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Multifractal behaviour of long-term karstic discharge fluctuations
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Abstract:

Karstic watersheds are highly complex hydrogeological systems that are characterized by a multiscale behaviour corresponding
to the different pathways of water in these systems. The main issue of karstic spring discharge fluctuations consists in the
presence and the identification of characteristic time scales in the discharge time series.
To identify and characterize these dynamics, we acquired, for many years at the outlet of two karstic watersheds in South of
France, discharge data at 3-mn, 30-mn and daily sampling rate. These hydrological records constitute to our knowledge the
longest uninterrupted discharge time series available at these sampling rates. The analysis of the hydrological records at different
levels of detail leads to a natural scale analysis of these time series in a multifractal framework.
From a universal class of multifractal models based on cascade multiplicative processes, the time series first highlights two cut-
off scales around 1 and 16 h that correspond to distinct responses of the aquifer drainage system. Then we provide estimates of
the multifractal parameters a and C1 and the moment of divergence qD corresponding to the behaviour of karstic systems. These
results constitute the first estimates of the multifractal characteristics of karstic spingflows based on 10 years of high-resolution
discharge time series and should lead to several improvements in rainfall-karstic springflow simulation models. Copyright ©
2012 John Wiley & Sons, Ltd.
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INTRODUCTION

The complex behaviour of karstic systems is mostly
related to the coexistence of several pathways in water
movements in these aquifers. Considering homoge-
neous porous aquifers, water both flows and is stored
in the pores or in the fissures. Because of the low
fluid velocity that keeps the flow laminar, this globally
follows the classical Darcy law. The carbonate
dissolution in karstic aquifers structure leads to an
original hydrogeological structure that makes the water
flow into large drains that are connected to peripheral
systems that constitute large water reserves and where
flows become turbulent. The existence of both rapid
infiltration via boreholes and infiltration via epikarstic
soil combined with diphasic flow in the unsatured zone
and complex hydraulic connections in the saturated
zone leads to a nonlinear discharge responses to
rainfall input.
Because karstic watersheds are physically characterized

by a multiscale behaviour, we propose here to provide a
multifractal approach based on a short 30-mn rainfall time
series and long and uninterrupted discharge time series at
3 and 30mn sampling rate from 1995 up to the present
period. This constitutes to our knowledge the longest
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uninterrupted discharge time series available at this fine
sampling rate.
This contribution is organized as follows. First, we

present a brief overview of the basics of spectral and
multifractal analyses insisting on the incertitude of the
parameter estimates. Then we present the results of the
spectral and multifractal analyses first on daily data
(but without illustrations because it mainly confirms
previous results) and then on 30 and 3mn sampling
rate discharge time series measured at the outlet of the
two watersheds.

Spectral and Multifractal analyses

In this part, we provide a brief overview of spectral and
multifractal methods insisting on their applications in
hydrology and also their scientific potential.
Classical spectral analysis consists in the interpretation

of the variance density distribution (spectrum S(o))
across the scales (frequencies f or angular frequency o).
It essentially consists in the determination of frequency
intervals on which the spectrum follows a power-law
behaviour:

S oð Þ ¼ o�b for o 2 o1;o2½ � (1)

Equation (1) states that for any scaling field, there
exists a log–log linear relation between frequency and
power spectrum over a given range of frequencies
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[o1,o2]. We here choose to implement multifractal
analysis to make a more insightful analysis than the
analysis presented in Labat et al. (2002). Multifractal
analysis is an investigation method of the signal’s scale-
invariance properties first applied in hydrology to
generate precipitation fields (Schertzer and Lovejoy,
1987; Lovejoy et al., 1987; Hubert and Carbonnel,
1989; Lovejoy and Schertzer, 1990; Lavallée, 1991;
Hubert et al., 1993; Ladoy et al., 1993; Olsson and
Niemczynowicz, 1996; Svenson et al., 1996; de Lima and
Grasman, 1999; Biaou, 2004; Maramathas and Boudouvis,
2006; Royer et al., 2008; de Lima and de Lima, 2009).
These statistical techniques applied to rainfall and runoffs
measured at the outlet of several watersheds already display
characteristic time scales in their behaviour (Tessier et al.,
1996; Hubert, 1999; Pandey et al., 1998; Zhou et al., 2006).
However, only a very limited number of hydrological
investigations have focused on or considered karstic
watersheds (Labat et al., 2002;Majone et al., 2004; Sauquet
et al., 2008), and for example, Majone et al. (2004)
constitutes the only reference that already deals with this
issue but really more restricted intervals corresponding to
around 5000 successive hourly discharges.
Multifractal analysis consists in a more systematic

