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ABSTRACT

We numerically solve the solar transfer problem in an extremely
variable lognormal multifractal medium for an isotropic conservative
discrete angle phase function. Many features of the resulting radiation
fields compare favorably with their real world counterparts. Most
interestingly, we find that homogeneous appearance (weakly variable
radiation fields) in no way guarantees homogeneous internal structure.
Worse still, the bulk properties of the most homogeneous looking clouds
are the most different me the plane-parallel prediction.

1. MOTIVATION AND OVERVIEW

Cloud structure is intimately related to the turbulent dynamics of the
lower atmosphere. Recent advances in our understanding of turbulence are
largely based on the concept of scale invariance: power law energy spectra,
fractal and multifractal models of intermittency, etc. Moreover, scaling
behavior is observed over a large range of scales for many atmospheric
quantities, including cloud liquid water content (LWC) (e.g., King ef al.,
1981; Duroure and Guillemet, 1990; Marshak e al., 1993) as well as
VIS/IR radiances (see Lovejoy (1982) and Gabriel et al. (1988) respectively
for the first simple- and multiple-scaling studies). Breaks in scaling and
multiple scaling regimes have also been reported (e.g., Cahalan and Joseph,
1989) but, for the purposes of pioneering radiative transfer investigations,
we are inclined to use the simplest possible scaling cloud models that
capture some degree of realism. For the present exercise we settle on a
series of highly variable cloud models based on a specific realization of a
discrete multifractal cascade with lognormal weights. Using the most
robust numerical approaches to model the multiple scattering processes, we
primarily study the solar problem (external illumination and conservative
scattering) for which we have obtained the fully resolved reflected,
transmitted, as well as internal radiation fields.

In the following section, we describe the adopted LWC field as well
as the vast class of stochastic models it belongs to. In sect. 3, we briefly
review the type of Discrete Angle (DA) radiative transfer which we use for
conceptual and computational simplicity. We present and discuss some of
our results in sect. 4 before concluding and pointing out some possible
implications, mainly in connection with radiation parameterization
schemes in climate forecasting using GCMs and NWP.

2. THE ADOPTED MULTIFRACTAL CLOUD (EXTINCTION FIELD)

At such an early stage in the development of our understanding of
radiative transfer in inhomogeneous optical media, it is entirely justifiable
to work in the smallest possible dimensionality where variability effects
still occur; this seems to be 2D. We will first describe algorithmically,
then mathematically and graphically our prototypical density field,
equivalently, the LWC distnbution p(x) where x = (y,z)7 € [0.L]2,
where L is the “outer” scale of the cloud (superscript “T" means transpose).

In order to generate p(y,z), we use one of the simplest possible
models that emulates the turbulent break-up of eddies into sub-eddies: a
multiplicative cascade. Starting with p(y,z) = 1 everywhere on [0.L]2, we
divide this square domain intoglu2 = 4 sub-domains where the dfnsity is
multiplied by 4 independent positive random weights W = 44! of unit
average (<W>=1). We used lognormal deviates: <, the random
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“generator,” is drawn from a normal distribution with variance 02 (that we
will denote 2C Ik, for future convenience, with C| = 0.5). The mean
<> is taken to be -02/2, [}:is choice enforces the multifractal
“‘conservation” constraint (<Ay'> = 1). The whole procedure is recursively
iterated n = 10 times so we end up with a 2D grid with

(Wl

i.e., 1024 cells on a side, and we denote the corresponding density field Pa:
lp is the grid constant or “inner” scale of the cloud.

A=Lig=24,"

Summarizing, we see that every final density value can be written as
n
pa=I1 Aol m
1=

with Ay = 2 (for simplicity) and n = 10 (in order to have a large range of
scales at our disposal, A 5> 1). The p.df. of pj is given by

Prob{ &Y 5 py <AY+47} L a-Myy )
where “~" means that we can neglect terms in In) and where
LG e e
o =3-(E+1) ®

In going from (0-1) to (2-3), one can use the additive properties of
Gaussian r.v.'s (i.e., means and variances add). The above-mentioned value
of C1 = 0.5 is close to that determined from the “intermittency correction”
deduced from King et al.'s (ibid.) LWC power spectra; sec Davis er al,
(1991a) for full details. Itis important to note that eq. (2) is generic to all
multifractal fields and, in essence, ¢p(y) is a scale invariant characterization
of p; 's histogram; in contrast, eq. (3) is specific to the lognormal model
and many other examples can be found in the multifractal literature (see,
€.g., Schertzer and Lovejoy, 1987).

