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[1] We use 220 atmospheric profiles from state-of-the-art dropsondes to test the
predictions of multiplicative cascade models of the atmosphere on the horizontal velocity,
pressure, temperature, log potential temperature, log equivalent potential temperature, air
density, humidity, and vertical sonde velocity. We found that the predictions were
accurately verified (to within ±1 to ±2% over 10 m to 1 km for the statistical moments up
to second order); the effective outer cascade scale Leff was in the range 1–30 km. In order
to perform the analyses and to correctly interpret the results, we needed to overcome
technical difficulties caused by the sonde’s highly intermittent sampling. This
intermittency is the result of both data outages and variable sonde fall speeds; we
(surprisingly) found that the outages also had a cascade structure. The wide-range scaling
of the sampling rate implies a variable sonde resolution, so that interpolation onto
regular grids should generally be avoided (e.g., it would give rise to serious artifacts in
estimating the corresponding spectra). In earlier studies, before the cascade nature of
the outages was understood, interpolation was avoided by studying the fluctuations using
all the pairs of measurement points; this was adequate for fluctuation scaling exponents
in the range 0 � H � 1. However, determining the cascade structure involves
systematically degrading the resolution of fluxes (not fluctuations) so that the variable
resolution and their attendant biases could not be avoided. We therefore developed a
new method of estimating the fluxes and theoretically determined the corrections
necessary to estimate the unbiased exponents. The resulting sonde cascade picture was
given further support by (much more straightforward) analysis of uniformly sampled
vertical cross sections of the atmosphere obtained from airborne lidar. Using the turbulent
fluxes obtained from these various sources, we determined the corresponding cascade
regimes and the corresponding exponents as well as the small deviations from the
theoretical behavior. In addition to the fluxes, we also studied the fluctuations. To do
this we generalized the data point pair method (restricted to nonconservation parameters
0 � H � 1) to data triplets (extending the method to 0 � H � 2). The resulting fluctuations
were analyzed using (generalized) structure functions. We found that while the scaling
of the fluxes often broke down at scales greater than about 1 km, the scaling of the
fluctuations extended over the entire range 10 m to 10 km.
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1. Introduction

[2] Over the past 25 years, technological advances have
produced unprecedented quantities of high-quality atmo-
spheric data spanning large ranges of space-time scales. In
the horizontal, satellite data routinely span 4 orders of

magnitude in scale (20,000 km/1 km), whereas in the
vertical, lidars span over three (10 km/3 m). Similarly,
campaigns using in situ aircraft data readily cover up to
4 orders of magnitude in the horizontal (7000 km/100 m)
while dropsondes span over 3 in the vertical (12 km/5 m).
Both remote sensing and in situ measurements have advan-
tages and disadvantages: remote sensing determined radi-
ances are only nontrivially related to the more physically
significant dynamic and thermodynamic variables, whereas
in situ measurements have nontrivial (and nonclassical)
biases due to long-range correlations between the measuring
device and the phenomena measured [Lilley et al., 2008;
Lovejoy et al., 2004, 2009a], or due to the extreme intermit-
tency of data outages (dropsondes; see below).
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[3] In the last 5 years, these state of the art data combined
with modern scale by scale data analysis techniques have
been exploited to firmly establish an atmospheric paradigm
first proposed 25 years ago: that the statistical properties are
scaling in both horizontal and vertical directions but, owing
to scaling stratification, they have systematically different
exponents. For example, the scaling of the radiances (visible,
IR, passive microwave) holds to within about ±1% from
planetary scales down to at least 8 km [Lovejoy et al.,
2008a, 2009a] while in the vertical it holds with comparable
accuracy for the lidar backscatter, but also for the vertical
scaling of the horizontal wind from 10 km down to at least
5 m (Lilley et al. [2008, 2004], Lovejoy et al. [2007, 2008c],
and below). This scaling paradigm can be regarded as a
generalization of the classical turbulence laws of Kolmogorov,
Bolgiano, Corrsin and Obukhov. Whereas the classical laws
were homogeneous and isotropic, the new paradigm shows
that they are highly intermittent (multifractal) and aniso-
tropic; in addition, they can be generalized to account for
turbulence generation of waves; for a systematic overview,
see the series [Lovejoy et al., 2008b; Lilley et al., 2008;
Radkevitch et al., 2008], the recent book [Tuck, 2008] and
the review (S. Lovejoy and D. Schertzer, Towards a new
synthesis for atmospheric dynamics: space-time cascades,
submitted to Atmospheric Research, 2009).
[4] The finding of wide range atmospheric scaling, while

significant in itself, is only a rather general consequence of
the underlying scaling dynamics, which are a priori com-
patible with many different dynamical models. However, in
the atmosphere these wide range anisotropic scaling laws
arise because the dynamics repeat scale after scale in a
cascade-like manner. Although cascades are (still) often
invoked in a vague sense, starting in the 1960s, precise
multiplicative cascade models have been developed as
phenomenological models of fluid turbulence [Novikov
and Stewart, 1964; Yaglom, 1966; Mandelbrot, 1974]. In
the 1980s it became clear that multiplicative cascades were
extremely general, being the generic multifractal process.
If the dynamics are indeed dominated by this mechanism
then one obtains the rather precise prediction that the
turbulent fluxes (8) satisfy the generic multiscaling/
multifractal relation

Mq ¼
l
leff

� �K qð Þ
; l ¼ Lref =L; leff ¼ Lref =Leff ; ð1Þ

where Mq = h8l
qi/h81iq is the normalized (and nondimen-

sionalized) qth moment, Leff is the effective outer scale of
the cascade and L is the resolution at which it is measured/
averaged and ‘‘h i’’ means statistical (ensemble) averaging,
here over all our empirically available realizations. Here
h81i is the ensemble large-scale mean (i.e., the climatolo-
gical value). Lref is a reference scale; in the horizontal it can
conveniently be taken the largest great circle distance on the
Earth (=20,000 km) whereas in the vertical (below) it can be
taken as 10 km (roughly the thickness of the troposphere).
The scale ratio leff is determined empirically.
[5] It is important to realize that multiplicative cascade

models and their prediction (equation (1)) follow from
rather general considerations: essentially (1) that the over
a wide range basic dynamical mechanism has no character-

istic scale, (2) that there exists a scale by scale conserved
flux, and (3) that the dynamics mostly couple structures
which are not too different in scale. The first property is
much more general than the usual ‘‘inertial range’’ (i.e., a
range without sources or sinks of flux); it can apply when
the sources and sinks are themselves scaling (this is pre-
sumably the relevant case in the atmosphere since the
energy-containing short and long wave radiances are scaling
as mentioned above). Furthermore, the scaling need not be
isotropic. This is important if only because the vertical
stratification of the atmosphere prevents it from obeying any
wide range isotropic scaling laws. In contrast, if the scaling
is anisotropic it can hold over huge ranges. In addition, the
usual approaches identify significant fluxes a priori as
informed by isotropic theories. The usual choices are: the
energy flux, the enstrophy flux and the pseudopotential
enstrophy flux; however the resulting predictions (typically
of the value of spectral exponents) are often not obeyed.
However, it turns out that even without knowing the
physical nature of the anisotropic conserved flux 8 we
can still determine its statistics and test the cascade predic-
tion (equation (1))! We may note that these cascades are
highly intermittent in space and time; they involve only
ensemble scale by scale conservation. Finally, cascades do
not preclude ‘‘backscatter’’ of fluxes from small to large
scales.
[6] The significance of these generalizations of the usual

