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Environmental Science and Engineering/GIS/Remote Sensing/Mapping W

i The recent emergence and widespread use
of remote sensing and geographic infor-
mation systems (GIS) has prompted new
interest in scale as a key component of
these and other geographic information
technologies. Techniques for dealing explicitly
with scale are now available in GIS, but, until now,
very little literature was available to consider and solve specific issues

of scale.

With a balanced mixture of concepts, practical examples, techniques, and
theory, Scale in Remote Sensing and GIS is a guide for students and users
of remote sensing and GIS who must deal with the issues raised by multiple
temporal and spatial scales.

The book explores issues of scale in three broad areas:

* Spatial/temporal statistical analysis and model
development

* Multiple scaled data for analysis of the biophysical
environment

* Multiple scaled data for model development and
analysis in landscape ecology

Written by a team of specialists in remote
sensing data and GIS, this book offers readers L1104

new ways to relate, manipulate, and BN L-5bb?0-104-X
otherwise use and understand spatial data. AL
Profusely illustrated, Scale in Remote Sensing

and GIS contains over 24 full-color photo-

graphs to help demonstrate key points made

in the text.




CHAPTER 16

Multifractals and Resolution Dependence of
Remotely Sensed Data: GSI to GIS

Sean Pecknold, Shaun Lovejoy, Daniel Schertzer, and Charles Hooge

INTRODUCTION

The Zonal Aggregation Problem: From Fractal Sets to Multifractal
Measures

Geographers have long sought to provide complete representations of spatial
information. For example, maps are based on the notion of “cartographic scale,”
which is in fact a scale ratio — but not a spatial resolution. Implicitly, the attempt
is made to represent everything of “geographical significance” (irrespective of actual
size); the aim is provide a one to one correspondence with reality. When the infor-
mation can be reduced to geometric sets of points, various techniques for concep-
tualizing it have been developed. For example, topology and distance information
can be dealt with using notions of “nodes,” “links,” “networks,” hierarchies,”
“spheres of influence” (e.g., O’Brien 1992). However, when the number of relevant
points is extremely large (such as the location of each individual human being,
completely representing the population distribution, or the location and size of each
tree needed to completely specify the “forest cover”) this complete representation
is often unwieldy, if not technically impossible to achieve. Hence the need for “zonal
aggregation,” i.e., spatial integration or averaging. Attempts to do this have led to
the recognition of the “ecological fallacy”; the fact that the level of aggregation is
fundamentally important in determining the statistical properties of the set of interest.
Similar scale problems appear in the context of image-mapping and generalizations,
and for data abstraction and database building for multiscale representations.
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362 SCALE IN REMOTE SENSING AND GIS

In the last ten years, encouraged by the explosion of scaling and fractal ideas in
geophysics and elsewhere, there have been attempts to overcome the aggregation
problem by recognizing that many spatial processes have no characteristic size:
hence, that the corresponding sets are fractals. This means that over wide ranges (in
at least certain cases such as the atmosphere, spanning nine or ten orders of mag-
nitude in scale) there is no homogeneity scale (i.e., below which the variability is
small enough to ignore), and the resolution is therefore fundamental. In remotely
sensed data — increasingly used for quantitative studies — the resolution (“pixel”
size) is always explicit, but is often much larger than this “optimum” resolution,'
which for geophysical systems can readily be of the order of millimeters or less.
Over a certain range (the scaling range), these geometric fractal sets exhibit scaling,
i.e., having densities, lengths, areas, or other measures of size which are power law
functions of the spatial resolution. The basic quantity of interest is the exponent
which determines the rate of change of these measures with resolution — the scaling
exponent. The examples of the coastline set of Britanny (Perrin, 1913), and Britain
(Richardson, 1961; Mandelbrot, 1967), whose tangent (Perrin, 1913) and length
(Richardson, 1961; Mandelbrot, 1967) change systematically with resolution are
now well-known. For such geometric sets, the standard aggregation problem is
simply ill-posed; the result — the length of the coast of Britain — is just a strong
(scaling) function of the subjective observer/map resolution, it is not an objective
characteristic of the coastline. It is now generally recognized that the coastline length
has no geographical significance per se.

While the growing recognition that scaling is a basic feature of geographic sets
is an important advance, it has contributed to the unfortunate tendency to reduce
geographical features and information to geometric sets (whether scaling or other-
wise). The inadequacy of the set framework is perhaps becoming most obvious in
recent attempts to integrate both traditional “vector” data (i.e., the coordinates of
geometric points) with increasing quantities of remotely sensed “raster” (i.e., pixel-
based) data into geographic information systems (GIS; Davis and Simonett, 1991,
have called the result an Integrated GIS = “IGIS™). Since remotely sensed data
usually have significant intensity information at each pixel, the satellite brightness
is more appropriately represented as a mathematical field rather than as a geometric
set of points (actually, the satellite integrates radiances over pixels — it is sufficient
and indeed preferable to theorize the latter as a mathematical measure). Indeed, it
turns out that the more general measure/field framework is often preferable even for
treating geometric sets — it is the (multifractal) density of the latter which is of
interest! For example Tessier et al. (1994) have shown that it is much more convenient
to treat the meteorological measuring network as density fields representing the
number of stations/area. Similarly, we anticipate (Tessier et al., 1995) that it is better
to treat forest cover as a field representing the density of trees, rather than as a set
of points.