investigation of the empirical moments of the signal as a
function of the resolution. The observation of the behaviour
of the empirical q-momentsM(l, q) = h(el)qi function of the
resolution l=L/l (where L is the total length of the signal
and l is the length of the subinterval) and of the moment
order q. Following Davis et al. (1994), the discrete dyadic
process (rainfall or runoffs, here) noted here ’(i) (with
i= 1,. . .,2N) is first-order differentiated and then mean
normalized to obtain new signals noted e1(i). This signal is
then aggregated on increasing size intervals of length l=2m

with m= 1,. . .,N with L= 2N. At this time, we have at our
disposalN discrete signals noted el, each one corresponding
to a given resolution l. Log–log representations of M(l,q)
may then highlight power-law behaviour:

M l; qð Þ / lð ÞK qð Þ (2)

The K(q) function defined in Equation (2) is typical of
the multifractal analysis, and this method is called the
Trace Moment method (Schertzer and Lovejoy, 1987).
A theoretical model is required to correctly describe the
K(q) function, and the natural candidate is the “universal
class of multifractals” for conservative processes based
on Lévy stochastic variables. This model is the direct
result of a multiplicative cascade structure (Schertzer and
Lovejoy, 1987; Lovejoy and Schertzer, 1990) and is
completely determined by two parameters a and C1:

K qð Þ ¼ C1
qa � q

a� 1
; for a 6¼ 1

K qð Þ ¼ C1q log qð Þ; for a ¼ 1
(3)

The parameter a is the Lévy index (also called the
degree of multifractality) and lies in the interval [0,2].
Copyright © 2012 John Wiley & Sons, Ltd.
It quantifies the distance of the process from mono-
fractality: a = 0 corresponds to a monofractal process,
whereas a = 2 corresponds to a lognormal multifractal
process. The parameter C1 characterizes the sparseness
or inhomogeneity of the mean of the process. For
example, concerning rainfall analysis, K(q) 0 if the
rainfall spatial distribution is homogeneous null or
quasi-Gaussian
Another method of determining a and C1 consists is the

Double Trace Moment analysis developed by Lavallée
(1991) and applied for example by Tessier et al. (1993).
The Double Trace Moment analysis constitutes a
generalization of the Trace Moment method developed.
First, the discrete signals that can be noted as e1
corresponding to the highest resolution are elevated at a
given � power (e1

�). Then the Double Trace Moment
analysis is similar to the Trace Moment analysis but
applied to the e1

� discrete signals. The Double Trace
Moment aims to exploit scale invariance of the q
statistical moments of el

(�) signals (obtained by aggre-
gation of the e1

� discrete signals) at lower and lower
resolutions. The exponent of the power-law behaviour of
the statistical moments satisfies

K q; �ð Þ ¼ �aK qð Þ (4)

A log–log representation of K(q,�) function of � allows
the determination of the a multifractal parameter that
corresponds to the linear part of the curve. The C1

parameter can then be deduced from Equations (3) and (4)
with � = 1. The determination of the multifractal a
parameter is based on the inflection point method. The
inflection point of the K(q,�) function corresponds to the
� value where the second derivative is equal to zero. That
corresponds to the particular shape of the K(q,�) mainly
composed of two quasihorizontal parts corresponding to
the lowest and highest � values. The parameter a
corresponds to the first-order derivative at the inflection
point. The Double Trace Moment analysis thus allows
direct determination of the multifractal parameters a and
C1. The Trace Moment analysis then allows us to identify
the multifractal behaviour of the moments and to
determine the moment of divergence qD.
In the universal multifractal concept (Schertzer and