cascade picture has recently been underlined by the direct
verification of equation (1) on numerical models and
reanalyses of the atmosphere (J. Stolle et al., The stochastic
cascade structure of deterministic numerical models of the
atmosphere, submitted to Nonlinear Processes in Geophysics,
2009), and this to very high precision (typically with
deviations < ±1%) over virtually the entire range of simu-
lated scales. In contrast, early classical scaling studies on
essentially the same reanalyses [Strauss and Ditlevsen,
1999], found poor scaling with exponents and behavior
different from those predicted by isotropic theories.
[7] Although all the mainstream turbulence theories are

isotropic (or at least have the same exponents in the
horizontal and vertical directions) it is striking that on the
contrary all the mainstream empirical vertical spectra are
anisotropic: experimentalists invariably find vertical expo-
nents which are different from those in the horizontal. As
reviewed in detail by Lovejoy et al. [2008b] and Lilley et al.
[2008], for the horizontal wind, they almost unanimously
favor roughly k�5/3 spectra in the horizontal and k�3 spectra
in the vertical (k is a wave number [see, e.g., Gardner, 1994;
Gardner et al., 1995, 1993; Dewan, 1997; Dewan and
Good, 1986]). It is significant that the postulated vertical
k�3 spectra are justified by dimensional analysis on the
Brunt-Väissäilä frequency. This is hardly satisfactory since
the latter is not a turbulent flux: even its square is not a
positive definite quantity!
[8] One of the reasons that the vertical exponent 3 seems

at all plausible is that most of the corresponding studies
were based on low (�100–150 m) resolution radiosonde
data (the main exceptions were those of Adelfang [1971],
Van Zandt [1982], Lazarev et al. [1994], and Schertzer and
Lovejoy [1985], which already obtained exponents close to
the more accurate value 2.4 [Lovejoy et al., 2007, 2009b]).
Indeed, while the advent of high vertical resolution drop-
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sondes has demonstrated the existence of hitherto unima-
gined small-scale variability (e.g., ‘‘sheets’’ [Dalaudier et
al., 1994; Muschinski and Wode, 1998]), for the moment, it
has not resulted in a scientific consensus about the statistical
structure of the atmosphere. The purpose of this paper is to
exploit the dropsonde revolution (10 to 30 times the
resolution of radiosondes), to finally come to grips with
the vertical stratification. We will see that a byproduct of
this study is the discovery that sonde outages are a more
serious problem than hitherto recognized (this may explain
why they have not been exploited for this purpose earlier
on), and which requires new data analysis techniques to
handle. By combining these drop analyses with those of
lidar backscatter from aerosols, this paper effectively
extends the above cited horizontal scaling/cascade analyses
to the vertical.
[9] The paper is structured as follows. Section 2 performs

a direct and relatively unproblematic comparison of hori-
zontal and vertical cascade structures using high-resolution
lidar data, and section 3 describes the dropsonde data set
and the outage problem. Section 4 discusses new data
analysis techniques needed to overcome the outage problem
and applies them to the data. In section 5 we conclude.

2. An Intercomparison of Horizontal and Vertical
Atmospheric Cascade Structures Using Lidar
Backscatter

[10] We start our investigation of the vertical cascade
structure by exploiting a unique data set from an airborne
lidar obtained courtesy of K. Strawbridge (Environment
Canada). The data were taken over three afternoons in
August 2002 near Vancouver, British Columbia (see
Radkevitch et al. [2007] for more information on the lidar).
The lidar backscatter is primarily from aerosols; Lilley et al.
[2004] compared the first-order horizontal and vertical
structure functions, and Radkevitch et al. [2007, 2008]
studied the corresponding spectra, including a new aniso-
tropic scaling analysis technique (ASAT) involving nonlin-
ear coordinate transformations. Lilley et al. [2008] provided
a literature review and additional anisotropy analyses in-

cluding of the fluxes estimated from gradients of the
backscatter. The conclusions were broadly that the back-
scatter statistics can be accurately described if the ratio of
horizontal to vertical scaling exponents was Hz � 0.55. In
addition, the scale at which horizontal and vertical fluctua-
tions are of equal magnitude (‘‘the sphero-scale’’) was
directly estimated for the first time (it varied between about
10 and 80 cm). Hz was close to the value 5/9 which is
theoretically predicted assuming that the horizontal statistics
of the wind are dominated by energy fluxes (so that the
Kolmogorov law holds in the horizontal) and that the
vertical statistics are dominated by buoyancy variances
fluxes (so that the Bolgiano-Obukhov law holds in the
vertical [Schertzer and Lovejoy, 1985]).
[11] However a direct intercomparison of the normalized

fluxes Mq (equation (1)) was not given, the horizontal and
vertical external cascade scales were not estimated.
Figures 1a and 1b show the normalized moments of the
horizontal and vertical fluxes respectively. We see that the
cascade structure predicted by equation (1) is well
respected: not only are the lines quite straight, they also
‘‘point’’ to the effective outer scale of the process, i.e., the
scale at which a multiplicative cascade would have to start
in order to account for the statistics over the observed range.
We see that in both cases Leff is a little larger than the
physical scales (�25,000 km and 50 km for the horizontal
and vertical, respectively) indicating that even at the largest
scales there is residual variability, presumably due to the
nonlinear interaction of the observed flux with other atmo-
spheric fluxes at the largest scales. Table 1 shows some of
the parameters characterizing K(q) and shows that they are
indeed quite different for the horizontal and vertical direc-
tions. The parameter C1 = K0(1) characterizes the intermit-
tency of the mean. In addition, we give the multifractal
index a from the ‘‘universal’’ multifractal form

K qð Þ ¼ C1

a� 1
qa � qð Þ; q 
 0; 0 � a � 2: ð2Þ

Figure 1a. Horizontal analysis of the moments of the
normalized lidar backscatter ratio for 10 atmospheric
vertical cross-sections (Lref = 20,000 km corresponding to
l = 1). The curves are for the moments of order q = 0.2,
0.4, . . . 2. The largest directly accessible scale is �100 km,
and the lines converge to an effective outer scale of Leff �
25,000 km.