The same scale invariant symmetry considerations that lead us to treat scaling
sets as fractals also hold for scale invariant fields; however the latter are generally
“multifractals.” That is, rather than having lengths, or other measures of size varying

| The notion of “optimum resolution” can be defined in many ways; here we take it as equal to the scale
below which the phenomenon is homogengous.
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according to power laws (characterized by a unique exponent, the fractal dimension),
multifractals have an infinite hierarchy of exponents (an exponent function). In
practice their characterization involves a reliance on various universality properties
(see below) that allow the infinite hierarchy to be reduced to a finite (and manageable)
number. While the discovery and investigation of the properties of multifractals and
multifractal processes are undoubtedly the most significant sin gle advance in scaling
notions in the last fifteen years, it is surprising that so far their significance for
geography has been little appreciated (see however, De Cola and Lam, 1993; Lavallée
et al,, 1993b). Indeed, although it took nearly 70 years for the inappropriateness of
the (fractal) question “how long is the coast of Brittany?” to become obvious for
all, it is surprising that the corresponding multifractal question “how bright is the
coast of Brittany?” is still being answered in terms of fractional cloud cover or using
other resolution dependent notions (see Lovejoy and Schertzer, 1995, fora discussion
and review),

Generalized Scale Invariance (GSI), Universality and Self-Organized
Criticality

Geographers are not alone in underestimating the significance of scale invariance
and multifractals. Some of us have argued (Schertzer and Lovejoy, 1996) that even
in physics, where multifractals are well-established, their scope has been underes-
timated for a series of reasons. The first such reason, discussed below, is that al though
a general framework for anisotropic scale invariance has existed for over ten years
(generalized scale invariance — GSI — Schertzer and Lovejoy, 1983, 1985b, 1987,
1989, 1991b), in most of the literature scale invariance has been restricted to isotropic
(self-similar) systems and few (if any) natural systems are isotropic. Occasionally
extensions have been made to accommodate anisotropy along coordinate axes (“self-
affinity”; the privileged directions are fixed in orientation), but this is still quite
restrictive.” The formulation of scale invariance as a symmetry principle (GSI) also
provides an explanation for the widespread scaling found in natural systems: Table
I shows over 20 geophysical fields in which multiscaling has been established,
indicating the range of scales over which this multiscaling behavior is observed
along with the universal multifractal parameters determined from them (explained
in detail below), giving the “multifractality” of the field: o, its sparseness: C,, and
its “smoothness”: H. Just as with other more familiar symmetries, such as conser-
vation of momentum or energy, we may expect scaling symmetries to be respected
unless strong scale breaking mechanisms exist. With the development of GSI, the
ubiquity of scaling is no more of a mystery than is the conservation of energy.

The second aspect of multifractals which has been under-appreciated is the fact
that, unlike fractal geometry which simplifies things by introducing a single expo-
nent, in multifractals, the exponent is a function; this is equivalent to an infinite
number of exponents (see below for a discussion). In other words, with no other
information, multifractals would be unmanageable both theoretically and empiri-

? It has also been badly misused as a monofractal model for a multifractal field, Perhaps the most obvious
example is the attempt to reduce a miultifractal ficld such as topography to a self-affine, and hence
monofractal, geometric set. See Lavallée et al. (1993a) for a discussion,
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cally. Fortunately, multifractal processes possess stable, attractive generators and
thus can have universal behavior governed by only three fundamental parameters®
(Schertzer and Lovejoy, 1987, 1996; Schertzer et al., 1991), as given in Table 1.
This can be regarded as a generalization (and mathematical and physical develop-
ment) of the old idea of the law of “proportional effect” (Kapteyn, 1903; originally
believed to lead to log-normal distributions). Finally, unlike the special (geometric,
microcanonical) multifractals usually treated in the literature, the more general
canonical multifractals are extremely variable, giving rise to extreme fluctuations,
characterized by qualitative changes called “multifractal phase transitions.”Recently,
it has been shown (Schertzer and Lovejoy, 1994) that certain generic first order
transitions are in fact a nonclassical form of self-organized criticality (Bak et al,,
1987). Multifractals can therefore naturally account for the extreme events which
characterize so many geophysical and geographical systems.

