ¢’(y), Y= K’(q) (Figs.2a,b).
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Fig. 2b: Schematic diagram of K(q), with straight lines of slopes ¥s1<YD<Yd,s2<Yd se0
(=eo) indicating the behavior for increasing sample size Ng (Ngoo ==). The line of slope D defining
qp is also shown.

At scale ratio A, the probability can be estimated as the ratio of the number (N, (v))
of structures with singularities 2y to the total number of structures (N, ): Pr(g, 2 A7) =
N. (Y)/N,. Whenever D2c(y), c(y) also has a geometrical interpretation over a D-

ithensichal observing set A. In this case, not only N, =30, but also, on almost any
single realization, N, (Y) =)P(), with a positive D(y) wiiich is then a geometric fractal
dimension. This restfictive geometric interpretation corresponds to the starting point of
ref.4. However, the "hard" singularities (see below) which are the most interesting have
¢(y)>D and are only present in "canonical” multifractals!S2l, which invariants (e.g.
turbulent energy flux) are conserved in the "canonical" sense, i.e. on ;hc ensemble
average. One may note that recently the need of a codimension formalism has been
implicitly acknowledged by Mandelbrot23,

3. Second order multifractal phase transitions

Consider a sample consisting of Ng independent realizations, each of dimension D,
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each covering a range of scales A. Increasing Ny we gradually explore the entire
probability space; encountering extreme but rare events that would be almost surely
missed on any finite sample (Fig 2a). The sampling dimension24 D quantifies the extent
to which the probability space is explored by estimating the highest order singularity (ys)
we are likely to observe on N independent realizations:

¢(¥s)=D+Dg=Ag ; Dg= logNy/log A 3)

follows from the Eq. 1 and the fact that there are a total of N-N5=?\.D+DS structures in the
sample. Ag is the corresponding (overall) effective dimension. More extreme

singularities would have codimensions greater than this effective dimension (c2Ag) and
are almost surely not present in our sample.

The upper bound Y524 for observable singularities leads to a second order phase
transition. Indeed, the Legendre transform of c(y) with y<y; leads to a spurious linear
estimate K instead of the nonlinear K for g>qg; qs=c'(ys) being the maximum moment
that can accurately be estimated :

Ks(q) = 15(q-g5) + K(qs) . 92qs Ks(q@) =K(q) g=qg 4@

hence there is a second order transition associated with a jump in the second derivative of
the free energy/Massieu potential:

AK"s = -K"(gs) &)

and the corresponding free energy Cs(q) rapidly becomes frozen at the value 7s.

4. First order multifractal phase transitions

We now discuss the more violent first order transitions which may occur for a
multifractal process typically observed by spatial and/or temporal averaging on scales
{>>n (the inner size of the process) , i.e. with corresponding ratios A=L//, A=L/n with
A>>). The variability at the observation scale ratio R may be wilder (Fig. 1b) than the
corresponding field obtained by stopping the cascade process at the same scale ratio.
Borrowing some renormalization jargon, we may say that the observation is "dressed"22
by the small scale activity, whereas the process stripped of its small scale activity is called
"bare". All the interactions and the resulting fluctuations of the field on scale ratios
between A and A are “hidden” from direct observation; nonetheless they are entirely
responsible for the much more violent dressed variability.

We have thus to consider the statistical behavior of integrals of multifractals, in
particular, the D-dimensional integral over A:

(A) = lsxd% ©6)

corresponding to the energy flux (turbulence) or the multifractal probability (strange
attractors). IIy, has multiple scaling behavior corresponding in the usual strange attractor
notation to the multifractal measure exponents o, f, T, but due to the D dimensional



222

bare cascade

- 1 1 1—
A L%
= %
A =
A
N
dressed cascade hidden cascade

Fig.3: A schematic diagram showing a cascade constructed down to scale ratio A, dressed
(averaged) up to ratio A. This is equivalent to a bare cascade constructed over ratio A, multiplied
by a hidden factor obtained by reducing by factor A a cascade constructed from 1 to AfA.

