
1. Introduction
For forecasts over the weather regime–below the 10  days deterministic predictability limit–Numerical 
Weather Prediction (NWP) and General Circulation Models (GCMs) have been highly successful, yet for 
longer term macroweather (“long range”) forecasts, their skill is disappointing. This has motivated the de-
velopment of stochastic alternatives. Physically based stochastic forecasts require causal models and the 
search for causality typically starts with correlations. In the last years, two stochastic strands have emerged 
each inspired by different sources of strong correlations. A particularly well studied constellation of cor-
relations are associated with large scale spatial structures–teleconnections–as vividly displayed in climate 
networks (eg., Donges et al., 2009b; Ludescher et al., 2014). Teleconnection-inspired forecast models often 
use climate (especially El Niño) indices (see Brown & Caldeira, 2020; Eden et al., 2015). An alternative 
source of correlations upon which to base causal models is the system's long range memory (Blender & 
Fraedrich, 2003; Bunde et al., 2005; Rypdal et al., 2013; Varotsos et al., 2013), a consequence of temporal 
scaling. Temporal scaling is associated with the wide range spatial scaling that is respected by the empirical 
data, the governing equations and hence GCMs (the reviews Lovejoy & Schertzer, 2013; Palmer, 2019).

Abstract Conventional long-range weather prediction is an initial value problem that uses the 
current state of the atmosphere to produce ensemble forecasts. Purely stochastic predictions for long-
memory processes are “past value” problems that use historical data to provide conditional forecasts. 
Teleconnection patterns, defined from cross-correlations, are important for identifying possible dynamical 
interactions, but they do not necessarily imply causation. Using the precise notion of Granger causality, 
we show that for long-range stochastic temperature forecasts, the cross-correlations are only relevant 
at the level of the innovations–not temperatures. This justifies the Stochastic Seasonal to Interannual 
Prediction System (StocSIPS) that is based on a (long memory) fractional Gaussian noise model. Extended 
here to the multivariate case (m-StocSIPS) produces realistic space-time temperature simulations. 
Although it has no Granger causality, emergent properties include realistic teleconnection networks and 
El Niño events and indices.

Plain Language Summary For forecasts less than about 10 days, Numerical Weather 
Prediction (NWP) and General Circulation Models (GCMs) have been highly successful, yet for longer 
ranges, their skill is disappointing. This has motivated the development of alternatives that are based on 
either the strong spatial correlations - teleconnection patterns such El Ni&#x00F1;o events - or on the 
long memories whereby the atmospheric state at any moment is strongly influenced by its own past. In 
particular, a model only using the long memory already rivals GCM monthly and seasonal temperature 
forecasts: The Stochastic Seasonal to Interannual Prediction System (StocSIPS).

In this paper, we answer the question of whether StocSIPS skill can be improved by also using 
teleconnections. We do this by developing the space-time m-StocSIPS model that is optimally forecast 
by StocSIPS. In m-StocSIPS, spatial co-predictors do not improve the skill: There is no causal relation 
between different locations useful for long-range predictions. Although m-StocSIPS has strong spatial 
correlations and reproduces teleconnection patterns including El Ni&#x00F1;o events, they cannot 
be used to improve the long-memory StocSIPS forecasts. The teleconnections &quot; were already 
used&quot; to build the history at every location, which is enough to produce the optimal forecast.
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While GCMs are zero-memory, initial value models based purely on the spatial information at t = 0 (and the 
knowledge of the dynamics), stochastic models based on teleconnections are almost as extreme using only 
data from a few months–they are short (exponential) memory Markovian models. The scaling (power law) 
memory Stochastic Seasonal to Interannual Prediction System (StocSIPS) model is at the opposite extreme 
(Del Rio Amador & Lovejoy, 2019, 2021). For each pixel, it exclusively uses historical past data from that 
pixel to forecast the future without any co-predictors: It is a purely “past value” model. In spite of this ap-
parent deficiency, for monthly, seasonal, and annual temperature forecasts, StocSIPS' skill already rivals–or 
exceeds–those of GCMs.