Figure 1b. The same cross sections as in Figure 1a but
analyzed in the vertical direction, (Lref = 10 km correspond-
ing to l = 1). The largest directly accessible scale is �3 km
and the point of convergence is Leff � 50 km; see Table 1.
Note that the vertical axis is not the same as for the

horizontal analysis: the vertical slopes are different; this is a
consequence of the scaling anisotropy; the exponents are
roughly in a constant ratio.
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To quantify the accuracy, we characterize the deviations by
the mean absolute residuals for the statistical moments Mq

of order q from 0 to 2 for all points between the scale of the
grid and the overall scale (size) of the data set (about 100
times larger),

D ¼ log10 Mq

� �
� K qð Þ log10 l=leff

� ��� ��: ð3Þ

To convert D to a percent deviation, use d = 100(10D�1),
which we find is generally less than ±0.5% (see Table 1 for
the mean d).
[12] Before continuing, we should explain how the fluxes

in Figure 1 were estimated. In a scaling regime, the
fluctuations over a distance Dz in an observed quantity
Dv (consider for example the horizontal component of the
wind) are related to the fluxes 8 by the following general
type of relation:

Dv Dzð Þ ¼ 8DzDzH : ð4Þ

If we take Dv to be the (absolute) fluctuation in the
turbulent velocity (see below) and H = 1/3, 8Dz = eDz

1/3,
where eDz is the energy flux at resolution Dz, then equation
(4) is the real space expression of the Kolmogorov law,
which is the prototypical fluctuation/flux relation. We
therefore see that if we take Dz = h to be the smallest
available lag in the scaling regime at scale ratio L = L/h,
then the flux is 8h = Dv(h)/h H and the normalized flux is:
8h/h8hi = Dv(h)/hDv(h)i. In other words, even without
knowing a priori the physical nature of 8, nor the value of
the exponent H, we can nevertheless estimate the normal-
ized flux at resolution h. In order to estimate the flux at a
lower resolution l > h we simply average it over a set Bl of
scale l (for example an l � l square in 2D, or as below, l � h
thin rectangles with l > > h),

8l ¼ 1

volBl

Z
Bl

8Ldx; volBl ¼
Z
Bl

dx; l ¼ L=l; L ¼ L=h; ð5Þ

where we have indexed the scale of the flux by the scale
ratios l and L rather than the sizes l and h. Note that there is
no unique definition of the fluctuations Dv: they can be
taken as absolute wavelet coefficients, differences or can be
estimated by other means (see section 4.4).

3. Dropsondes

3.1. Description of the Data Set

[13] The lidar data analyzed in section 2 are relatively
straightforward to analyze, being uniformly spaced in
orthogonal directions with high signal-to-noise ratios. How-
ever, if we seek to study the usual dynamic or thermodynamic
variables, we are forced to turn to in situ measurements.
Traditionally over a substantial part of the troposphere,

radiosondes have been the only way to get vertical infor-
mation. However, they have numerous problems including
payloads swinging into and out of the balloon’s wake, low
vertical resolutions (typically of the order of 100 m) and
slow ascent speeds which, in areas of strong downdrafts,
can even temporarily become descents. As mentioned
earlier, these technical difficulties have contributed to
the absence of consensus on the nature of the vertical
stratification.
[14] In the last ten years, the development of GPS

dropsondes has drastically changed this situation [Hock
and Franklin, 1999]. Dropsondes are free of problems with
swinging payloads and wakes and they have rapid descent
times (about 15 min from the top of the troposphere) and,
with the help of GPS tracking, they have high vertical
resolutions (of the order of 5 m, although see the discussion
below). The data discussed here were part of the Winter
Storms 2004 experimental campaign, held in the western
Pacific using the NOAA Gulfstream 4 aircraft. During a 2-
week period, 10 flights each dropped 20–30 sondes (see
Figure 2), a total of 262. Of these, 237 reasonably complete
sets were analyzed by Lovejoy et al. [2007, 2008c]. An
example of meteorological fields estimated by a single
sonde dropped at about 12 km altitude is shown in
Figure 3 (the data were interpolated to a regular 5 m grid).
[15] The main problems with the dropsonde data are from

the frequent data outages (mostly caused by transmission
problems and difficulties getting GPS locking although
there are probably other factors). A lesser problem is the
variable fall speed which when combined with the outages
yield very irregular data sets. Lovejoy et al. [2007] used
special (point pair based) analysis techniques (which
avoided problematic interpolations) to estimate the gra-
dients in the horizontal wind as functions of the thickness
of the atmospheric layer and the altitude (see section 4.4). In
the work by Lovejoy et al. [2008c], where traditional
stability criteria were evaluated, the conclusions about a
fractal hierarchy of unstable layers embedded within stable
layers were substantiated by the frequent use of pairs of
sondes dropped at 0.3 s intervals (corresponding to roughly
30 m apart). Intercomparison of such pairs showed for
example that they agreed to within ±0.014 K in temperature
and ±0.1 m/s in horizontal wind directly giving upper
bounds on the measurement errors.

3.2. Intermittent Multifractal Sampling: The Problem
of Outages

[16] The cascade structure equation (1) is the conse-
quence of variability building up scale by scale over a
potentially large-scale ratio l. In order to uncover the
cascade structure, i.e., to verify equation (1) and to estimate
K(q), we must attempt to invert the cascade process by
systematically degrading the resolution of the fluxes by
averaging. This is straightforward enough for data sampled
at regular intervals (see equation (5)) but for data with
highly irregular resolutions we must take into account the
variability of the resolution. The resolution is variable for
two reasons: first, even if the sampling was at the nominal
0.5 s, the variable vertical sonde fall speed would lead to
variable vertical sampling intervals. This source of variabil-
ity is not too large: the mean vertical sonde velocity
decreases from about 18 m/s to about 9 m/s near the surface

Table 1. Ten Vertical Lidar Cross Sections Backscatter Ratioa

Field Resolution (m) d (%) C1 H a Leff (km)

B vertical 12 � 192 0.4 0.11 0.60 1.82 50
B horizontal 12 � 192 0.5 0.076 0.33 1.83 25,000

aThis shows the cascade parameters estimated here. H and a were
estimated by Lilley et al. [2008, 2004].
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(owing to increased air resistance; see Figure 4) and turbu-
lence induced fluctuations increase this range of resolution
by about another factor of 2. However, the variability
problem is made much worse because of the outages. To see
how serious the problem is we refer the reader to Figure 4,
which shows the comparison of vertical intervals for one of
the simultaneous sonde pairs mentioned above. We see from
Figure 4 that the mean intermeasurement vertical distance
Dz is about 9 m (the data were sampled at a minimum
interval of 0.5 s, on average, every 0.6 s) that there are
several very large outages (the maximum in Figure 4 is
140 m) and that the outages are in fact highly clustered. This
example is quite typical: for our study we chose a subsam-
ple of 220 of the 262 sondes which had over 1000 points
and started above 10 km in altitude; the overall mean
sampling intervals were 0.60 s, 9.29 m. Sonde by sonde,
the mean minimum time interval is 0.5 s and mean mini-
mum vertical interval is 3.70 m. In addition over all
measurements of all of the 220 sondes, 90.5% were sampled
at the design frequency of 0.5 s so that on average the
outages affected less than 10% of the values, although each
sonde had numerous outages. As mentioned below, we also
examined a particularly low outage subsample of 44 sondes,
but even this had essentially the same problems.
[17] To better understand the distribution of outages, we

therefore determined the scaling properties of the time and
distance intervals as function of the number of measure-
ments. In fact, we used the same scaling form as equation (1),

Dt
q
l

� �
¼ lKt qð Þ Dtlh iq;