The arguments we have presented about the relevance of multifractals to geog-
raphy and to remote sensing are not entirely new; relevant discussions can be found
in Lavallée et al. (1993b), Lovejoy and Schertzer (1995) and Schertzer and Lovejoy
(1995b). The aim of the present paper is rather to illustrate multifractal analysis and
modeling techniques on four fields of geophysical and geographical significance:
the cloud radiance field, the sea ice radar reflectivity field, the acromagnetic field,
and the topography field. In each case, we combine estimates of the universal
multifractal parameters with those of the anisotropy (GSI) in order to make realistic
simulated realizations. Readers who remain skeptical about the theoretical justifica-
tion for multifractals are invited to scan the latter and judge by the visual and
statistical realism that the simulation technique provides.

SCALING, MULTIFRACTALS AND UNIVERSALITY

The word “fractal” was coined by Mandelbrot (Mandelbrot, 1975) to describe
the fractured and fragmented appearance of fractal sets; an early example was that
of coastlines and other aspects of topography. Even before that, the question of the
length of a coastline (Richardson, 1961; Mandelbrot, 1967) was recognized as an
aspect of a paradox noted even earlier (Steinhaus, 1954): that the size/measure of
an object depended on the scale at which it was examined (the example being that
of the measurement of the left bank of the river Vistula: when measured with
increased precision, the length would be much larger than the length read off a less
precise map). This yields the twin notions of scaling — the (power-law) dependence
of a measured quantity on the scale at which it is measured — and the fractal
geometric set, with a non-integer dimension; the statistical properties of a fractal set
(such as aggregation complexity) are determined by a single fractal dimension. In
fact, this is a scaling relationship: the “size” of a fractal set varies as the scale at
which it is examined raised to a (scale invariant) scaling exponent, in this case given
by the fractal dimension.

3 Note however the debate about strong vs. weak universality below.
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Later, with the development of the more general scaling framework needed to
handle scale invariant fields, there came a transition to the concept of multifractal
fields and measures (Grassberger, 1983; Hentschel and Procaccia, 1983; Schertzer
and Lovejoy, 1983, 1985b, 1987; Lovejoy and Schertzer, 1985; Parisi and Frisch,
1985; Meneveau and Sreenivasan, 1987). Multifractal fields are those characterized
by multiscaling behavior: the scaling properties of the field are characterized by a
scaling exponent function ("Multiscaling” is therefore a precise mathematical
notion.) Rather than being described by a single fractal dimension, in fact a multi-
fractal field can be thought of as a hierarchy of sets (corresponding for example to
the regions exceeding fixed thresholds) each with its own fractal dimension (see
Figure 1). Thus, if we consider the probability of finding a field value &,(x) greater
than a given scale-dependent threshold, we find that the probability, Pr(g,(x) > A7),
can be related to the order of singularity v that characterizes this threshold, &, > A7, by:

Pr(e, > A7) = A~ (0

where the codimension function, c(y), describes the sparseness of the field intensi-
ties* (Schertzer and Lovejoy, 1987). The significance of Eq. | for geography is
immediately obvious, since A is essentially a map resolution® (rather than the “scale”
of the map, the ratio of distance on the map to distance in reality). If €, represents
a density of interest (such as forest cover, cloud cover, etc.) then Eq. 1 precisely
determines how the histograms of the density vary with map resolution. Changing
resolution can drastically change the statistical properties; only the codimension
function will remain the same (see Figure 1),

An equivalent description may be made in terms of the moment scaling function,
K{g), which is defined as:

A = (g1 @

This gives the scaling behavior of each moment g of the field.® In real systems
with finite inner and outer scaling cutoffs, the multiscaling behavior (different scaling
exponents for each moment) will only be observed over some finite ran ge of scales,
These however can be quite large; in the case of the atmosphere, noted above, it can

 When the codimension is smaller than the dimension of the space in which the process is observed,
it has a geometric interpretation as the difference between the dimension of space and the fractal dirension
of the geometric subset described by the singularity value.

* More precisely it is the square root of the ratio of the area (in 2 dimensions) of the region represented
to the area of the smallest structure represented.

® Note that there is a growing realization (e.g., Mandelbrot, 1995) that the “codimension” formalism
(given here) for multifractals is indispensable. The codimension formalism is related to the still popular
dimension formalism (Halsey et al. 1986) byfla)=D-c,a=d-v 1= (q- 1)D - K(g), where D is
the dimension of the space in which the process is observed. In particular, the codimension formalism
avoids the paradox of negative (“latent”) fractal dimensions, has the advantage that it gives an intrinsic
characterization of the process, independent of D, and can be applied to infinite dimensional probability
spaces (0 — oo},
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Figure 1 A schematic illustration of a multifractal field analyzed over a scale ratio A, with two
scaling thresholds A" and A", corresponding to two orders of singularity: v, > ¥y.

cover nine to ten orders of magnitude (from planetary scales to the viscous dissipa-
tion scale).