Figures 1ab.c illustrate the extreme variability of the final density
field p; (y,2) by showing the “exceedence sets.” res ectively for
thresholds A-C1 = 1/32 (i.e., the event that Y2-C1)A%=1 (y = V),
A“1=32 (y=C}). In our specific realization, we find a spatial average
Pa = 1.52 while min{p;} = 10:¢7 and max{p; } = 101, Notice the
concentration of mass in ﬁ:e lower Lh.s. of the medium. Notice also how
the notion of (smooth) level “curve " fails totally for such distributions and
how very sparse the two latter sets are. Their fractal dimensions D(y) are
defined by the number of cells (“boxes™ at relative scale (“resolution™) 1/A
needed to cover them; namely,

N{ py 2 AT} ~aPp(¥) (4)
Multiplying eq. (2) by the total number of cells Ad (d=2 is the dimension
of space) and integrating from 1o =, we find

Dp() = d-cp(m) (3)

as long as cp(y) is non-decreasing on [y ®[. (In the L >> 1 limit, the
integral will be dominated be the contribution from the lower bound and,
furthermore, we can neglect all terms in |nA that may occur.) From (5),
we can see why c(y) is called the “codimension function” while yis called
the “order of singularity™ since py = as A— if y>0 (and y<0 yields in
fact a “regularity” since then p; —0). Finally, p; is called a “multifractal”
since an infinite number of fractal dimensions are needed to describe it
(Frisch and Parisi, 1985). For the sets in figs. lab,c, egs. (3-5) yield
Dp(-C1) =d = 2 (this set fills space), Dp(0) = 1.875, and Dy(C)) = L5;

for the meanings of these values of y with respect to the statistical
moments <p; %> (q = 0, 1/2, 1), see Davis (1992).
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RADIATIVE TRANSFER IN CLOUDS

Now density p(y.z)—-scaltering particles per unit of 2D “volume'—is
simply related to extinction—probability of photon/particle interaction per
unit of length—that we will denote in Chandrasekhar (1960) fashion as
xp(y.z). where x—2D cross-“section”’ per particle—is taken to be uniform
over the entire domain. Quantitatively, we determine Kin such a way that
the average optical thickness of the entire cloud (<t> = k<p;>L where
<py>=1, by conservation) is >> 1, while its counterpart for the
individual cells (<Ty> = x<py>lp) is still << 1. In the computationally
convenient units where lo= 1 (hence L = A = 210), k can take such values
as 273, yielding T =12.2,...,195 (by factors of 2). So we have five
distinct cloud thicknesses to consider.

3. COMPUTATIONAL DA RADIATIVE TRANSFER IN 2D

For the sake of simplicity, we will perform bone fide 2D ransfer,
not 3D transfer with no variability along the x-axis as, e.g., in Evans
(1993). The corresponding radiance field I(y.z; ©) obeys the following
transfer equation

sineii» cosd 2 kp(y.z) ]:[!p(a'-)e)-&e‘—a)] [1 dB}l{y,z-e) =0
{ 3y % . :
; (6)
where 0¢ ]-t,+n1] is measured away from the {(downward oriented) z-axis.
We now make the (orthogonal beam) DA assumption that

1(y.2:0) = Lo(y2)5(0) + Lu(y.2)8(6-1) + Ly (52088 3)+ Ly(y.2)3( e+’§)

M
and, accordingly, p(8'—8) becomes, for “relative angle™ scaltering,

p(0'—8) = 18(6°-9) + b8(6'—6-1) + s[5(8"—6— f} + a(e'-e»,})] (8)
The first three harmonics determine this DA phase function entirely:

Wg=f+b+2s single scattering albedo 9a)
O, =0gg=0-b asymmetry factor (g) {Sb)
Wy=f+b-2s (no special name) (9c)

In the following, we will look at isotropic (@, =, = 0) scattering, hence

for f= b=s = M,/4, mainly in the conservative (M, = 1) case. Lovejoy ef
al. (1990), Gabnel er al. (1990), and Davis ef al. (1990) show in various

ways that DA scattering kernels are acceptable surrogates for their

continuous angle (CA) counterparts, at least if we are concerned only with

scaling of bulk radiative properties with range of scales and/or optical mass

since structural- and not optical aspects dominate the picture.