Lovejoy, 1987), the K(q) function is a convex function,
and the theoretical and empirical K(q) functions are
similar up to a given moment noted qcrit that constitutes
the critical order of multifractal phase transitions. Then
the empirical K(q) function becomes linear for q> qcrit.
Discontinuities in the first or second derivative of the K
(q) function corresponds to first-order or second-order
multifractal phase transition (Schertzer and Lovejoy,
1992; Schertzer et al., 1993). The order of the phase
transition depends on the length of the signals. The
first-order multifractal phase transition can only be
observed if the length and number of series are
sufficiently large and if D +Ds> c(g) where c(g) is
the codimension. In this case, the critical moment qcrit
correspond to the moment of divergence qD. However,
Hydrol. Process. (2012)
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when the length and number of signals is finite, but too
small to obtain a first-order phase transition, the
multifractal phase transition is of second order. Then
the critical moment qcrit corresponds to the critical
order qS. In our case, the critical moment qcrit will be
considered arbitrarily as equal to qD (see Schmitt et al.
(1994) for a discussion).
At this point, one can note that the determination of qD

is often based on the hyperbolic tail behaviour of the
empirical probability distribution function of the series.
However, this estimate leads to severe uncertainties
relating to the interval of the variable on which the
exponent is determined. This can lead for example to qD
larger than 20, which is not physically reasonable
(Pandey et al., 1998). Here, the moment of divergence
qD corresponds to the divergence between the experi-
mental K(q) function and the theoretical K(q) function
obtained by introducing the estimated multifractal
parameters a and C1 in Equation (3).

Results of the spectral and multifractal analyses

A high-resolution discharge measurement has been
implemented on two karstic watersheds located in the
French Pyrénées Mountains (Ariège) with a mean annual
Figure 1. Localization of the Aliou and Baget karstic watersheds in the sout
indicates the position of the hydrometric s

Copyright © 2012 John Wiley & Sons, Ltd.
precipitation rate around 1650mm. Aliou and Baget
watersheds are two small basins with similar areas
(around 13 km2) and specific runoffs (36 l/s/km2).
Both watersheds can be considered as representative of
high-developed to medium-developed karst systems
over temperate climates (Figure 1) and already monitored
but at daily sampling rate since 1968 (Labat et al., 2000).
Therefore, a preliminary investigation of daily
discharge time series collected over more than 40 years
(from 10/04/1969 up to 23/09/2011 for Aliou discharge
time series and from 25/04/1968 up to 23/09/2011 for
Baget discharge time series) mainly confirms the results
obtained by Labat et al. (2000, 2002) on a more restricted
time interval. We focus our attention on the high-
resolution time-series analyses.

Spectral and multifractal analyses of daily hydrological data

First, we recall that daily precipitation exhibits
spectral power-law behaviour with a slope equal to
0.47 (Labat et al., 2000). Then when the hydrological
signal is not filtered at all by the system (i.e. when the
hydrological signal is rainfall), the slope tend to zero
suggesting an uncorrelated signal at this sampling. The
spectral analysis of daily discharge time series leads to
h of France with physiographic maps ((a) Aliou and (b) Baget). The circle
tation located at the outlet of the basin
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the detection of a break in scale around 16 days for both
watersheds with power-law behaviour for smaller scales
than 16 days. This time scale is the transition between
weather and low-frequency weather, and affects the
precipitation statistics. The power-law behaviour on
small scale processes is characterized by a slope b= 1.25
for Aliou discharge time series and b= 1.89 for Baget
discharge time series. The increase of the slope of the
spectral power-law behaviour is directly related to the
decrease of the degree of karstification of the two aquifers. A
less karstified aquifer leads to less abrupt floods and then
leads to a more structured and autocorrelated temporal
signal that corresponds to higher power-law slope. That
increase of the power slope corresponds to a higher Hurst
coefficient and then more fractional integration in
the rainfall–discharge relationship based on Liouville
integration point of view.
The Trace Moment analysis also leads to a break in