This paper attempts to answer the obvious question: Is it possible to make a model that combines strong 
spatial correlations and long memory to produce even more skillful forecasts? While it is well known that 
correlations and causality are not synonymous, the precise relationship between the two is often unclear 
and there are no general tools for untangling them. However, the present case is an important exception: 
The problem of improving StocSIPS using spatial co-predictors can be precisely answered by using the the-
oretical framework of Granger causality (Granger, 1969).

Two series are Granger causally related if one can be used as a skillful co-predictor of the other. Therefore, 
it suffices to enquire as to the Granger causality of the space-time StocSIPS model. If the temperature tele-
connections have no Granger causality, then they will not improve StocSIPS forecasts. In the first part of the 
paper we propose a multivariate surface temperature model (m-StocSIPS) for which the uncoupled region-
al StocSIPS model gives the optimal forecast. m-StocSIPS also reproduces the empirical cross-correlation 
structure over a wide range of time lags. This is made more convincing by making simulations that display 
numerous realistic but emergent model properties including spatial teleconnection networks, realistic El 
Niño patterns and indices. The optimal m-StocSIPS predictor at a given location is obtained from its own 
past if the series is long enough. Even series from other locations that are strongly spatially correlated do not 
improve the skill. Teleconnection correlations may therefore be seductive, but having no Granger causality, 
they are misleading.

2. Methods
2.1. Stochastic Modeling of the Temperature Anomalies

Macroweather temperature anomalies at position x (after removing the annual cycle) can be modeled as a 
trend-stationary process:

      , , ,anom anthT x t T x t T x t (1)

where  ,T tx  is a stochastic stationary component and  anth ,T tx  is a deterministic low-frequency response 
to anthropogenic forcings as in (Del Rio Amador & Lovejoy, 2019).

The stationary stochastic  ,T tx , is the zero-mean residual natural variability that includes “internal” var-
iability and the response of the system to other natural forcings (e.g., volcanic and solar). These anomalies 
can be predicted by modeling each position independently using an univariate representation the regional 
StocSIPS model presented in Del Rio Amador and Lovejoy, 2021, hereafter DRAL. However, to investigate 
whether forecasts for individual series can be improved using other data, a multivariate framework is need-
ed. An arbitrary quasi-Gaussian process, stationary in time, but inhomogeneous in space has a multivariate 
continuous-in-time Wold representation (moving average of infinite order MA ()) (Box et al., 2008; Brock-
well & Davis, 1991; Wold, 1938):

      


    
t

i ij j
j

T t t t t dt (2)

The index “i” indicates the spatially discrete position (“pixel”), the matrix  ij t  is a kernel specifying the 
MA process and the innovations,   i t , are normalized Gaussian white noise processes with    0i t , 

  2 1i t  and cross-correlation matrix:
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                 ij i j ijt t t t a t t (3)

where   t  is the Dirac function, 〈∙〉 denotes ensemble averaging and   1 1ija . This “delta-correlated” 
innovation temporal structure implies that the latter are totally unpredictable and is the key property below.

The cross-covariance for time lag Δ 0t  for the temperature is thus:

          


      
0

Δ Δ Δij i j im jn mn
m n

C t T t T t t t t t a dt (4)

hence the cross-correlation is:

   
   


Δ

Δ
0 0
ij

ij
ii jj

C t
R t

C C
 (5)

Since the process is Gaussian with zero mean, it is completely determined by the correlation structure. In 
the macroweather regime–with the possible exception of extremes –  iT t  is nearly Gaussian in time, but 
multifractal in space and the statistics of its fluctuations are scale-invariant over wide ranges (Lovejoy, 2018; 
Lovejoy et al., 2018; Lovejoy & Schertzer, 2013). The scaling behavior in time implies that there are pow-
er-law correlations and hence potentially a large memory that can be exploited. The simplest relevant scal-
ing process is the statistically stationary fractional Gaussian noise (fGn) process. Other Gaussian scaling 
models could be used (such as auto regressive fractionally integrated moving average, ARFIMA, models), 
but they are unnecessarily complex.