integration there are extrinsic D dependences!3 (rendered explicit by the subscript “D”):
Pr(Ilx(B)= 3 ~%D) = 3 DODAP; ap=D-y; fp(op)=D-c(¥) )]

on a ball By, of size L/A. The "trace moments'"22 generalize the partition function used in
strange attractors? by combining ensemble with spatial averaging ("superaveraging"):

Trap&9= < LB, PT=1P@; (@)= ¢-HD K@ ®)
1

summing over A at resolution A, i.e. on a covering of N3 (A)=AP disjoint balls By ;
(ITA(B4,i)=eyA-D). While the intrinsic quantities v, c(y), K(q) are independent of the
dimension D of the observing space A, unfortunately ap, fp(ep), To(q) diverge as we

increasingly explore the infinite dimensional probability space (D—ee; contrary to the
finite phase space dimension D for strange attractors).

Because of its multiplicative construction, the dressed field (gq) factors (see Fig. 3)
into a bare ¢ (large scale) and a hidden €, (small scale) component (€4=€€p). The hidden
small scale component may contribute as a highly variable prefactor having occasional
avalanche-like effects on the large scale as soon as a singularity of order greater than D
occurs (see Fig. 1a-b for an example). This is because the D-dimensional integration
cannot smooth it down to the scale of observation; the observation scale () is no longer
effective and the scale of homogeneity n prevails). Since A/A>>1, the dressed singularity
(0) computed using the observation scale will be much larger. These events will remain
statistically negligible until a critical singularity erder yp, for Y<yp the drv;ssed
codimension (cq) coincides with the bare codimension (c), but for Y>Yp ¢4 will be
determined by maximizing the probability, i.e. minimizing ¢, with the only constraint
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being the convexity, cq thus follows the tangent (Fig. 2a):
cd(Ya)= qp(Ya-¥D) +(D) YYD cd(Y=c(¥) Y<YD )]

qp=c'(YD) is the slope of the algebraic fall-off of the dressed probability distribution, and
is the critical order of divergence of statistical moments (q2qp, <gpd>=cc =><gql>=co)
since a Legendre transform of a linear function diverges (Kq(q)=-=, q2qp). It was
shown3-22 that qp is the solution of:

D=gpD-K(gp)=qn(D-yp)+c(YD) (10)

i.e. the critical tangent (Eq. 9) contains the point (D,D) (Fig. 2a). The latter property can
be directly derived by showing that the (statistical) singularity of the trace moment3.22

density is q(y-D) -c(y) (the opposite of the tangency), and it should reach the critical value
D for v=Yp, q=qp, hence a simple and direct determination of cg(yy):

¢g(fd)=ap(aeD) +D 421D a1

Note that these singular statistics of the hard behavior!3 of the dressed field have
been taken as a basic feature of self-organized criticality? and are effective as soon as the
sample size is large enough (Ag=D+Dg=c(yp)). Fellowing the argument for Egs. 3-4 (see
Fig. 2a), the maximum observable dressed singularity (Y4,¢) is given by the solution of
¢d(¥d,s)=As and by taking the Legendre transform of cq with the restriction Yg<yq s we
obtain the finite sample dressed Kq s(q):

K4 s(@)= Ya,s(q-qp) + K(gp) g>qp; Kas(@=K(@ q<agp (12)

In the limit Ng—eo, ¥g s —eo, and for q>qp, Kq,s(q)—=Kd(q)= o as expected. For
Nj large but finite, there will be a high g (low temperature) first order phase transition,
whereas the scale breaking mechanism proposed for phase transitions in strange
attractors!6.17 is fundamentally limited to high and negative temperatures (small or
negative q . This transition corresponds to a jump in the first derivative of the K(q):

Ag-c(yp)
qD
On small samples (Ag=c(yp)), this transition will be missed, the free energy simply

becoming frozen and we obtain: Kg‘s(q)z(q-l)D, which was already discussed with help
of some turbulence experiments14,

AK'(ap)= K'q 5(qp)-K'(qp) = Y4.5-¥D = (13)

5. Numerical simulations

The numerical study of the first order transition is particularly demanding since we
must not only dress the bare cascade over a large enough range of scales to obtain
convergence to the hard behavior (A>>1), but we also require a large enough number of
realizations (Yq s>>Yp, Dg>>D). With these constraints in mind, we chose the "log-
normal” multifractal which is the extreme of the family of universal
multifractals!3.22.25.26 whose degree of multifractality (0<0i<2) is a maximum (=2).
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Fig. 4 A numerical simulation of phase transitions: K(q) (theoretical, parabola), Kg(q)
(observed second order transition, bare, open triangles), K s(q) (observed first order transition,
partially dressed!?, closed triangles), K s(q) (theoretical first order transition, fully dressed, straight
line).