scale around 16 days in accordance with the spectral
analysis. With the Double Trace Moment method for
high-frequency processes, the Levy index estimates are
a= 1.55 for Aliou watershed and a= 1.56 for Baget
watershed, and the intermittency indices are C1 = 0.27 for
Aliou watershed and C1 = 0.24 for Baget watershed.
The moment of divergence estimation based on the
comparison between the experimental and theoretical
K(q) functions lead to qD = 2.0 for Aliou watershed and
qD = 1.8 for Baget watershed. Therefore, the multifractal
parameters a, C1 and qD appear to be close for both
watersheds but with slightly lower C1 value for the Baget
watershed that corresponds to a lower degree of
karstification that leads to lower intermittency in the
discharge fluctuations and lower extreme discharges.
These multifractal parameters appear as in good
agreement with previous multifractal analyses of daily
discharge time series such as Tessier et al. (1996)
(a = 1.45� 0.25 and C1 = 0.2� 0.1), Pandey et al.
Figure 2. Visualization of the discharge time series: 30-mn sampling rate stre
successive al1, al2 and al3 time series presented in Table I) and Baget ((b) co

high-resolution streamflow time series measured at the Baget station

Copyright © 2012 John Wiley & Sons, Ltd.
(1998) (a = 1.65� 0.12 and C1 = 0.13� 0.05) and
Zhou et al. (2006) (a =1.63� 0.19, C1 = 0.11� 0.02 and
qD=4.44� 0.60). Therefore, at daily sampling rate, the
karstic nature of these watersheds does not exhibit any
particularity.Wewill now explore the multifractal behaviour
of the hydrological time series at finer sampling rate.
Spectral and multifractal analyses of high-resolution
hydrological data

We only have at our disposal a 30-mn rainfall time
series over the time interval from 10/07/1993 up to 30/04/
1996. The spectral analyses of the 30-mn discharge time
series lead to a power-law behaviour with a break scale
around 1 day. The Trace Moment analysis allows
detecting a 16 h break scale with the following estimates
of the multifractal parameters: a= 1.18, C1 = 0.22 and
qD= 1.7 for small scales and a= 0.79, C1 = 0.35 and
qD= 1.8 for large scales.
However, the main originality of our contribution lies in

the first estimate of the spectral and multifractal parameters
on long-term 30- and 3-mn sampling rate karstic
spring discharge time series (Figure 2 and Table I: bg1,
bg2 discharge time series for Baget spring and al1, al2 and
al3 discharge time series for Aliou spring). Therefore, the
error estimate for Aliou spring discharge spectral and
multifractal parameters is based on three values (because we
choose to consider that cut-off scales are close enough to be
comparable), whereas the error estimate for Baget spring
discharge spectral and multifractal parameters is based on
two values.
The spectral analysis of Aliou and Baget 30-mn

discharge time series (Figure 3) lead to the detection of
power-law behaviour on two ranges of scales: from 1 h
up to 1 day and from 1 day up to 1month. Because we
only have at our disposal three uninterrupted time series
for Aliou watershed and two uninterrupted time series
amflow time series measured at the outlet of Aliou ((a) corresponding to the
rresponding to the bg1 and bg2 time series presented in Table I) and 3mn
and corresponding to the bghres time series presented in Table I

Hydrol. Process. (2012)
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Table I. Results of the multifractal analysis of the different 30 and 3mn sampling rate discharge measured at the outlet of Baget and
Aliou watersheds