The fGn–based StocSIPS model was first developed for monthly and seasonal forecast of globally averaged 
temperature (Del Rio Amador & Lovejoy, 2019; Lovejoy et al., 2015). Recently, DRAL extended StocSIPS to 
the regional prediction of  iT t , where each grid point was considered as an independent time series. This 
univariate representation using a resolution   fGn process (see the supporting information) can be extended 
to the multivariate case with the kernel:

     


    


        

1/21/21
Γ 3 / 2

HH T H ii i i
ij ij

i

c
t t t t

H (6)

where   t  is the Heaviside (step) function, Γ is the Gamma function, Ti is the standard deviation, Hic  is a 
normalization constant, and ij is the Kronecker  .   1,0iH  is the fluctuation exponent that characteriz-
es the scaling of the fluctuations in time (  1iH  is the Hurst parameter, see the discussion after Equation S2 
in the supporting information). The different temperature series,  iT t , are correlated, and the spatial corre-
lation structure is inherited from the innovation cross-correlations, ija . The presence of the Kronecker   in 
Equation 6 implies that the temperature at grid point “i” is an fGn with iH  and Ti.

In DRAL it was shown that the fGn model (Equation 6) is an accurate univariate representation of the 
natural temperature variability for most of the globe. However, in the tropical ocean, the fGn model ap-
proximates the temperature increments, meaning that the actual temperature variability is modeled as a 
fractional Brownian motion (fBm) process with fluctuation exponent   0,1iH  (see Figure 1a), although 
cut-off at multi-annual scales (note that the fBm and fGn fluctuation exponents respect  fBm fGn 1H H ). 
Both cases are high-frequency approximations of the more general fractional relaxation noise (fRn) process, 
introduced in (Lovejoy, 2019; Lovejoy et al., 2021).

The use of a parametric model considerably reduces the number of parameters and clarifies their interpre-
tation. m-StocSIPS is fully determined by the symmetric innovation cross-covariance matrix ija , the ampli-
tudes of the temperature fluctuations Ti , and the memory exponents iH . These characterize the internal 
dynamics; for example low values of Ti over the oceans are a consequence of the greater heat capacity 
and thermal inertia and iH  characterizes the memory associated with the multiscale energy storage mech-
anisms. m-StocSIPS itself has a physical interpretation as a high frequency approximation to the regional 
Fractional Energy Balance Equation (Lovejoy, 2021a, 2021b; Lovejoy et al., 2021).
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m-StocSIPS is defined by   3 / 2N N  parameters; in comparison, a vector autoregressive order m model 
(VAR(m)) needs 2mN  values (Box et al., 2008; Brockwell & Davis, 1991) and for long-memory processes, m 
is large. These “black box” type models suffer from opaque physical interpretations, and the large number 
of VAR parameters makes them unstable and subject to overfitting. The same is true for general vector au-
toregressive-moving average VARMA ( ,m q) models.