After defining a formal DA radiance 4-vector substitution of (7-8)
into the integro-differential transfer eq. (6) yield: the following finite
system of equations for multiple DA scattering:

1 0000 -1 b s s ¥
go1oofajoooots brls s Bk
0000 |3yT0010 [z7PY?| s 51 b
0000 000 -1 s s b1,

(10)

Notice that the DA “radiances” that appear in (7) and (10) in fact have units
of flux. Fipally, boundary conditions (BCs) for the solar (or “albedo™)
problem with horizontally cyclical replication of the given density field are

Ly.0) =1, L(y.L)=0 fory e [0O.L[ (11a)
Ly(L2) =1,,(02) forze J0.L[ (11b)

where z=0 corresponds to the top in fig. 1. Egs. (10, 11a,b) with the
multifractal p(y.z) described in section 2 define a highly non-trivial
computational transfer problem, mainly due to the occurrence of very thick
cells: already at logyx = -7, max{T,} = 10°! The problem was solved
in two completely independent ways for the thinnest cloud and good
agreement was obtained. We adopted the two most brute-force
methodologies (and paid the computational price in CPU-time): direct
Monte Carlo simulation and straightforward relaxation of the spatially
discretized version of (10). Because of the very thick cells, the latter
technique called for tabulated single-cell coefficients, not the usual implicit
or explicit linearization; see Davis (1992) for further details, including a
brief discussion of performance, and Evans (ibid.) for a promising CA
approach based on spherical harmonics. The thicker clouds were treated
only by the Monte Carlo procedure which, incidentally, can be considerably
optimized in DA transfer, far beyond standard variance reduction techniques.

4. RESULTS AND DISCUSSION
Rather than the I; (i=y.z) themselves, it is of interesl to consider the

DA radiance vector in its scattering/extinction matrix’ eigenvector
representation {which is the DA equivalent of spherical harmonics). The
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last matrix that appears in (10} has the following cigenvalues and -vectors:

Total DA “Radiance™ (12a)
Net Flux Vector (12b)
“Non-Diffusive” Component (12c)

1-@,, J=Il,+L,+1,+1,
1-m,, F=(,L,,L1)T
1-0,, K==[l,+1L,]+[0,,+L,]

Notice how they map directly onto the harmonic representation of the
phase function in egs. (9a,b,c). The name chosen for K is justified by the
fact that, when it vanishes identically, (10) is equivalent to a diffusion law
for J associated with a Fickian constitutive relation for F (Davis ef al.,
1991b). In particular, we will require in the following the albedo and
transmittance fields, namely,

R(y) = I-F(y.0) = L{y.0). T(y)=F(y.L)=L(y.L) forye [0L[ (13)

Fig. 2 gives the bulk transmittance of the cloud as a function of T,
computed in three different ways: (i) assuming homogeneity yields the
lowest value, the closed-form plane-parallel result Tpp(T) = 1/(1+bT); (i)
assuming “independent pixels” (IPs), an expression of Cahalan’s (1989),
viz. Tip = TPP(I) where 1(y) 15 the colomn-wise local optical
thickness—this alsg_corresponds to s = 0 in egs. (8-12); (iit) the
numerical result T = T(y). We notice in passing that T—Tpp(? ) generously
spans the range of systematic discrepancies between observed and
homogeneously computed fluxes reported in the literature (e.g., Wiscombe
el al.'s (1984) discussion of the cloud “albedo paradox™). Clearly,

T > Ty (142)

is a direct consequence of Jensen's integral inequality (Hardy ez al., 1952)
applied to the averaging of the convex function Tpp(rj ). The inequality

T>Tip (14b)

is more interesting and is likely to generalize to CAs but only for the most
0-symmetrical illumination conditions (e.g., normal if collimated). Using
first principles, Davis (1992) relates (14b) to a very general mechanism of
inhomogeneous radiation transport known as “‘channeling” (Cannon, 1970}
in the astrophysical literature,