Dz
q
l

� �
¼ lKz qð Þ Dzlh iq;

ln ¼
N

Dn
; l ¼ ln

leff

; ð6Þ

where Dt(Dn), Dz(Dn) are the temporal and vertical
distances between measurements (indexed with the integers
n) separated by Dn (out of a total of N measurements in all,
e.g., Dt(Dn) = t(n + Dn) � t(n). Equation (6) is simply the
same behavior as equation (1) except that the intervalsDt,Dz
are considered to be the cascade quantities. In this case, there
is no compelling theoretical reason to expect this form,
except that it is presumably the consequence of a hierarchical
scaling outage mechanism and Figures 5a and 5b show
this scaling is remarkably well respected in both time and
space (with outer scales corresponding to�200 s and 3.2 km
respectively). Note that these outer scales are presumably
underestimates of the true outer scale since the sondes with
the most extreme outages (42 out of 262) were not analyzed
(too fewmeasurements or over too thin an atmospheric layer).
We could also note that the intermittency as characterized by
the codimension of themean (equation (2)) is very high:C1t�
0.26, C1z� 0.23 (indeed they are much higher than those of
the fields, see section 4!). Also, using fluctuation analyses
(section 4.4) we found that H � 0.03 ± 0.04 in both time
and space so that the assumption (equation (6)) thatDt,Dz
are conservative cascade quantities (H = 0) is reasonably
well obeyed. (Recall that from equation (4) that if H = 0,
then the mean fluctuation hDvi = h8Dzi = constant, it is
independent of scale Dz, it is ‘‘conserved’’ from one scale
to another).
[18] The direct examination of the probabilities will be

useful in what follows. Consider the probability distribution
of the temporal and spatial increments: Pr(Dt > s), Pr(Dz > s)
at the finest resolution (s is a threshold and ‘‘Pr’’ indicates
‘‘probability.’’ The tails on the distributions are very long,

Figure 2. The position of the dropsondes used in this study. The dots indicate the locations of the drops,
and the lines are the corresponding aircraft trajectories with dates (four digits: mmdd).
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this can be quantified by comparing the distributions with
the algebraic form Pr(D > s) � s�qD where according to
Figure 6a, the exponent qD � 2 which would imply that the
variance does not converge (the multiscale estimate in
Figure 6b indicates that qD is probably a little higher �2.2).
Note that, as indicated, the straight lines in Figures 6a
and 6b are just for reference, they are not regressions.
[19] However, Figure 6a only characterizes the probabil-

ities at a single resolution; in order to obtain a multiscale
characterization, we note that the analysis the probabilities/
histograms is equivalent to the analysis of the statistical
moments of all orders (equation (6)). The corresponding
scaling form of the probabilities for fields obeying the
moment equation (1) is

Pr g0 > g
� �

� l�c gð Þ; g ¼ log8l

logl
; ð7Þ

where ‘‘Pr’’ means ‘‘probability’’ and c is the codimension
function and g is the ‘‘order of singularity’’ and we have
normalized the flux 8l so that h8li = 1. The probability
exponent c(g) is related to the moment scaling exponent
K(q) by the Legendre transform [Parisi and Frisch, 1985],

c gð Þ ¼ max
q

qg � K qð Þð Þ
K qð Þ ¼ max

g
qg � c gð Þð Þ : ð8Þ

This establishes a one to one relationship between
singularities and statistical moments q: c0(g) = q, g = K0(q).
[20] To analyze the biases induced by the outages, it turns

out we will need a characterization of the low orders of
singularities which for multifractal Dt, Dz corresponds to
the finest resolutions. Since the low-order singularities are
fairly tightly bounded below (measurements are no closer

Figure 3. Representative outputs of various fields for sonde 1, 20040229 (yyyymmdd). The units are
velocity (v, m/s), temperature (T, �C), humidity (h, percent), pressure (p, millibars), log potential
temperature (log q, dimensionless), log equivalent potential temperature (log qE, dimensionless), total air
density (r, Kg/m3), vertical air acceleration (a, dimensionless normalized by g, estimated from pressure
gradients), and sonde vertical velocity (ws, m/s).
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than 0.5 s apart), the minimum orders of singularity are
actually quite near zero. We need an estimate of gmin since
this will turn out to be the dominant singularity in the
sampling. Using the finest scale resolution only (as in
Figure 6a), we obtain gmin,t � log (Dtmin/hDti)/logN =
�0.026, gmin,z � log (Dzmin/hDzi)/logN � �0.126 (where
we have used the normalized cascade quantities 8l = Dtmin/
hDti and Dzmin/hDzi). The maximum scale ratio = N is the
total number of measurements; since this varied somewhat
from sonde to sonde, we used the average. In order to get a
multiscale estimate of gmin which is not too sensitive to the
smallest scale, we can use the Legendre relation g = K0(q)
and from Figure 5c graphically find the line which has the
minimum slope: gmin = Min(K0(q)). Doing this, we obtain
Figure 6b and for the vertical distances gmin,z = �0.197
which is smaller than, but close to the previous estimate. In
the time domain, the intervals with no outages (i.e., 0.5 s
temporal resolutions) we have the same gmin,t as above:
�0.026. For the minimum of the intervals with outages we

find gmin,t = 0.187, on a fractal set with c(gmin,t) = 0.196
(i.e., the point at g = �0.026 is an isolated discontinuity in
the c(g) function). We can see from Figure 6b that the c(g)
are almost identical (except for the lowest singularities): this
is another confirmation that the main intermittency is caused
by the outages and not by the variable fall speeds. In Figure
6b we added the bisectrix (the line at 45�) because this line
is tangent to the c(g) at the point C1 (i.e., c(C1) = C1 and
c0(C1) = 1; see Table 1). Since universal multifractals have
gmin � � C1, we see that these cannot be particularly well
approximated by universal multifractals so that we did not
estimate the universal parameter a.

4. Data Analysis

4.1. Estimating the Fluxes From Highly Intermittent
Data

[21] In spite of the high intermittency of the outages, we
mentioned that over 90% of the data were sampled at the high
design rate of 0.5 s so that we anticipate the corrections may
not be too large. Before describing how to statistically correct
for the multifractality of the outages, we first demonstrate a
robust technique for estimating the fluxes. To do this, we
recall the discussion in section 2 that in a scaling regime for a
field v, the fluxes are related to the fluctuations asDv(l) =8ll

H.
With regularly spaced data, the usual way to estimate the flux
is to degrade it starting from the highest resolution in the
scaling regime (so that the above law holds), and estimate the
fluctuations at the finest scale (e.g., by absolute first differ-
ences or by absolute wavelet coefficients). The result is the
flux at the finest resolution; one then degrades the result by
averaging over larger and larger scales (smaller and smaller l,
equation (5)). However, we can also estimate the fluctuations
from the local derivatives, for example (for uniformly spaced
data) for the nth flux estimate, we can use the data at the (n�
1)th and (n + 1)th points to yield a ‘‘centered difference’’
estimate

Dvl znð Þ � dv znð Þ
dz

����
����
l

l � snl; sn ¼
v znþ1ð Þ � v zn�1ð Þ

znþ1 � zn�1

����
����; ð9Þ

Figure 4. Intercomparison of vertical sampling intervals
of two (near) simultaneous sondes (red and blue). Notice the
strong (and typical) clustering of the outages. The mean Dz
is larger at high altitudes owing to the lower air resistance.