Ultimately, the adequacy of a model must be checked. In this case, the diagnostics are primarily based on 
the examination of the whiteness and time-independence of the residual vectors   i t , which are obtained 
by inverting Equation  2 with the estimated parameters. The whiteness was verified in DRAL using the 
theory in Appendix 1 of (Del Rio Amador & Lovejoy, 2019). To verify the time-independence of the innova-
tions (Equation 3), there exist many “goodness-of-fit” tests based on the residual cross-covariance matrices 
at several lags (Ali, 1989; Hosking, 1980; Li & McLeod, 1981; Poskitt & Tremayne, 1982). In our case, they 
are either impractical–the matrices have more than  81.1 10  elements–or impossible since there is only one 
realization of our planet. Nevertheless, a visual inspection of the residual cross-correlation matrices for 
different lags (shown in Figure S2 in the supporting information) may be enough. Our results indicate that 
m-StocSIPS is a good approximation, confirmed in Section 3.3 using global simulations that convincing-
ly reproduce the space-time patterns (Figure  2). Aside from minor numerical approximations, StocSIPS 
predictions presented in DRAL are optimal m-StocSIPS predictions in the minimum mean square error 
framework, explaining the high StocSIPS forecast skill.
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Figure 1. (a) Maximum likelihood estimates of the fluctuation exponent, (h) The grid points forming the pairs used to calculate the average ensemble cross-
correlations (shown in (b)) are marked as: “+” for fGn-fGn, “o” for fGn-fBm and “x” for fBm-fBm. The colors indicate the values of (h) (b) Average cross-
correlations for λ = 0–10 for the Cases 1, 2, and 3 (described in the text), with the corresponding fits from Equations 7–8 (which only apply for λ ≥ 1). We 
also included in dashed red the curve corresponding to higher order corrections for fRn processes. The average cross-correlations for the pairs of innovations 
corresponding to the series selected in Case 1 were included as reference (“∆” symbol). (c) Ratio of Global Influence (RGI) for innovations for λ = 0, 1, and 3. 
(d) RGI for temperature anomalies. The RGI for pixel i was defined as the fraction of the area of the planet for which the cross-correlation |Rij(λ)| > 0.2 for all.
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2.2. Correlation, Causality and Granger Causality

m-StocSIPS uses an fGn model for most of the globe (where  0iH ) and a (truncated) fBm model for 
the tropical ocean (where  0iH ). The cross-correlation structure for the temperature anomalies is thus 
determined by three kinds of interaction: 1) fGn-fGn, 2) fGn-fBm and 3) fBm-fBm. The fGn-fGn cross-corre-
lation can be obtained directly by using Equation 6 in Equation 4, see supporting information Equation S22. 
Similar expressions can be obtained for the other two cases (Coeurjolly et al., 2010).
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Figure 2. (a) Comparison between series of the Oceanic Niño Index (ONI) derived for surface temperature (T2m) as the 3-months running mean of the 
average over the region (5°N–5°S, 170°W–120°W). In the bottom, we show the series computed from reanalysis (labeled as ONI); in the middle, samples from 
three different simulations (marked as Sim. 1–3) and in the top, the index computed from one of the historical runs of the second generation Canadian Earth 
System Model (CanESM2) for the period 1948–2005. (b) Canonical anomaly pattern associated with the El Niño peaks marked in the series in Figure 2(a) for 
each respective case. (c) Ratio of Global Influence (RGI) for the observational reference data set for λ = 0, 1, and 3. (d) RGI for the Simulation 1 data set.
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While fGn is a stationary process and fGn-fGn cross-correlations only depend on the lag Δt, this is not the 
case for fBm. Nevertheless, under some approximations for long enough finite time series, it is possible to 
obtain expressions that only depend on Δt (see Delignières, 2015). The cross-correlations for Δt  (  is 
the temporal resolution of the time series, that is, 1 month) are:

Case 1: fGn-fGn (  0iH  and  0jH ),

    


 ,Δ Δ / H Hi j
ij H H iji jR t a t (7)

Cases 2 and 3: fGn-fBm and fBm-fBm (  0iH  or/and  0jH ),

    
 

  
 

,Δ 1 Δ /
H Hi jij

ij H H ij ri jR t a t (8)

for Δ ij
rt , where  ij

r  is a characteristic relaxation time (Del Rio Amador & Lovejoy, 2021; Lovejoy, 2019; 
Lovejoy et al., 2018), and  ,H Hi j and  ,H Hi j  are proportionality constants that depend on iH  and jH  (see 
Equation 25 in the supporting information). As expected, these expressions coincide with the high-frequen-
cy approximations of the stationary fRn cross-correlations for iH  and jH  (Lovejoy et al., 2021).

Equations 7 and 8 imply that the cross-correlation structure of the temperature field has a spatial correla-
tion component given by the matrix ija , and a temporal component determined by the memory dependence 
of the individual series ( iH  and jH ). In this sense, they are similar, but more general than the average Statis-
tical Space-Time Factorization (SSTF) proposed earlier by (Lovejoy & de Lima, 2015). For a given location i 
and lag Δt, the cross-correlation with any other location j will be higher for series whose past is important 
(large iH ) as compared to series with short memories (small iH ).