The bare K(q) function is:

K(g) =SL(qo-q) (14)
o-1

where 0<C <D for nondegenerate?? multifractals. When a<2, Eq. 14 is only valid for
g=20, when g<0, both the bare and dressed moments will diverge leading to other
(negative temperature) phase transitions to be discussed elsewhere. For simplicity, the
cascades were discrete; the unit interval was iteratively divided into lengths 1/2, 1/4,
1/8...1/1024, each interval, and every step being multiplied by appropriately normalized
independent lognormal random variables (see Fig. 1a). The individual random variables
had unit mean and were statistically independent. The absence of restrictions on the sum
of their values allows!5:24 far much larger fluctuations than possible in the usual
multifractals and is essential for the first order phase transition.

With 0.=2, qp =D/C; and low gp is obtained with either C; large or D small (see
bellow). For simplicity, we took D=1 and Cj large (=9/10 = qp=10/9). Fig. 4 shows
the result when NS=29. The cascades were constructed over a ratio A=210, dressed over
a ratio 27 (Fig. 1 shows the realization giving the highest dressed singularity at this
scale), so that the remaining bare range (A) was only 23 = Dg=9/3=3, A;=4. Finite size
effects (A<eo) must be carefully considered in the statistical estimates which must be
performed scale by scale (Fig. 4).

6 Empirical evidence

The existence of multifractal phase transitions may explain long-standing
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Fig. 5: The data used are from the Center for Astrophysics redshift Catalog3!, apparent
luminosity magnitude < 14.5 and velocity<4000km/s. The sample contains 1682 galaxies, of
which 436 responsible for the observed qp. The cutoff at Log(lum)= 4.8 can be physically

understood from the missing galaxies due to the 2 dependence of optical detection of galaxiesm.

geophysical evidence?7 for hard behavior, e.g. the well-known Gutenberg-Richter law in
earthquakes 29 as well as more recent evidence in turbulence!8. Indeed, an alternative
method of obtaining a small gp is having a small D. D<I may in fact be relevant in
turbulence where evidence of hard multifractals has existed for some time. Recall the

Kolmogorov relation between the observed velecity fluctuations (Avy), and the energy
flux (€): Avy=el/3A-1/3. A simple interpretation of the linear scaling exponent -1/3 is that
it represents a fractional integration of order D=1/3 of €173 and as elaborated elsewhere the
estimates6:29 of universal multifractal exponents support a low gep = 2, consistent with
empirical estimates going back ten years>.

A first order multifractal phase transition mechanism may also explain rather
straightforwardly the observed luminosity distribution of galaxies, i.e. the algebraic fall-
off of the integrated Luminosity Function. Indeed, although various authors 9 proposed
fits to this algebraic fall-off regime of this integrated histogram of observable galaxies
exceeding a given level of luminosity, until now no physical interpretation was made. On
the contrary, a first order phase multifractal transition with a critical moment order30
gp=2.2 may explain this regime as shown in Fig. 5. It is likely the straight line part of
the graph would extend to much lower luminosities if we had access to all the non-visible
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galaxies.

7. Conclusion

The fact that nonlinear scale invariant systems generically yield first order
multifractal phase transitions and diverging statistics may explain the prevalence of self-
organized criticality in nonlinear physical processes: hard cascades with their energy
fluxes share not only the same statistics as sand piles and their avalanches, they also share
some of the same physics since events of all intensities are generated by the same
mechanism. In both cases, the extreme behavior arises as a consequence of canonical
conservation of the mean field (energy fluxes and number of sand particles respectively).
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