These scaling exponent functions allow a complete characterization of the sta-
tistics of the field. They are nevertheless somewhat difficult to handle, as they
represent an infinite hierarchy of parameters (i.e., an arbitrary convex function). We
wish to find an expression for one (or both) of these functions that will enable us
to describe the scaling in a fairly simple form, with a small number of parameters.
In order to do this, we note that many geophysical systems involve turbulence, which
has long been regarded as arising from cascade processes (Richardson, 1922).
Explicit cascade models have been developed (Novikov and Stewart, 1964; Man-
delbrot, 1974; Frisch et al., 1978; Schertzer and Lovejoy, 1987), where a quantity
such as energy flux (for atmospheric turbulence) is injected at large scales and
cascades to smaller and smaller scales via multiplicative modulations (see Figure 2).

Under quite general conditions involving scaling non-linear cascade-like dynam-
ics (even in the absence of strictly hydrodynamic turbulence), due to the existence
of stable attractive generators of multifractal processes, cascade processes such as
this are believed to result in “universal” multifractals” (Schertzer and Lovejoy, 1987),
where the K(g) function is given by

* Note. however. the recent debate about strong vs. weak universality (Schertzer and Lovejoy. 1995b,
1996: She and Waymire. 1995). The She-Leveque model based on a cascade of eddies postulates a
recursive scaling relation between different sets of eddies. and flamentary structures for the highest order
singularities, This corresponds to a weak version of universality, with an implicit assumption of an upper
bound on the singularities. The strong universality discussed here has no explicit assumptions about
structures in the system, and has no intrinsic maximum order of singularity.
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Energy flux e

n cascade steps

Figure 2 A schematic illustration of a multifractal field being produced by a multiplicative
cascade (Schertzer and Lovejoy, 1987).

€
K(@)=—"-(¢"-q), a=l
(q) a—z(‘? q) o -

K(g)=Cqloggq, a=1

where 0 < & < 2. C, is the codimension of the mean of the field, characterizing the
sparseness of the mean value of the field, and the Lévy index o characterizes the
degree of multifractality (Schertzer and Lovejoy, 1987). As o — 0, K(g) becomes
linear and we obtain the monofractal B-model (Novikov and Stewart, 1964; Yaglom,
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1966; Mandelbrot, 1974; Frisch et al., 1978), where the field may be described by
a single dimension; the maximum value & = 2 corresponds to the well-known
lognormal model.® These universal multifractals have been shown to describe a large
number of geophysical and other systems (see Table 1), and form the basis for the
analysis and simulation techniques in this paper. Thus, our scaling exponent function
is given by the two fundamental parameters o and C,. Likewise, the codimension
function c(y) may also be described in terms of these parameters:

dﬂ:q&%;+w] @)
|

with L+ =1,
o o
For nonconservative fields (Schertzer and Lovejoy, 1987, 1991a) such as density
fields, f, related to a conservative multifractal field €, in a scaling manner (A5 =
g,A1), there is a third fundamental parameter, H, which is a measure of the degree
of (scale by scale) non-conservation of the field:

(anp=2" (5)

If H # 0 then the universal form for K(g) is given by:*
K(g) > K(g) - gH (6)

Examples of the effects of varying these parameters on the appearance of the
system may be found in Plates 11 and 12*. In Plate 12, it is obvious that the parameter
H acts as a scale invariant smoothing operator for H > 0, while H < 0 acts as a
differentiation, in effect “roughening” the field more and more for decreasing H.
The parameter C, also has a fairly obvious meaning — in Plate 11, the images on
the right have a much larger C,, resulting in most of the normalized field having a
fairly small value, with a few large spikes. As o is decreased, the field (again, a
normalized field) changes from one that has more symmetric deviations from the
mean to one that is fairly high-valued with a few large downward deviations. This
is most noticeable in the images with a lower C,.

LINEAR GENERALIZED SCALE INVARIANCE

The second step in describing and hence modeling geophysical fields is the
determination of the anisotropy present in the system. Although most systems exhibit
statistical scale invariance over various ranges, a priori this scale invariance should

% This is actually a misnomer — due to divergence of moments, the distribution will only be approxi-
mately lognormal.

9 This is true for “bare” cascade quantities. For the observed “dressed” quantities, Eq. 6 will break down
below a critical value of q and trivial scaling will result (Naud et al., 1996). From the data analysis point
of view, we restore the bare scaling by fractionally differentiating by order H or higher.

* Color plates follow numbered page 168.
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not be expected to be isotropic (the multifractals, or fractals, will not be “self-
similar”). Indeed, the only reason that isotropy is often implicitly assumed is that
the anisotropic nature of most geophysical systems is usually hidden through the
use of isotropic analysis techniques. For example, the Fourier power spectrum of a
field is defined to include an angular integration in Fourier space that tends to “wash
out” (by integrating out) all but the most severe anisotropies; nevertheless, as we
show below, these do play an important part in determining the texture and mor-
phology of the fields.