Now consider the prediction problem for the general process given by Equation  2. Since the process is 
Gaussian, we use the minimum mean square error framework. Although correlations play an important 
role in the statistical description and in pattern identification, it is wrong to infer causality based on the 
lagged cross-correlation structure alone. In the words of (Buchanan, 2012): “Not only does correlation not 
imply causality, but lack of correlation needn't imply a lack of causality either.” A classic example is two cor-
related systems without any dynamic interaction between them but with a common dependence on a third 
variable. Conversely, there are coupled chaotic systems, that exhibit a complete lack of long-term statistical 
correlation, despite sharing a clear cause-effect link (Sugihara et al., 2012).

An example from (Barnston, 2014; Lyon & Barnston, 2005) may clarify the discussion. They argue that El 
Niño events lead to a cascade of global impacts, for example, to a wet Central Asia. However, in GCM terms, 
a given set of initial conditions is the ultimate cause of both an El Niño and a wet season in Central Asia. 
The chain of events starting from those initial conditions explains the mutual correlations without mutual 
causation. In traditional mechanistic terms, the best that can be done to reconcile the two viewpoints is 
the notion of causal chain (e.g., Bunge, 2017). In this fairly qualitative view, the ultimate cause–the initial 
conditions–triggers a causal chain of events in which El Niño is a “proximate” link leading to a wet season 
in Central Asia.

From a stochastic point of view, (Andree, 2019) argues that a time series (e.g., the temperature at a given 
location) has a memory part depending on its own past and a causal part from the past at other locations. 
For short-memory processes, this causal contribution may be important, explaining how some empirical 
models obtain their skill by effectively borrowing memory from co-predictors. However, the longer the 
memory–the more autoregressive steps that are needed–the lower the influence of the causal component. 
In the limit, all the causal chain for a given time series may be embedded in its own past, so that GCMs and 
StocSIPS exploit a whole chain of causation, not only the last links in the chain so that their skill is higher 
than models that only exploit proximate causes.

The precise tool needed to clarify stochastic causality issues is Granger causality (Granger, 1969). We say 
that the temperature jT  at location j fails to Granger-cause the temperature iT , if for all future times  0t , 
the mean square error (MSE) of a forecast of  iT t  based on its own past (  iT s  for  0s ) is the same as the 
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MSE of a forecast of  iT t  based on both  iT s  and  jT s . The notion of Granger causality is intuitive and 
provides a much more rigorous criterion for causation than simple lagged cross-correlations. While other 
notions of causality exist, Granger causality does imply forecasting ability, which is our only concern here. 
To our knowledge this is the first application of Granger causality to long memory processes.

We now investigate the Granger causality of m-StocSIPS. A necessary and sufficient condition for the op-
timality of an estimator is given by the orthogonality principle (Box et al., 2008; Brockwell & Davis, 1991; 
Hipel & McLeod, 1994; Palma, 2007; Wold, 1938), that states that the error of the optimal predictor (in a 
mean square error sense) is orthogonal to any possible estimator:

      0î iT t E t (9)

where  îT t  is the temperature predictor for position i at a future time  0t  and        ˆ
i i iE t T t T t  is the 

error.

From the integral representation (Equation 2) and given a diagonal kernel  ij t  as in Equation 6, the opti-
mal predictor is:

      


   
0

î ii iT t t t t dt (10)

with error:

          
0

t

i ii iE t t t t dt (11)

Optimality follows by first noting that iE  only depends on future innovations   i t  (   0t ), while the es-
timator,  îT t , depends only on past innovations   i t  (   0t ). Then, since the white noise innovations 
are   -correlated in time (Equation 3), for any ,i j we have:

     0; 0, 0j iT s E t s t (12)