Figure 5a. Intermittency of the temporal sampling intervals: for the 220 sondes with N > 1000 which
were dropped from z > 10 km. The lines correspond to the moments q = 0, 0.2, . . . 2. The lines converge
to the outer scale of about 200 s and the scaling is well respected up to �50 s.
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where sn is the local absolute slope. Since we saw that in the
scaling regime the normalized flux is 8l = Dv(l)/hDv(l)i we
therefore have the estimate 8l = s/hsi. In order to generalize
this to intermittent locations zn, we can simply include the
point zn and estimate sn by a linear regression of the point
triplets: {(zn� 1, v(zn� 1)), (zn, v(zn)), (zn + 1, v(zn + 1))}. This
method has the advantage of not being too sensitive to the
noise in either the data (v) nor the position estimates (z)
(these factors were found to make interpolations unreliable
for derivative estimates; similarly estimates of spectra
obtained from interpolated series contain serious artifacts
of the interpolation technique). The resulting series of sn
values determined at the irregular locations zn can then be
interpolated at uniform intervals. The (normalized) slopes
themselves can be used as estimates of the normalized
fluxes (8l = s/hsi) as long as one recognizes that their
resolutions are not fixed so that the regularly sampled
values obtained from the interpolated s series can be
systematically degraded as discussed in section 2 to obtain
a series of lower and lower resolution flux estimates. The
last step discussed below is to statistically correct the
result for this variable resolution effect.
[22] To see how this method works we determined the

fluxes for the simultaneous sonde pair analyzed in Figure 4.
The results for the main dynamic and thermodynamic fields
are shown in Figure 7a. We can see that the estimates for the
two sondes are very similar (the curves are mostly indistin-
guishable) even though as Figure 4 shows, the outages were
significantly different. In Figure 7b, we blow up a partic-
ularly intermittent section, which shows both the enormous
variability of the fluxes (especially the humidity and equiv-
alent potential temperature) and that with this method it is
well reproduced by the two sondes. Finally, in Figure 7c we
examine a section of the data that was particularly poorly
sampled by the sondes (see Figure 4): we see that even here
the two sondes give fairly similar flux estimates although at
different resolutions.

4.2. Statistically Correcting for the Outages

[23] We now develop some simple theory to show how
the statistics of the fluxes with variable resolutions can be
statistically corrected for the multifractal intermittency of
the resolutions. Since we will see that the corrections do not
qualitatively change our empirical results (and are not so
large), those who are interested in results can skip to the
next subsection.
[24] Let us assume that equation (6) for the outages is

correct (i.e., that they are indeed multifractal), we will only
consider the results with respect to the scaling in the
vertical, but the same formalism would apply for the
temporal scaling. In this case, applying equation (7) we
find that the probability distributions at resolutions ln, lz
are

Pr gn > sð Þ � l�cz gzð Þ
n

Pr g > sð Þ � l�c gð Þ
z

; ð10Þ

Figure 5b. The intermittency of the vertical sampling interval corresponding to Figure 5a. The lines
correspond to the moments, the outer scale is about 3 km, and the scaling is well respected up to �1 km.

Figure 5c. The exponents K(q) of the sampling intervals
(from the slopes in Figure 5a and 5b). Black is K(q) for z,
and pink is for t.
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where gz is the random singularity of the intermeasurement
distance Dz with respect to the number of measurements,
and g is the random singularity of the flux of interest with
respect to the vertical distance Dz and the cz, c are the
corresponding codimension functions

Dz ¼ lgn
n Dzh i; ln ¼ N

Dn
¼ L

Dzh i
8lz

¼ lg
z ; lz ¼ L

Dz

; ð11Þ

where we have assumed that the flux 8 has been normal-
ized: h8i = 1. cz(gz) is the codimension function (given by
Legendre transform from Kz(q) in equation (8)), N is the
total number of measurements in the series and Dn is the
(integer) number of measurements taken over a given layer
thickness Dz. Given that the empirical flux follows the
multiscaling equation (1), then we must take into account
the variable vertical resolution (lz) via

lz ¼
L

Dz
¼ L

lgz
n Dzh i ¼ l1�gz

n : ð12Þ

This shows how the random outage singularity gz affects the
vertical resolution lz. Substituting lz and 8lz into equation
(1), and averaging over the flux singularities g at a fixed gz,

8q
lz

D E
gz
¼ l 1�gzð Þqg

n

D E
gz
¼ lK8 1�gzð Þqð Þ

n ð13Þ

(the subscript ‘‘gz’’ on the statistical average means that the
average is only over g, i.e., conditional on gz). If we now
average over the gz variability, we can define the
‘‘effective’’ moment scaling function K8,eff(q),

8q
lz

D E
¼ lK8;eff qð Þ

z ¼
Z

8q
lz

D E
gz
p gzð Þdgz

¼
Z

lK8 1�gzð Þqð Þ
n l�cz gzð Þ

n dgz; ð14Þ

where we have used the fact that the probability density of
gz (obtained by differentiation of the distribution Pr,

equation (10)) is p(gz) � ln
�cz(gz) where ‘‘�’’ indicates ‘‘to

within slowly varying factors’’ (i.e., logarithms) and h8lz

qi =
lz
K8(q). Using the standard saddle point method for

evaluating asymptotic approximations to integrals of the
above type (valid for large log lz), we obtain

K8;eff qð Þ ¼ Max
gz

K8 q 1� gzð Þð Þ � cz gzð Þ
� �

: ð15Þ

To find the maximum of the expression in equation (15) we
now use the fact that c is an increasing function with
Min(c) = 0, and for all q > q0 with q0 < 1, K8(q) is also
increasing (actually for all the universal multifractals q0 < 1/
2). Start by considering large q; decreasing gz will therefore
increase K and decrease c hence to maximize equation (15),
gz must be decreased to its minimum possible value (which
here is slightly below 0); this is valid at least for all q > q0/
(1�gmin,z) and is a good approximation even for q < q0/(1 �
gmin,z). With gmin,z < 0 and q0 < 1/2, this argument is valid
for most of the interesting range of q. It implies

K8;eff qð Þ ¼ K8 q 1� gmin;z

� �� �
; q > q0= 1� gmin;z

� �
: ð16Þ

Since the minimum of K is usually small, this argument may
actually be valid over the entire range of q, although the
range of equation (16) is adequate for our purposes. Since
cn(gmin,z) = 0, the dominance of gmin,z corresponds to the
most probable line filling singularity. The other singula-
rities, which have cz(gz) > 0, correspond to sparse fractal
subsets of the sampling space.
[25] If in addition, 8 is a universal multifractal, index a

then the normalized K8,eff (obtained by 8 ! 8/h8i hence
K(q) ! K(q) � qK(1)) will be given by

K8;eff qð Þ ¼ 1� gmin;z

� �a
K8 qð Þ � 1� agmin;z

� �
K8 qð Þ ð17Þ

(the binomial approximation on the far right is valid for
small |gmin,z|). In the above we have seen empirically that

Figure 6a. The cumulative probability distribution of the
temporal increments Dt (blue, units, second), and layer
thickness Dz (pink) for 220 sondes at the finest measure-
ment scale (i.e., the Dt, Dz between consecutive measure-
ments). The reference lines have slopes of �2.

Figure 6b. The codimension function c(g) of the sampling
intervals obtained by Legendre transform of Figure 5c.
Black is for z, and pink for t. The reference lines are x = y
(purple), and the asymptote (blue) with slope 2.2. The
former is tangent to c(g) at g = c(g) = C1, and the latter is an
estimate of the critical moment of divergence qD.
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gmin,z = �0.197, so that we get a boost for K8 (and hence
C1) of a factor �1.39 (assuming a = 1.8) implying (as
expected) an increase in the intermittency.
[26] In order to test this correction factor, we made 220

multifractal simulations of the horizontal wind with the
parametersC1 = 0.05,a = 1.8,H = 0.6,l = 214 (corresponding

for example to an outer scale of about 16 km and 1 m
resolution). We then used the empirically observed z coor-
dinates from the 220 sondes to intermittently resample these
simulated wind fields and applied the regression based
algorithm discussed above to estimate the fluxes. The result
is shown in Figure 8. One can see that the theoretically
predicted cascade behavior is well respected except at the
smallest scales (deviations are mostly over roughly a range
of factor 2–3). The outer scale is close to 16 km as in the
model and the C1 is 0.067 which is very close to that
predicted by equation (17): 0.05 (1 + 0.197)1.8 = 0.069 (i.e.,
using gmin,z = �0.197).