The only scaling anisotropy usually considered in the literature is “self-affine”
scaling, in which anisotropy is confined to fixed coordinate axes: this is an insuffi-
cient generalization for most applications. The framework of generalized scale
invariance (GSI) was developed to describe much more general scaling anisotropies.
It extends the idea of scale invariance, where the small-scale and large-scale struc-
tures and behaviors are related by a scale-changing operator that depends only on
the scale ratio, to include more complicated scale-dependent changes of behavior
and structure, such as differential stratification and rotation. We therefore regard our
systems in terms of GSI, restricting ourselves to the linear case (where the anisotro-
pies are statistically independent of position; they depend only upon the scale ratio).

To develop the framework of GSI, we need several components. The first of
these is the scale changing operator, T,. Scale-invariance requires that the statistical
properties of a field are changed in a power-law way with an isotropic change in
scale A of space, such as zooming. T; is the rule relatin g the statistical properties at
one scale to another. Since the properties only depend on the scale ratio A and not
actual sizes, T, must have semi-group properties; in particular it admits a generator
G such that:

T, = A6 @)

In the case of linear GSI, G is a matrix: the identity matrix for the isotropic case
(see Figure 3), but a more general one for the case of self-affinity or more general
anisotropies (Figure 4).

We also require a family of balls that cover the space and are acted upon by the
scale changing operator (these balls define the topology of the space), as well as a
way to define what we mean by scale (these requirements are described in detail in
Schertzer and Lovejoy, 1985b). In many physical cases there is no overall stratifi-
cation (e.g., if we study horizontal and not vertical cross-sections of the atmosphere,
earth or oceans). It therefore suffices for a definition of scale to use the “obvious”
one, i.e., the square root of the area of these balls. In the isotropic case the balls are
in fact circles, indicating no preferred direction at any scale. In the anisotropic case,
if a scale exists at which the system is isotropic, we call this scale the spheroscale.
The family of balls obtained from acting upon it with T; will be ellipses, and the G
matrix together with the size of the spheroscale will define our system. If no such
scale exists, it may be necessary to define a somewhat more complicated family of
balls; one such family is of fourth-order closed polynomial balls (Pecknold et al.,
1996) (see Figure 5).
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Figure 3 A schematic illustration of the shape of the mean structures as functions of scale
in self-similar scaling (G = (}}); more precisely, the family of “balls,’ see text).

We may decompose G into quaternion-like elements (Lovejoy and Schertzer
1985; Schertzer and Lovejoy 1985b) :

G=dl +el +f] +cK

= 1 =4 o
=3 o) x=lo 3

A fundamental parameter for the description of the overall type of anisotropy
present in the system will be given by

where

®

al=ct+fr-e? ()]

In the case that a? < 0, we say that the system is rotation dominant: as the scale
changes, the balls rotate through an infinite angle of rotation (although for a finite
total scale ratio, only a finite amount of rotation is possible). If a2 > 0, we call the
system stratification dominant: in a like manner, an indefinitely large “stretching”
of the unit ball is permitted, but the total amount of rotation never exceeds /5.

Thus, an analysis of the anisotropies of our system involves determining the
parameters c, d, f, and e, along with the spheroscale (or other family of balls). This
completely determines the scaling anisotropy of the system in the approximation of
linear GSI. For cases involving position-dependent anisotropy, the linear GSI approx-
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Figure 4 Top: Self-affine scaling with G = [; ;: ] representing a vertical cross-section of
@

the atmosphere. The shape of the balls models the average eddy shape; the
flattening of the large balls models the fact that the atmosphere is increasingly
stratified at large scale, and the small-scale vertically oriented balls correspond to
“convective” type eddies or “rain shafts” The value 5/9 is that obtained from obser-
vations and theoretical arguments concerning the stratification of the horizontal wind
{Schertzer and Lovejoy, 1985a). Bottom: More complex anisotropy (horizontal cross-

section), with G = [:;; ;-;;]. This shows the rotational effects of off-diagonal elements.
imation may be made over subregions of the system, as in the section, Cloud
Radiances, below. Of course, this applies only to positive scalar fields; for problems
involving continuum mechanics, an extension to vector and tensor multifractal fields
is necessary (Schertzer and Lovejoy, 1995a).

DATA ANALYSIS

A full analysis for all the relevant parameters involves several techniques.
Because of its sensitivity to scaling (and possible breaks thereof) and also because
of its greater familiarity to geophysicists, one of the most basic analysis tools that
we use to examine the scaling behavior of a system is a measurement of the power
spectrum. The power spectrum, E(k), at wave number k = || where k is the wave
vector, is defined as the ensemble average of the angular integral of the square of
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Figure 5 Fourth order polynomial balls, showing non-elliptical contours: on the left is a convex
stratification dominant example, with G = [é;’ &1 on the right is a rotation dominant
example showing highly non-canvex shapes, with G = ['-‘ *“]

LES L

the Fourier transformed field. In an isotropic scaling system we can express the E(k)
as:

E(k)~ kP (10)

This parameter, the “spectral slope,” B, is useful for describing as well as
simulating the process and is related to the moment scaling function by (Monin and
Yaglom, 1975; Lavallée et al., 1993b)

B=1-K(2)+2H (11

where K(g) is the moment scaling function for the conservative process and H is
the degree of non-conservation of the mean of the process. Thus, given the universal
parameters o and C; we may determine K(2) from Eq. 3 and hence the exponent H
from the measured spectral slope.