Equation 12 implies that any predictor that is a linear combination of past temperature values from any po-
sition j, is orthogonal to the error of the predictor obtained from the past at location i, given by Equation 10. 
Hence, the predictor (Equation 10) is optimal given the full field  ,T tx  for  0t . This is a precise statement 
of Granger causality for the m-StocSIPS model. Although there are large cross-correlations inherited from 
the innovation matrix ija  (Equations 7 and 8), the information of past temperatures from other locations 
does not help improve the forecast. For StocSIPS predictions, it is the lack of innovation connectivity at 
non-zero lags that implies that the optimal predictor for any given location is obtained from its past. In 
effect, these occasionally strong spatial correlations “were already used” for building the past of any given 
time series, whose past is therefore enough to yield the optimal predictor for that specific series.

3. Results
3.1. Empirical Cross-Correlations

Our analysis were based on monthly, 2.5° resolution surface temperatures (T2m: 73  144 = 10,512 points) 
from 1948 to 2019 (864 months in total) from the National Centers for Environmental Prediction/National 
Center for Atmospheric Research Reanalysis 1 (Kalnay et al., 1996; NCEP/NCAR, 2020).

The validity of the univariate fGn (StocSIPS) model was confirmed in DRAL by testing the whiteness of the 
innovations   i t  for every grid point i, which were obtained by inverting the discrete version of Equation 2 
(see the supporting material). We used the fact that a white noise process is a particular case of fGn with 
fluctuation exponent   1 / 2H . Maximum likelihood estimates for the residuals at 10,512 grid points give 

   0.498 0.003H  and standard deviations   1.000 0.002, which confirms that the innovations are 
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unit variance   -correlated white noise and hence the adequacy of the fGn model for the natural tempera-
ture variability in the univariate case.

To show that the multivariate model is also realistic, we must check that the lagged cross-correlations be-
tween the innovations at different locations are negligible (Equation 3). For this analysis, we obtained the 
lagged cross-correlation matrices involving the 10,512 grid points for the innovations,   Δ ,ij t  and for the 
temperature variability,  ΔijR t , for Δt from 0 to 12 months (see the supporting information, Figure S2). 
While temperature correlations decrease with Δt, in contrast to innovation cross-correlations, large val-
ues may easily be obtained for relatively large lags (Equations 7 and 8). For Δt  0, innovation correla-
tions (   0ij ija ) can be large yet–following the discrete version of the time-independence condition 
Equation 3 – at Δt  1 month, almost all correlation has been lost.

We can also check that Equations 7 and 8 are good approximations to the empirical  ΔijR t . Figure 1a shows 
the results for ensembles with similar ,ij ia H  and jH  values (  0.5 0.025ija  gives 10,490 pairs). Compari-
sons are shown for the three cases (fGn-fGn, fGn-fBm and fBm-fBm):

Case 1: fGn-fGn (marked as “+” in Figure 1a), we chose the series with   0.1 0.025iH  (red symbol) and 
  0.3 0.025jH  (yellow), 380 pairs.

Case 2: fGn-fBm (marked as “o”), the series with   0.1 0.025iH  (purple) and  0.25 0.025jH  (green), 
569 pairs.

Case 3: fBm-fBm (marked as “x”), the series with  0.3 0.025iH  (black) and  0.4 0.025jH  (cyan), 323 
pairs.

Figure 1b shows the average cross-correlations functions of the lag   Δ /t  (  1 month), with fits from 
Equations 7 and 8 (which only apply for   1). For case 1, we included the dashed red curve corresponding 
to higher order corrections for fRn processes (Lovejoy, 2019; Lovejoy et al., 2021). The small values of the 
cross-correlation innovation pairs (“Δ” in the figure) confirm the independence of these series. Although 
the expressions (Equations 7 and 8) are only first order approximations, there is good agreement with the 
empirical values. This supports the model and shows that the correlation structure has an intrinsic spatial 
component proportional to ija , and a temporal, H dependent memory component.