The net flux vector F(x) is divergence-free by conservation of radiant
energy. Consequently, flux-lines neither start nor stop inside the medium
but at the upper and lower boundaries respectively. Naturally enough, the
lines are repelled by dense regions and concentrate in tenuous ones, as
illustrated in fig. 3. Channeling is directly traceable to the nonlinear
coupling of the radiation- and density- (or extinction-) fields by the
equations of transfer and the optically thicker the cloud, the stronger the
nonlinearities. In extremely variable, highly correlated media such as
multifractals, channeling will lead to the strong systematic effects observed
in the bulk responses but, most interestingly, it is mediated by net
horizontal fluxes that are of relatively small magnitude in comparison with
their vertical counterparts according to our simulations (thin cloud standard
deviation =15% of T=F,). In situ measurement of these horizontal fluxes
in real cloud will be a challenge but this seems to be a prerequisite il we
wanl to determine the role of channeling in the atmosphere.

Our Monte Carlo approach naturally yields 3rdcr-of -scattering
decompositions of the bulk responses: cumulative T() and 1-R{(®) which
are plotted as a function of log,n in figs. 4a.b for the thinnest and thickest
clouds along with their plane-parallel counterpartc. We notice that the
typical multiplicity of the multfractal’s exiting radiation is smaller than
the homogeneous medium of equal optical mass. This allows us to
anticipate weaker absorption due to the cloud's LW alone in siluations
where @y=<1. However, the smaller n-values are traceable to systematically
enhanced geometrical photon paths (Davis, 1992) which, in tum, will
promote absorption by the well-mixed (homogenecously distributed)
gaseous species, including water vapor. Which will be the net outcome is
unclear for the moment and the answer will of course depend on the model.
These questions are clearly of importance to the cloud “absorption
anomaly” problem in the solar IR (Stephens and Tsay, 1990).

Fig. 5a illustrates R(y) and T(y) for T=12.2 and in fig. 5b we find
the associated “apparent” absorptance field A(y)=1-R(y)-T(y). The range of
A(y) is comparable to that of the observed values compiled by Fouguart er
al. (1990y—expect for the most negative fluctuations (apparent “sources”
cmbedded in the cloud) but this may however be due to the rejection of
values viewed as unrealistic, too “unphysical” (Y. Fouquart, p.c.). Our
average A(y) is of course zero, by conservation, and its true meaning is the
(column-integrated) divergence of the horizontal flux

. 20 FaF, (3F,

(-RW) = (16)-0) = Fylems = - [ Grde= [ T (1)

where the last step makes use of radiant energy conservation (V-F=0). In

Stephens’ (1986) usage of horizontal Fourier transforms in helerogencous

transfer, a “pseudo-source/sink™ radiance lerm, closely related to dF/dy,
naturally appears, siding with extinction, (true} absorption and scaltering.
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Fig. 6 illustrates, in scale invariant fashion, the variability of the
five albedo fields, i.., interpreting eq. (2) as an operational definition of
cg () for R(y)/R (which, like py, is of unit average) for the five media. We
see the gradual narrowing of the singularity spectrum—the field looks more
and more homogeneous—as the cloud thickens ... and behaves less
homogeneously (cf. fig. 2)! Clearly, both the powerful R(y)-smoothing
and the signature of inhomogeneity in R (or 1-T) are boosted by the
enhanced multiplicity of the scattered radiation in the denser clouds (figs.
4ab); the apparent smoothness results directly from the longer photon free
paths. Incidentally, the cg(y)'s in fig. 6 are remarkably similar to those
obtained by Gabriel et al. (1988), given that they study the cumulative
distribution of VIS radiances from GOES, i.e., they obtain only the
ascending branch of cy(Y), as in egs. (4-5).

The internal radiation fields were also obtain«d but for the extreme
values of k only. We refer the reader to Davis et al. (ibid.) for gray-scale
renderings of both complete collections of the DA radiation fields as well
as the density (in fact order of singularity) field. Complete statistical
analyses of the compiled database are under way and will be published
elsewhere. The most spectacular feature of the radiation fields is the strong
degree of anisotropy which is partly due the up/down asymmetric BCs in
(11a), parly due to the persistence of the underlying grid structure in the
discrete cascade, and partly due to a fundamental mathematical aspect of
transfer (somewhat enhanced by the simplistic DA model): we are dealing
with directional derivatives. The J-fields are apparently the only ones
affected by the former and quite natural cause. The second cause is artificial
and affects all the fields but can, in principle be avoided by using CA
transfer and continuous (Schertzer and Lovejoy, 1987) cascades. ig. 7
illustrates the last and most interesting cause with the spatially averaged
power spectra of F; in both y- and z-directions which unsurprisingly scale
very well. More precisely, we have plotted