To estimate & and C,, it is often convenient to use a double trace moment
technique (Lavallée, 1991; Lavallée et al., 1992). The field € is renormalized by first
raising its values at the finest resolution to the power 1 and then integrating (or
degrading or dressing) up to a scale A. This renormalized field will then be described
by its own moment scaling function, K(g, n). The relation between K(g, n) and the
usual statistical scaling exponent K(g) is (Halsey, 1989; Lavallée et al., 1992):

K(g,m) = K(qn)-aK(n) (12)

For the case where the process is a universal multifractal we have:
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K(q,n)=ﬂ“f((9)=n°-£—l(q“~q) (13)

The scaling exponent in this case has two components: one depends on the
universal parameter o: only while the second is K(g), the usual scaling exponent. By
isolating the first component we can determine the value of the parameter o directly
and then deduce C,. By plotting K(g, M) vs. 1 on a double logarithmic plot, we find
the value of ¢ from the slope of the line. Using this estimate of ¢ and the value of
g, we can deduce the value of C, from the intercept of the line with 1) = 1.

It must be noted, however, that in the case where B>1, (ie., where H > 0; see
Eq. 3 and note that K(2) > 0) we cannot be dealing with a conserved process, and
our estimates of o and C, will be inaccurate.’ The field must be fractionally
differentiated in order to yield a conserved process (i.e., it must be filtered by ¥ in
Fourier space in order to remove the effect of the fractional integration k) and to
obtain stable and accurate estimates of the multifractal parameters o and C | (see
Lavallée et al., 1993b; Naud et al., 1996). In this case, however, to avoid technical
complications with Fourier techniques (arising from the necessity of zero-padding
our field and the associated numerical “ringing” this causes), the fractional differ-
entiation in Fourier space was avoided. Instead, the modulus of the gradient of the
fields was taken, having approximately the effect of a fractional differentiation of
order 1. As long as H < 1, this is adequate for using the double trace moment
(Lavallée et al., 1993b).

Strictly speaking the scaling exponents are determined from an ensemble aver-
age. It is necessary to have a large number of independent measurements of the field
because of intermittency and the extreme variability of multifractal fields. Certain
orders of singularity, corresponding to very high field values, may in fact have a
codimension larger than the dimension of space, and will almost surely not appear
in any given realization/example of the field. Nevertheless, these values will appear
in a sufficiently large number of realizations and can be statistically important, even
dominating the higher order statistical moments.!!

SIMULATION

Once the multifractal parameters of the fields have been measured, we wish to
simulate the type of geophysical field being studied, producing realizations of a
stochastic anisotropic multifractal process. It should be emphasized that the aim of
this is not to produce a facsimile of the fields analyzed; rather, it is to produce fields
(each one a realization of the simulation process) of the same “type,” i.e., with the
same statistics — at all scales and intensitites — as the measured field (given by

' Specifically, there will be trivial scaling (X = 0) for all q below a critical {usually low) value.

"' They will in fact generally cause a divergence of the high order moments of the field (Schertzer and
Lovejoy, 1985a, 1987), associated with a non-classical form of self-organized criticality (Schertzer and
Lovejoy, 1996). Thus, in order to obtain a full characterization of a field’s multifractal parameters, we
require a sufficiently large number of independent observations, so that the singularities corresponding
to this critical moment of divergence g,, will appear,
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¢(y), which determines the probability distribution of field values — see Eq. 1).
Since we use the framework of linear GSI, the anisotropic characteristics of the data
will also be reproduced; this leads to realistic texture and morphology. In order to
produce realizations that correspond to the measured parameters of our data, the
technique of simulating continuous universal multifractal cascades was used
(Schertzer and Lovejoy, 1987; Wilson et al., 1991; Pecknold et al., 1993). This
simulation technique consists of generating an independent identically distributed
Lévy noise,'? with a Lévy index corresponding to the universal parameter ¢, and
performing a fractional integration using an appropriate power-law filter function to
produce a log-divergent generator (the logarithm of the field). This generator is then
exponentiated, and the resulting multifractal field may then be “H-filtered” (i.e.,
fractionally integrated or differentiated by the order H to produce a non-conservative
field, as explained above), in effect causing a scale-invariant “smoothing” or “rough-
ening,” respectively, of the field. For fields exhibiting scaling anisotropy, the filter
function is modified to take into account non-isotropic notions of scale implied by
the GSI parameters of the system being modeled. A graphical representation of the
simulation procedure may be found in Plate 13*. This type of simulation was
performed for all the data types analyzed, using the universal multifractal and GSI
parameters determined. We may note that space/time realizations can be made by
further modifications of the filter to ensure that causality is respected; see Marsan
et al. (1996); Tessier et al. (1996).