3.2. Ratio of Global Influence

Empirical Orthogonal Functions (EOF) or Principal Component Analysis (PCA) decomposition techniques 
are often used to interpret the lagged cross-correlations (the matrices  ΔijR t , Figure S2). This includes tem-
perature teleconnection patterns, even though–if our model is valid–these have no Granger causality. An al-
ternative to EOF teleconnection analysis is provided by network analysis (Donges et al., 2009a; Steinhaeuser 
et al., 2012; Tsonis, 2018; Tsonis et al., 2006; Yamasaki et al., 2008) based on the zero lag cross-correlations 
that define the area weighted connectivity (AWC).

Since the zero-lag statistics have no causal information, we generalized the AWC to nonzero lags by 
defining the Ratio of Global Influence (RGI). The RGI for pixel i is the fraction of the area of the planet 
for which    0.2ijR , averaged over all j (for innovations     0.2ij ), for zero lags it is equal to 
the AWC. Values below 0.2 (dashed line in Figure 1b) are considered to be of low influence. In climate 
networks, a threshold of 0.5 is typically used for defining connectivity, but innovation correlations–rel-
evant to Granger causality–are much weaker, hence 0.2 was chosen based on their empirical distribu-
tion. Although the exact value or the threshold is relatively arbitrary, the main idea was to illustrate 
the difference in connectivity between the temperature anomalies and the innovations (almost zero) 
for   1.

Figures 1c and 1d shows RGI maps for innovations and temperatures, respectively, for   0, 1 and 3. For the 
innovations, almost all the correlation is lost for   0, in agreement with Equation 3: There is no significant 
influence on future values for any pixel. For   0, we see that the region of largest innovation influence is 
the tropical Pacific where RGI 5%. For temperature anomalies (panel (d)), much larger correlations and 
RGIs are obtained. For   0, almost all the influence from land disappears, but the ocean's influence is 
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preserved up to around 1 year (not shown). Unsurprisingly, the tropical ocean has the largest correlations. 
As we mentioned earlier, this is a consequence of the long memory (large H, Figure 1a).

The orthogonality condition (Equation 12) was derived for infinitely long time series with complete knowl-
edge of the infinite past. However, for finite series, the memory effects will depend on the H values. For a 
fixed, finite length of past data, series with H closer to zero have more past information that can be “bor-
rowed.” In the supporting information, we confirm that there is a small improvement in skill using a co-pre-
dictor series from different locations, but this improvement decreases with the memory, m, and is very small 
when sufficient past data points are used to build the predictor (see Figure S3). For 20 months of past data, 
forecast skill improves by a maximum of 2%, which is roughly the noise level of the skill estimates (see Fig-
ure S6). If only a few memory-steps are used, then the improvement in skill from borrowing memory from 
co-predictors is larger, but in all cases the combined predictor/co-predictor skill is lower than for the single 
long-memory predictor (see Figures S4 and S5).

3.3. Simulations and Emergent Properties

At each pixel, m-StocSIPS has the same statistics as StocSIPS, which DRAL showed to be quite accurate. 
However in addition, m-StocSIPS takes into account the spatial correlations: To be a realistic macroweather 
model it must also reproduce the observed spatial patterns including teleconnection networks (AWC, RGI), 
and El Niño events and indices. As with GCMs, m-StocSIPS does not put these features in “by hand,” they 
are emergent model properties that are notoriously difficult to reproduce and their realism provides strin-
gent quality checks. Using m-StocSIPS simulations (detailed in Sections S2 and S7 of the supporting infor-
mation) we now show that indeed, these emergent properties are well reproduced.

In order to compare StocSIPS space-time statistical structures to reanalysis and to GCM outputs, we pro-
duced simulations with the same resolutions and overall length as our reference NCEP/NCAR Reanalysis 1 
data set (864 months, 2.5° resolution). Although full movies of the model outputs are available (Movie S1), 
here we focus on El Niño events that are particularly difficult to simulate. First consider the Oceanic Niño 
Index (ONI) derived for surface temperature (T2m) as the 3-month running mean of the average over the 
region (5°N–5°S, 170°W–120°W), Figure  2a. The bottom (“ONI”) is a reanalysis series above which are 
samples from three different m-StocSIPS realizations (“Sim.1–3,” middle). The top series is from a historical 
run of the CanESM2 GCM (CCCma, 2020), the ONI was estimated after standard detrending (but without 
variance adjustments).