L L
Ry =g [ Futky2) d2, Fitkp =1 JFutyko) dy (16)

where kj (i=y.z) is the corresponding wavenumber. The exponents are
slightly greater than -1 and -2, i.e., respectively similar to “flicker noise™
and “Brownian motion.” Notice that the DA transfer eq. (10) constrains
dF;/dz (and its opposite, dFy/dy) but not dF,/dy (nor dFy/dz). In more
statistical terms, we expect Fz(y,z) to have small (and apparently
stationary) increments along the z-axis, not necessarily along the y-axis (it
can be arbitrarily irregular). Fig. 7 also underscores yet another realistic
aspect of our simulations since the (upper) F,(k,) cu-ve is representative of
(but less noisy than) the power-spectrum of R&) and that a vast majority
of the published spectra of remotely sensed albedo fields show scaling with
exponents close to -1 (see, e.g., Cahalan and Snider, 1989).

Unsurprisingly, a joint examination of the convergence/divergence
patterns of the (anisotropic but apparently stationary) F,-, F,-, and
associated p-fields shows evidence of large and small scale channeling
events, as sketched in fig. 3. K-fields are rarely small in the thin cloud
rarely large in the thick one, i.e., the diffusion approximation will be poor
in the former case (more akin to broken cloud) more accurate in the latter
case (more akin to a stratus situation). This last finding is in agreement
with the in situ observations of King ef al. (1990) that show the radiance
field to be diffusion-like deep inside real (marine StCu) cloud decks.
However, these authors measure only the vertical component of F (for
purely instrumental reasons) and the IP approximation they apply to reduce
their data to obtain cloud optical thicknesses is therefore not totally
Jjustified and is likely to lead to systematic biases.

5. CONCLUSIONS AND IMPLICATIONS

Having performed extensive numerical simulations of radiative
transfer in a typical multifractal cloud, we find it to share many radiative
features with clouds in Nature. In particular, we find that the power- and
singularity spectra of the albedo field compare favorably with those
observed ﬁom satellite VIS channel imagery of cloudy scenes. The same
can be said of the range found for the “apparent” absorption fields. Using
Preisendorfer's (1976) jargon, we also find that the most apparently
homogeneous models are those that exhibit the greatest differences in
overall (domain-averaged) response when compared to their inherently
homogeneous counterparts; such differences between observed and
homogeneously calculated fluxes have been discussed at length in the
literature. Moreover, since all current GCM radiation parameterizations
assume homogeneity within the cloudy “fraction” of each cell/level,
systematically wrong estimates of the radiative budgets can be expected.

The internal and exiting radiative flux fields show strong evidence of
“channeling,” the basic inhomogeneous transport mechanism that we hold
as responsible for the systematic effects observed in the bulk properties.
Clcser)? related is the severe perturbation that we find in the order-of-
scattering make-up of the cloud's responses. The information on the
multiplicity of the scattering will allow us to anticipate inhomogeneity
effects in the cloud’s (true) absorption properties and, if these last effects

prove to be strong and systemauc, then GCM radiative heating rates will
also be off-target. Finally, we further our argument that, in general,
diffusion theory in multifractal clouds is best viewed as an interesting
transport problem in its own right rather than a valid approximation to
radiative transfer; to what extent this carries over to real clouds is an
important question for future research.
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Cloud model ¢

Fig. 1.

Total transmittancies of an optical density
fleld commensurate with a lognormal cascade
(10 steps, Cl1=0.5)

—&— Tpitau_bar)
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Transmittance

4

01 T
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Fig. 2. Comparison of three different ways of
estimating the bulk DA transmittance

for the five clouds: computational 2D
transfer, semi-analytical “IP" averaging,

Fig. 3. Schematic for radiative “channeling:" (a)
unperturbed fields, (b) around a dense
region, (c) through a tenuous one.
Notice the increased number of flux-lines
(hence total transmittance) in both cases,
this applies to the case of constant total
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(c) for p= 32 (y=C) =0.5).
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Fig. 5. (a) the albedo R(y) and transmittance

T(y) fields for x=2"7,and (b) apparent
absorptance A(y) = 1-[R(y)+T()].
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