Name From To Number of data a C1 qD a C1 qD

30mn Bagets spring discharge
bg1 18/12/1996 09/12/2000 69 714 1,35 0,15 2,7 1,98 0,21 2,1
bg2 11/03/2004 23/09/2011 13 1979 1,49 0,19 2,1 1,25 0,30 2,5
30-mn Aliou spring discharge
al1 29/11/1991 27/12/1993 36 341 1,06 0,12 1,9 1,41 0,42 2,1
al2 21/04/1995 27/06/2000 90 912 1,31 0,13 2,0 1,35 0,35 2,0
al3 27/01/2001 23/09/2011 134 125 1,48 0,11 2,7 1,17 0,33 2,0
3-mn Baget spring discharge
bghres 17/02/2010 23/09/2011 279244 0,90 0,32 1,8 1,56 0,08 2,0

Concerning the 30mn discharge time series, the first of multifractal parameters a, C1 and qD are estimated on the [30-mn;16-h] scale interval, whereas the
second set of multifractal parameters are estimated on the [16-h;1-month] scale interval.
Concerning the 3mn discharge time series, the first of multifractal parameters a, C1 and qD are estimated on the [3-mn;1-h] scale interval, whereas the
second set of multifractal parameters are estimated on the [1-h;1month] scale interval.
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for Baget watershed, we indicate the mean slope and the
different slopes obtained for the different time series.
The estimate of the slope of the power-law behaviour for
the two scale ranges leads to the following estimates: for
scales from 1 h to 1 day, <b>= 3.35 for Aliou watershed
(b= 3.40 for al1, b= 3.08 for al2 and b= 3.56 for al3)
and <b> = 2.85 for Baget watershed (b= 2.90 for bg1
and b2.80 for bg2); for larger scales than 1 day,
<b> = 0.98 for Aliou watershed (b= 0.99 for al1,
b= 0.90 for al2 and b= 1.04 for al3) for Aliou watershed
and <b> = 1.66 for Baget watershed (b= 1.65 for bg1
and b= 1.67 for bg2).
Therefore, the spectral analysis of the 30-mn discharge

time series does not display significant differences for
a given watershed considering nonoverlapping time
intervals. The slight differences are not sufficiently high
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to be related to either nonstationarities in the hydrological
response or climate change influence from our point
of view.
The multifractal analyses of the discharge time series

will now be displayed more precisely. The Figure 4a
for example shows M(l, q) = h(el)qi function of the
resolution l (lambda) for the bg1 time series for values
of q between 0.25 and 3.0. The curves exhibit a straight-
line behaviour over two ranges of scales: from 30min to
32 h and from 32 h to 21 days that correspond to the
highest scale considered in the Trace Moment analysis.
In the curves, on each interval, the straight lines have
been fitted by regression. From the slopes of the lines in
Figure 4a, one can estimate the empirical and discrete K
(q) function displayed in Figures 6a and 7a for values of
q between 0.25 and 3.0. As previously mentioned, to
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estimate the multifractal parameters a and C1, the
Double Trace Moment analysis is employed. The
Figure 5a shows K(q,�) for q = 1.5, and the curve
exhibits a straight-line behaviour for a given range of �
and for both range of scales determined by the Trace
Moment analysis. At both ends of the � intervals, the
curve deviates from straight-lined behaviour, and the
range of values of � over which the straight-line
behaviour is observed is quite narrow.
The Trace Moment analysis allows determining several

cut-off scales in the scale-invariance behaviour of the
moment of the discharge time series. The 30-mn Baget
spring discharge time series are characterized by two cut-off
scales around 32 h and 21 days for the bg1 time series,
whereas these cut-off scales are not as evident when
analysing the bg2 time series. The 30-mn Aliou spring
discharge time series are characterized by cut-off scale
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-2.0

-1.5

-1.0

-0.5

0.0

Log(eta)

Lo
g(

K
(q

,e
ta

))

 30 mns - 32 hours
 32 hours - 21 days

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

Log(eta)

Lo
g(

K
(q

,e
ta

))

 30 mns - 32 hours
 32 hours - 21 days

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

Log(eta)

Lo
g(

K
(q

,e
ta

))