Except for the larger GCM amplitude, the time series in Figure 2a are difficult to distinguish. Both deter-
ministic and stochastic simulations produce realistic-looking ONI anomaly sequences. More impressive-
ly, the stochastic simulations reproduce huge regional emergent patterns including El Niño and La Niña 
events. In Figure 2b, we see canonical El Niño anomaly patterns corresponding to El Niño peaks marked 
in Figure 2a (see also Figure S11 for map sequences). While the deterministic models explain these events 
as an expression of the dynamics implicit in the governing equations, in the stochastic model they emerge 
spontaneously in this region with large innovation cross-correlations and with series sharing high H values 
(see Figure 1a). These highly persistent series of anomalies spend long periods (from a few months to a 
few years) before changing sign, so eventually they share the same phases and produce El Niño or La Niña 
patterns.

StocSIPS also produces realistic and emergent teleconnections patterns: RGI maps, see Figures 2c and 2d for 
lags   0, 1, and 3. Despite these striking spatial patterns, there is no Granger causality connecting any two 
points: The optimal predictor is obtained from the past of each individual series without any contribution 
from the teleconnection patterns. These strong correlations do not imply any Granger causality.

4. Conclusions
GCM long range forecasting skill is low, and this has stimulated the development of stochastic alternatives 
often inspired by correlations. Two competing approaches have developed, one that primarily exploits tele-
connections (space) with only a short memory in time (Markovian), the other–StocSIPS–that only exploits 
the long memory in time without using any spatial information. While Markovian models are approximate-
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ly initial value problems GCMs are strictly so. In comparison, StocSIPS exploits the system's (scaling) long 
range memory; it is a “past value” model. Although it is tempting to try to improve StocSIPS skill by using 
spatially correlated co-predictors, to be useful the correlations must also be causal.

Untangling correlations and causality is possible thanks to the precise notion of Granger causality. To ap-
ply this, we first extended StocSIPS to the full space-time process, m-StocSIPS, that has identical single 
pixel statistics but that includes pixel-pixel cross-correlations. Although m-StocSIPS's time-lagged tempera-
ture cross-correlations are strong, they are generated by temporally uncorrelated innovations and it has no 
Granger causality. For a given position, past information from other locations cannot be used to improve 
on the forecast obtained as an optimal linear combination of past data: Those correlations “were already 
used.” Whereas the ultimate causation in deterministic models is their initial conditions, the ultimate cause 
in StocSIPS is its white noise innovations.

To make this convincing, we provided a full space-time macroweather model, producing global space-time 
stochastic simulations at one month and 2.5° resolution over 864  months (Movie  S1). Emergent model 
properties include realistic teleconnection networks and El Niño and La Niña events that have both realistic 
spatial warming patterns as well as Oceanic El Niño indices. For real data, only a finite length of the past se-
ries is known, but even in this case, we showed that by exploiting the correlations in the temperature series, 
maximum improvements in skill of only 1%–2% are possible (and this is in the noise).

What then is the status of causal mechanisms such as those linking El Niño events to a wet central Asia 
(Barnston, 2014)? GCMs and StocSIPS provide ultimate causes that eschew such mechanisms. At best, it 
may be argued that ultimate causes initiate a causal chain in which an El Niño could be regarded as a prox-
imate cause, and this proximate cause could presumably be captured in short memory empirical models. 
However, thanks to Granger causality we can now affirm that at best, at a given pixel i, the short memory 
stochastic models (partially) compensate for their under-exploitation of the memory by effectively “bor-
rowing” the memory of particularly strong memory pixels j such as those in the El Niño region. StocSIPS 
obviates the need to borrow memory from pixel j by fully exploiting the memory at pixel i.

Data Availability Statement
Datasets for this research are available in these in-text data citation references (CCCma,  2020; NCEP/
NCAR, 2020).
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