DATA AND RESULTS
Landscape Topography

It has been known for almost half a century that topography has a power law
spectrum over a wide range of scales (Venig-Meinesz, 1951), indicating scaling of
at least the second-order moment. Indeed, topography has been a frequent subject
of study by fractal analyses (see e.g., Goodchild, 1980; Aviles et al., 1987; Okubo
and Aki, 1987; Turcotte, 1989; De Cola, 1990). However, since topography is better
described as a scale-invariant field, rather than a scale-invariant geometric set of
points, a priori there will be no unique fractal dimension for topography. Rather,
each set exceeding a different altitude threshold will have its own fractal dimension,
decreasing with increasing altitude threshold: it will be a multifractal field.
Multifractal analyses of topography (Lovejoy and Schertzer, 1990; Lavallée et al.,
1993b; Lovejoy et al., 1995) have convincingly confirmed this in several regions of
the world.

To illustrate this, we analyzed the power spectra and the universal multifractal
parameters of landscape topography. The power spectrum analysis used 20 contig-
uous 512 X 512 sections of U.S. topography data, from the area near latitude 40°
N, and longitude 110° W, at a spacing of 3 arc seconds, corresponding to approxi-

12 L vy distributions are the result of the generalized central limit theorem for the sum of i.i.d. random
variables; the Gaussian is the familiar special case, corresponding to o = 2.
* Color plates follow numbered page 168.
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mately 90-m resolution. An example of the data is shown in Plate 14*. The power
spectrum of all 20 of these realizations of this data is shown in Figure 6; we note
that this shows excellent scaling of E(k) over the whole range of 2.5 orders of
magnitude. The spectral slope is given by B = 191, in close agreement with the
approximate value of B = 2 noted in the literature!? (Venig-Meinesz, 1951; Bell,
1975).
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Figure 6 The power spectrum for 20 realizations of topography data. The spectral slope
determined by linear regression is B = 1.91. Note the slight curvature at the large
wavenumber end is probably associated with noise at the highest resolution of the
data (corresponding te 2 x @ m),

Having determined the spectral slope, it remains to find the multifractal param-
eters o and C,. Because of the strong variability and intermittency of multifractal
fields, analysis of data, as mentioned above in Data Analysis, is best performed on
a large number of independent realizations. Indeed, because scaling is a statistical
symmetry, on any individual realization the scaling is necessarily broken; the values
obtained for a, C, and H will only be statistical estimates. Additionally, in order to
estimate «, it is necessary to have good statistics for the lower order singularities
of the field.!" This can lead to difficulties, particularly in topography data. Regions
of low gradient are generally sampled at a much lower resolution than highly variable
areas, and this, in conjunction with quantization difficulties (this dataset, for example,
has altitude measured only to the nearest meter) can result in large areas with an
erroneous exactly zero gradient. Although the scaling for high ¢ 5 0.3 were unaf-
fected (since they are insensitive to the low gradients), the estimate of o is sensitive
to the low g scaling and such artificially zero gradients, which can cause a significant
decrease in the estimate of the parameter ¢ (here, from the true value of & = 1.7 to

'* In Lovejoy and Schertzer (1995) it is shown how the value P = 1.91 can be accounted for via multifractal
intermittency corrections to a basic B = 2 law.

' This is because o is the order of nonanalyticity of K(g) at g = 0 (see Eq. 3) and the g = 0 statistics
are dominated by the frequent low values of the gradients,

* Color plates follow numbered page 168,
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about 1.35). In analyzing our dataset at the nominal 90-m resolution, it was noticed
that up to 20% of our field was exactly zero gradient; accordingly, a 2048 x 2048
section was taken and coarse-grained to 256 x 256, giving a scale range of about
0.7 to 120 km. The data are currently being analyzed using a Fourier filtering
technique to sidestep the problems given by such low gradients. Preliminary results
correspond to those given here, and indicate that the need for coarse-graining will
be obviated, allowing for the use of the entire scaling range of data.

An example of the multiscaling of the data is noted in Figure 7: the trace moment
of the mean of various moments of the field (the trace moment is the average over
the realizations of the 11 moments of the field, degraded to a scale ratio A and then
the g-th moment summed) shows excellent scaling (power-law behavior) of each
moment over the entire range of data.

7V —
9.6 - -

—— n= 0.99
MEE —— 7= 116

Tr{(e A")l")

9.2 ;.__‘-.’.—_‘__-.—‘—"’*_—_.":
4 4

s.s'xl..l....l....l.
0 0.5 1 1.5 2 2.5

log A

Figure 7 Scaling of the trace of the moments of topography data, for 3 different moments uf
with g = 1.5. A = 1 comesponds to 180 km.