 30 mns - 8 hours
 8 hours - 21 days

a

c

e

Figure 5. Double Trace Moment analysis: K(q,�) as a function of � (eta) for q
by regression, allow to determine the
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decreasing from 32h for al1 to 16 h for al2 and finally 8 h
for al3. We then consider a common break in scale for the
30-mn discharge different time series of 16 h to compare
properly the multifractal estimates. At small scales, the
multifractal parameter estimates are a= 1.42� 0.10,
C1 = 0.18� 0.02 and qD=2.40� 0.07 for Baget spring
discharge time series and a =1.28� 0.21, C1 = 0.12� 0.01
and qD = 2.20� 0.44 for Aliou spring discharge time
series at small scales. For larger scales, the multifractal
parameters estimates are a =1.62� 0.52, C1 = 0.26� 0.06
and qD= 2.30� 0.28 for Baget spring discharge time series
and a= 1.31� 0.13, C1 = 0.37� 0.05 and qD=2.03� 0.06
for Aliou spring discharge time series.
Finally, the 3-mn discharge time series measured at

the outlet of the Baget watershed over more than 1 year
is analysed by spectral and multifractal analyses
(Figures 3(f), 4(f), 5(f), 6(f) and 7(f)). The spectral
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Figure 6. Moment scaling function K(q) for the small scales obtained from the average moment analysis. The moment of divergence qD corresponds to
the q value where theoretical and empirical K(q) functions exhibit significant differences ((a)–(f): see Figure 3)

D. LABAT ET AL.
analysis of Baget spring discharge 3mn time series
highlights slopes b=0.51 for small scales (from 6mn to 1 h)
and b=2.63 for large scale (from 1 h to 1month). That
corresponds to a Hurst coefficient H� 0 at small scales and
H= 0.88 at large scales. The Trace Moment analysis of
high-resolution Baget spring discharge time series allows
identifying a 1 h cut-off scale. With the Double Trace
moment analysis, the 3-mn Baget spring discharge time
series is characterized by the following multifractal
parameters: a = 0.90, C1 = 0.32 and qD = 1.80 for small
scales (from 3min to 1 h) and a = 1.56, C1 = 0.08 and
qD = 2.0 for larger scales (from 1 h to 1month). The
multifractal analysis of the 3-mn Baget discharge time
series constitutes the first estimates of a, C1 and qD at this
high-resolution sampling rate. We acknowledge that for
the moment, the interpretation of a, C1 and qD still remain
Copyright © 2012 John Wiley & Sons, Ltd.
difficult, but we think that these results deserve to
be compared with future analyses on comparable high-
resolution discharge time series but on different
hydrological watersheds.
CONCLUSION

This contribution allows the first determination of the
multifractal parameters of 3- and 30-mn long-term karstic
discharge and confirms the multifractal parameters
estimation of karstic daily discharge fluctuation at the
outlet of two karstic French systems.
The multifractal behaviour of karstic spring

discharges is shown with a cut-off scale around 8 to
32 h. The multifractal parameters a, C1 and qD are quite
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Figure 7. Moment scaling function K(q) for the large scales obtained from the average moment analysis. The moment of divergence qD corresponds to
the q value where theoretical and empirical K(q) functions exhibit significant differences ((a)–(f): see Figure 3)

BEHAVIOUR OF LONG-TERM KARSTIC DISCHARGE FLUCTUATIONS
different from Majone et al. (2004), but that may be
related to both climate and the degree of karstification.
Karstic systems must be considered as complex systems
with a wide range of spatial and temporal scales in the
runoff response. The multifractal framework constitutes
in our point of view a unified concept that proposes
a valuable alternative to the apparent complexity,
exhibiting global invariant properties. This multifractal
nature of the karst response is supposed to be linked to
the fractal nature of the cave drainage network and
karstogenesis models. Therefore, further karst water-
shed modelling must include this multifractal property
well known in surface drainage network and also
concepts such as multifractal instantaneous unit hydro-
graph (Gaudio et al., 2004) or application of Liouville
fractional integration (Tessier et al., 1996) that
deserved to be explored in karst hydrology.
Copyright © 2012 John Wiley & Sons, Ltd.
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