4.3. Flux Analyses

[27] We now turn to the analysis of the sondes. The
quantities that we analyzed can be roughly grouped into
two categories: dynamical and thermodynamical variables.
The dynamic variables (Figure 9a) were the modulus of the
horizontal wind v, the pressure p, the total air density (r,
including that due to humidity), and the sonde vertical
velocity ws. We also separately analyzed the north–south
and east–west components of the horizontal wind but the
results were not much different and we will not discuss
them further. For the vertical sonde velocity, the fluctuations
around a quadratic fit (corresponding to a constant deceler-
ation from 18 m/s to 9 m/s) were used. Owing to the
parachute drag, the fluctuations in ws depends on both the
vertical and horizontal wind so that it should not be used as
a surrogate for the vertical wind.
[28] The thermodynamic variables are temperature (T),

log potential temperature (logq), log equivalent potential
temperature (logqE) and humidity (h); see Figure 9b. The
logq and logqE are proportional to the entropy densities of
the dry and humid air respectively. In addition, their
structure is important for the overall atmospheric (static)

Figure 7a. Intercomparison of normalized (and hence
nondimensional) fluxes from a simultaneous sonde pair. For
each field, the profiles are so close as to be nearly
indistinguishable. The acceleration was not analyzed since
the noise was too large.

Figure 7b. Detail of Figure 7a showing that fluxes even
from very intermittent layers can be well reproduced from
sonde to sonde.

Figure 7c. Intercomparison of normalized flux estimates
from the two sondes for a particularly poorly sampled
section from Figure 7a.
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stabilities, for example gdlogq/dz is the square of the Brunt-
Väisälä frequency so that where the latter is negative, the
atmosphere is considered conditionally unstable, it is con-
vectively unstable when gdlogq E/dz is negative.
[29] From Figures 9a and 9b we can see that with small

deviations (see Tables 2a and 2b) all the fields have small
residuals with respect to the predictions of cascade theories
(equation (1); the residuals were averaged over the range
1 km to 10 m).
[30] The parameter H was estimated from (‘‘generalized,’’

qth order) structure functions Sq(Dz),

Sq Dzð Þ ¼ Dv Dzð Þqh i � Dzx qð Þ; x qð Þ ¼ qH � K qð Þ; ð18Þ

where the fluctuation Dv was estimated using pairs (H < 1)
and triplets (H > 1) of measurements described in section
4.4; x(q) is the structure function exponent; the relation
equation (18) with the flux exponent K(q) and the noncon-
servation parameter H is obtained using equations 1, 4; and
a was estimated to the nearest 0.05 using the ‘‘double trace
moment technique’’ which involves repeating the cascade
analysis but with the flux at the finest resolution raised to a
series of different powers [Lavallée et al., 1993]. All the
regressions were taken over range 1.5 < log10 l < 3 with l
defined as the ratio of the reference-scale 10 km to the
resolution scale (i.e., corresponding to 300 m to 10 m). Also
shown are estimates of the parameters C1 and leff taken
from the lowest 4 km and the highest 4 km only.

Figure 8. Analysis of a simulated multifractal field with
parameters (H = 0.6, C1 = 0.05, a = 1.8, outer scale �
16 km) using empirically observed intermittent z coordi-
nates (the moments of the interpolated fields were estimated
using the regression method). The empirical C1 = 0.067 is
close to the theoretically predicted value 0.05 (1 +
0.198)1.8 = 0.069. The moments are q = 0, 0.2, 0.4 . . . 2.

Figure 9a. The dynamical fields (left to right, top to bottom) v, p, r, and ws, for q = 0.2, 0.4, . . . 2.
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[31] The difference in C1 between high- and low-altitude
regions is about 0.04 in all cases except for h and log qE
(where they are about same). In all cases the outer scale of
the high-altitude data is larger than the outer scale of the
low-altitude data by about a factor 2 (except for log qE and
r). Also the outer scales of the 4-km-thick subsamples are
typically smaller than those of the total (10 km) thick layer
(which combines the variability of both). For a fixed scale,
and for fixed exponents, a larger outer scale means larger l,
hence larger variability so that the overall increase of
variability with increasing altitude is a combination of
increased exponents (larger C1 hence K(q)), and larger outer
scales. In the case of the horizontal wind whose fluctuations
were studied in detail by Lovejoy et al. [2007] at system-
atically increasingly altitudes, we can compare them with
the current results (see also Figure 10a). It was found that
the value of C1 � 0.04 ± 0.02 and was nearly altitude

independent (the standard deviation is the typical sonde to
sonde spread in the estimates) with H increasing from 0.60
near the surface to 0.77 at 12 km. The value of a was
roughly 1.7 ± 0.2 with a slight tend to decrease with
altitude. We can see that these values are fairly close to
those in Tables 2a and 2b (see in particular the corrected
C1 � 0.07).
[32] Two comments are in order. First, we see that in

some cases (notably the pressure, Figure 9a, top right), the
scaling of the fluxes is not so good. However, there are
several factors that may contribute to this. For example, in
the case of pressure, the variability is quite small (all the
axes in Figures 9a and 9b are identical in order to facilitate
intercomparisons) so that the relative importance of statis-
tical noise (due to inadequate sample size, data quality) is
more important relative to the signal. Also, the deviations
from the scaling are actually still fairly small (see Tables 2a

Figure 9b. The same as Figure 9a except for the thermodynamic fields (left to right, top to bottom) T,
log q, h, and log qE.

Table 2a. The 220 Vertical Sondes: Characteristics of the Dynamical Fieldsa

Field �(%) C1,eff C1,eff < 4 km C1,eff > 6 km C1 C1,fluc H a Log10leff Log10leff < 4 km Log10leff > 6 km

v 2.3 0.100 0.078 0.121 0.071 0.023 ± 0.016 0.75 ± 0.05 1.90 0.9 1.1 0.9
p 1.1 0.045 0.050 0.099 0.032 0.043 ± 0.032 1.95 ± 0.02 1.85 �0.1 1.5 1.4
r 1.4 0.093 0.072 0.105 0.065 0.123 ± 0.103 1.31 ± 0.12 1.95 �0.1 0.9 1.2
ws 1.6 0.092 0.081 0.099 0.064 0.041 ± 0.027 0.68 ± 0.01 2.00 0.5 0.1 0.5
aThe estimates of the basic cascade parameters, for the dynamic variables; those in bold are directly estimated from the graphs in Figure 9a. The C1,fluc

and H are from the fluctuation analysis (section 4.4) and are the means of the fits from 30–300 m and 300–3000 m; the spread is half the difference. The
column C1 is estimated from the equation (17), which corrects for the multifractal outages. The scale ratio l was defined with respect to 10 km.
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and 2b; ±1.1% here); in section 4.4 we see that the scaling
of the fluctuations (rather than the fluxes) of the same
quantity is in fact excellent, and over a significantly wider
range. This brings us to our second point: in many cases the
outer scale of the fluxes is quite a bit less than the
atmospheric-scale height/troposphere thickness (roughly
8 and 12 km, respectively). However, even in cases such
as the horizontal wind where the outer scale of the fluxes
is �1.3 km, we see that the scaling of the fluctuations
(Figures 10a and 10b) is excellent right through the largest
available scales (10 km).
[33] Finally, we should also mention that an attempt was

made to avoid the outage problem by selecting only sondes
whose maximum outage was less than 3 s long; there were
44 of the previous 220 sondes which satisfied this low-
outage criterion. However, although shorter in duration, the
outages were still very frequent and highly clustered so that
the measurements were still very irregular. When the
analyses were performed, it was found that they were not

very different from the full analyses above and generally the
parameter estimates were not too different (the C1 values
were all within ±0.02 of the values in Tables 2a and 2b
except for the wind which was 0.05 smaller). The differ-
ences can probably be accounted for by the much smaller
sample size.

4.4. Fluctuation Analyses: Data Point Pairs and
Triplets

[34] The cascades analyses are important because they
give direct evidence on the cascade structure of the atmo-
sphere in the vertical, they yield direct estimates of the outer
cascade scale, and they give relatively reliable estimates of
the statistical exponents characterizing the fluxes, in partic-
ular the mean intermittency exponent C1. However, they do
not give a full characterization of the field since they do not
estimate the nonconservation exponent H which character-
izes how far the fluctuations are from the scale by scale
conserved fluxes analyzed in the previous section. Lovejoy

Table 2b. The 220 Vertical Sondes: Characteristics of the Thermodynamic Fieldsa

Field � (%) C1,eff C1,eff < 4 km C1,eff > 6 km C1 C1,fluc H a Log10leff Log10leff < 4 km Log10leff > 6 km

T 1.4 0.067 0.0565 0.099 0.049 0.066 ± 0.038 1.07 ± 0.18 1.70 0.3 1.2 1.2
h 1.4 0.144 0.130 0.125 0.103 0.144 ± 0.028 0.78 ± 0.07 1.85 �0.2 0.5 0.
Log� 1.2 0.065 0.057 0.097 0.046 0.051 ± 0.027 1.07 ± 0.18 1.90 0.4 1.2 1.2
Log�E 1.9 0.145 0.115 0.091 0.102 0.140 ± 0.101 0.87 ± 0.10 1.95 �0.4 0.4 0.8

aThe estimates corresponding to Table 2a but for the thermodynamic variables (Figure 9b).

Figure 10a. Nondimensionalized dynamic variables, moments of the fluctuations Dv; S(Dz) =
<Dv(Dz)q>. Top to bottom, left to right: v, p, r, ws. Moments q = 0.2, 0.6, 1, 1.4, 1.8.
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et al. [2007] estimated the H parameter for the horizontal
velocity field by defining the fluctuation Dv(Dz) as the
difference between the velocity at two vertical levels
(indexed by n, m) separated by altitude Dz,

Dv Dzð Þ ¼ v znð Þ � v zmð Þj j; Dz ¼ zn � zmj j: ð19Þ

By examining all the N(N � 1)/2 observation pairs they
avoided interpolations and obtained a robust estimate of the
fluctuation statistics. To confirm that the estimates are
reliable even in the presence of multifractal outages, we
refer the reader to Figure 11a which uses multifractal
simulations for a field with C1 = 0.05, H = 0.6 combined
with the observed z profiles as discussed in section 4.3.
From Figure 11a, we see that the scaling is indeed well
respected and we recover quite accurately the theoretical
parameters: C1 = 0.052, H = 0.606. We conclude that the
pair method is quite robust even in the presence of large
intermittency in the measurements.
[35] Before using the method on the sonde data, we must

discuss a technical difficulty. Defining fluctuations as differ-
ences is equivalent to using a ‘‘poor man’s wavelet’’ and is
only valid for 0 < H < 1. Since the temperature, pressure and
potential temperatures are known to be nearly linear with
Dz (for the temperature, this is the classical linear adiabatic
temperature profile), we must define fluctuations in a way
that is valid over a wider range of H values. The basic trick

for doing this is to use the differences in the differences (i.e.,
the second differences). Consider first the case where the zn
are evenly spaced (the subscripts are the integer indexes of
the measurements) the second centered difference is

Dv Dzð Þ ¼ v znþmð Þ þ v zn�mð Þ
2

� v znð Þ
����

����;
Dz ¼ znþm � zn ¼ zn � zn�m ð20Þ

(we have divided by 2 since we will only be interested in the
scaling properties of the result). Graphically, this definition
is equivalent to finding the distance between the point (zn,
v(zn)) and the line joining the points (zn+m, v(zn+m)), (zn�m,
v(zn�m)). To obtain a fluctuation estimate valid for
intermittently spaced zn, we can simply use the graphical
definition (the distance from the line) to obtain the
following estimate:

Dv Dzð Þ ¼ v zn�mð Þ þ zn � zn�mð Þs� v znð Þj j;

s ¼ v znþmð Þ � v zn�mð Þ
znþm � zn�m

; Dz ¼ zn � zn�mð Þ znþm � znð Þð Þ1=2:

ð21Þ

[36] Since now there are three points needed to define the
fluctuation, there is not a unique choice of Dz with which to

Figure 10b. Same as Figure 10a but for the thermodynamic variables, fluctuation analysis. Top to
bottom, left to right: T, log q, h, log qE. Moments q = 0.2, 0.6, 1, 1.4, 1.8.
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associate the fluctuation. The above choice (the geometric
mean) evenly weights the logarithm of the scales and is
appropriate for scaling fluctuations. In order to implement
this definition it is usually not possible to consider all the
triplets of points (this is of order N3 for series of length N).
Our choice was based on the fact that the outages affected
only 9.5% of the points so that we considered only the
triplets with altitudes zn�m, zn, zn+m and for each scale we
considered all the integer pairs n, m. Note that this choice
along with the use of the geometric mean for Dz means that
there will be few statistics for the largest factor of 2 in scale.
Also, since most of the points are regularly spaced, zn�zn�m

is typically not so different from zn�zn+m so that the
definition does not ‘‘mix’’ different scales too much. To
test the technique, we applied to multifractal simulations
with C1 = 0.05, H = 1.5 again using the observed and highly
intermittent z coordinates. Figure 11b shows the result:
again the scaling is excellent and the theoretical parameters
are recovered quite accurately: the recovered parameters
are: C1 = 0.056, H = 1.46.
[37] We may now apply the fluctuation analyses to the

atmospheric fields whose fluxes were analyzed above.
Using definition equation (19) of the fluctuations the results
for the qth order statistical moments (the ‘‘generalized
structure functions’’ see equation (18)) for the fluctuations
the dynamic fields, for the thermodynamic fields are shown
in Figures 10a and Figure 10b, respectively. They have been
nondimensionalized by dividing by the value Dv(Dz) for
Dz = 10 m although there is no expectation that the lines
converge to a point as for the moments of the fluxes. In
Figures 9a and 9b, we used definition equation (19) for the
fluctuations of v, h, ws (since H < 1) and definition equation
(21) for p, log q, log qE, r, T (since H is near 1 or larger). In
the case of the pressure, we see that H � 2 so that we should
perhaps generalize the definition of fluctuations further so
as to obtain a result valid for H < 3.
[38] From Figures 10a and 10b, the linearity of the log

fluctuation moments versus log Dz is quite striking; indeed,
it apparently extends to somewhat larger scales than the
scaling of the fluxes shown in Figures 9a and 9b. In order to
assess both the quality of the scaling and to intercompare

the scaling of the different fields we refer the reader to
Tables 2a and 2b, where we have calculated the exponent
H = x(1) from the mean of the exponents calculated forDz <
300 m and Dz > 300 m (300 m is the geometric mean of the
observed range 10 m to 10 km). The range indicated by the
‘‘±’’ is half the difference. If the spread indicated in this way
is small then the scaling is well respected over the whole
range; we see that the H values for p, ws are particularly
well defined whereas for T, log q it is less so. Unlike the
cascade analyses of the fluxes, the scaling seems to hold
reasonably well over the entire range. In addition, here we
made no attempt to investigate the altitude dependence of
the exponents which although fairly small, can be system-
atic and are the subject of work by S. J. Hovde et al.
(Vertical scaling of the atmosphere dropsondes from 13 km
to the surface, submitted to Quarterly Journal of the Royal
Meteorological Society, 2009). For example, Lovejoy et al.
[2007], for the horizontal wind, found that the exponent H
systematically increased from 0.60 near the surface (the
theoretical Bolgiano-Obukhov value) to �0.77 at 12 km.
The small altitude dependence of the exponents is partially
responsible for the imperfect scaling since the thickest
layers necessarily involve points at high altitudes.
[39] In principle we can estimate C1 and a from the

fluctuation exponent x(q) (as in work by Lovejoy et al.
[2007]). To do this we can exploit the equation x(q) = qH �
K(q) so that x0(1) = H � C1 hence C1 = x(1) � x0(1).
However, for these fields, H is much larger than C1; indeed,
it is often the order of the error in the estimates of H, hence
the C1 estimates should not be too accurate. In work by
Lovejoy et al. [2007], the C1 estimates determined this way
were more robust since the exponents were calculated
altitude by altitude so that the scaling was better and the
errors smaller. In contrast, the fluxes do not depend on H so
that they can be used to directly estimate K(q) and hence C1;
we therefore consider the flux-based estimate of C1 to be
more accurate.

5. Conclusions

[40] The nature of the vertical stratification is an out-
standing problem in atmospheric science: its characteriza-

Figure 11a. Simulation with C1 = 0.05, H = 0.6 pair
method. The parameters recovered using the pair method to
determine Dv is C1 = 0.052, H = 0.606. Moments q = 0.2,
0.6, 1, 1.4, 1.8.

Figure 11b. Simulation with C1 = 0.05, H = 1.5 showing
triplet method for fluctuations with H > 1. The recovered
parameters are: C1 = 0.056, H = 1.46.
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tion has been the subject of numerous theories of dynamical
meteorology and its numerical modeling the subject of a
series of problematic approximations. Since the 1980s we
have argued that the fluctuations of each atmospheric field
are scaling but with different exponents in the horizontal
and vertical so that the stratification is differential (i.e., scale
dependent); it emerges as a consequence of scaling. From
the beginning the scaling was postulated to be the result of
multiplicative cascade processes concentrating conserved
turbulent fluxes scale by scale into smaller and smaller
regions of space. However, it has only been recently that the
quantitative predictions of these cascade theories have been
directly verified in the horizontal at the largest (planetary)
scales using large satellite radiance data sets. In addition,
analysis of numerical models of the atmosphere (including
reanalyses) show that they accurately follow a cascade
structure with outer scale typically a bit larger than
20,000 km and scaling accurately holding up to about
5000 km (J. Stolle et al., The stochastic cascade structure
of deterministic numerical models of the atmosphere, sub-
mitted to Nonlinear Processes in Geophysics, 2009). How-
ever, the models have very unevenly spaced vertical levels,
with high resolutions only near the ground, so that it is
nontrivial to study their vertical cascade structures (and
these are likely to be quite dependent on the type of
numerical approximation used: hydrostatic, anelastic etc.).
[41] In this paper we have attempted to directly confirm

the existence of cascade structures in the vertical. We first
demonstrated this with a reanalysis of vertical cross sections
from lidar pollutant backscatter where we estimated the
outer scale of the cascade in the horizontal to be
�25,000 km and �50 km in the vertical and with different
horizontal and vertical exponents. Unfortunately, the key
dynamical and thermodynamical meteorological fields can-
not be directly remotely sensed; in situ data are necessary.
We therefore took advantage of advances in state of the art
dropsondes and considered a set with over 200 sondes over
the Pacific Ocean. Although the sondes have nominal
resolutions of 0.5 s (corresponding to about 5–10 m in
the vertical), they have such frequent outages that the
intervals between measurements (in both time and in the
vertical) were highly intermittent. To our surprise we found
that the outages themselves were quite accurately multi-
fractal. This means that the temporal and spatial resolutions
of the series are not fixed but are highly variable. Therefore,
special care is needed in analyzing the results, in particular,
the use of interpolation to produce regularly spaced series
can lead to large errors (particularly in estimating spectra).
[42] In previous publications, the fluctuations were ana-

lyzed without interpolation but using the differences be-
tween measurements at the observed locations, so there was
no overall statistical bias due to the variable resolution.
However, in order to study the cascade structure, estimates
of the turbulent fluxes are needed over a wide range of
resolutions and these are most easily estimated by system-
atically degrading high-resolution fluxes by integration. We
therefore developed a way of estimating the fluxes at
variable resolution and then statistically correcting for the
resulting biases. The bias correction turned out to be quite
simple: for universal multifractals, it amounted to multipli-
cation of the moment scaling exponent K(q) by a constant

that depended on the minimum singularity present in the
sampling intervals.
[43] The results convincingly showed the wide range

scaling of the fluxes and displayed the characteristic cascade
‘‘signature’’ of lines converging to the effective outer
cascade scale that we estimated in the range 1–50 km
depending on the field: the outer scale was larger for fields
related to the humidity and smallest for the horizontal wind
(�1.3 km) with deviations from theoretical cascade behav-
ior of the order of ±1�2%. However, the scaling of the
fluctuations was found to be better than that of the fluxes
and was very good over the whole range up to 10 km
although there were some systematic variations with altitude
with both the outer scale and the intermittency parameter
increasing with altitude.
[44] This study was motivated by the need to directly

check the predictions of cascade models in the vertical
direction; complete characterization of the atmosphere
would involve a more systematic study of the variations
of the cascades with altitude and will be the subject of a
future paper. In addition, comparisons with the horizontal
cascade structure are needed in order to quantify the degree
of scale by scale stratification for each field (their ‘‘elliptical
dimensions’’). Unfortunately, for the fields examined here,
the corresponding horizontal analyses have generally not
yet been made, partly because of the difficulty in interpret-
ing in situ aircraft measurements which are greatly affected
by the nature of the turbulence that they measure [Lovejoy et
al., 2004, 2009b; Lilley et al., 2008].

[45] Acknowledgments. We thank the NOAA G4 team. This re-
search did not benefit from any specific funding.
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