A double trace moment analysis (defined in Data Analysis) of the data yielded
the values o0 = 1.70 £ 0.05 and C, = 0.07 £ 0.01; the logK(g,n) vs. logn curve is
shown in Figure 8. A comparison of the moment scaling function of one section of
the field with the theoretical K(q) curve (see Eq. 3) is shown in Figure 9. The value
for o is slightly lower than that found in a study of the topography of Deadman’s
Butte (0= 1.9, from Lavallée et al., 1993b), but identical to that found from estimates
of the universal multifractal parameters of the topography of France (see Table 1).
These were for a single realization in each case. Analysis of data of the entire
continental U.S. at 90-m resolution is proceeding. Together with the spectral slope,
the parameters measured via double trace moment yield a value of H = 0.52 + 0.05,
in close agreement with previously found values, as well as with theoretical argu-
ments based on dimensional analysis (Lovejoy et al., 1995). We may note that this
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Figure 8

Figure 9
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Graph of the double trace moment, logK(g:n) vs. logn, for ¢ = 1.5. The slope of the
fit gives & = 1.70, and its intercept gives Cy = 0.07.
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Comparison of theoretical moment scaling function with parameters determined from
the double trace moment, with the measured scaling moment function of a degraded
256 x 256 section of topography data. The experimentally determined values are
given by the circles. The curve is the theoretical value from Eq. 3, using o = 1.70
and C, = 0.07. This clearly shows that the field is multifractal: a monofractal field
would have a linear K(q) function.

multifractal behavior rules out the popular self-affine surface models, since they are
fundamentally monoscaling and thus have linear K(g) curves.

Having found the universal multifractal parameters of our topography data, one
of the sections was chosen for an analysis of its GSI parameters. 1t is pictured in
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Plate 14* together with its spectral energy density, which shows the anisotropies in
the system. In an isotropic system, the Fourier transform would have circular sym-
metry, rather than the roughly elliptical ones actually observed. This analysis was
performed using the scale invariant generator (SIG) technique described in Lewis
(1994). In SIG, an initial guess of the generator G is used to relate neighboring
scales, and an error function based on the actual 2-D spectral density and the
theoretically expected 2-D spectral density is defined, and a minimization over the
GSI parameter space is performed to find the best fitting parameters ¢, £, and e. Here
it was found that ¢ = 0.15, f=—0.10, and e = 0.41, giving a rotation dominant system
(a* =-0.14), with expected errors of roughly +0.05 on ¢ and f, and 0.1 on e, which
is a less well-estimated parameter (Lewis, 1994). Several examples, simulated using
the values for multifractal and GSI parameters measured here but with different
random seeds, are found in Figure 10. The difference between the realizations
illustrates that any given examples using the same parameters have only the same
statistics. A comparison of the 3-D ray-tracing representations of the realizations
with that of the dataset reveals some resemblance at the larger scales. However, the
flat regions that are seen at the smaller scales are not in general present in the
simulated examples. It is suspected that this is caused by the erroneous areas of
exactly zero gradient present in the data. Finally, not unexpectedly, the simulated
realizations do not show river networks; algorithms to estimate the latter from the
realizations exist and could perhaps yield even more visually realistic results.

Cloud Radiances

The multifractal nature of clouds must be taken into account when modeling
their effects on the weather and climate (not to mention when dealing with their
tendency to obscure surface phenomena in satellite imaging), and thus a good
understanding of the statistical nature of cloud fields is important from a meteoro-
logical perspective. Beyond the importance of characterizing the basic variability
via o, C; and H, GSI provides the attractive possibility of obtaining a quantitative
basis for cloud classification, which is currently performed primarily by qualitative
visual observation (or by operator assisted pattern recognition algorithms) on satellite
data. This quantification may be regarded as a scaling extension of previous
approaches involving measures of roughness and texture determined at a unique
scale, or over a narrow range of scales. In contrast, GSI gives a measure of the latter
over an arbitrarily large range of scales.

To illustrate this possibility, a set of analyses were performed on a series of
visible channel satellite cloud images. These images were taken by the NOAA-9
satellite off the coast of Florida, longitude 70 West and latitude 27.5 North, during
February 1986. The images analyzed were 512 x 512 pixel AVHRR channel 1,
visible light images with wavelength 0.5 to 0.7 pm. The range of scales was 1.1 to
560 km.

These images were previously isotropically analyzed (Tessier et al., 1993) and
shown to have good scaling, and universal multifractal parameters given by o: = 1.13

* Color plates follow numbered page 168.
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Figure 10 Four realizations of simulated landscape topography, using the parameters mea-
sured for the dataset o = 1.7, C, = 0.07, H = 0.5, using different random seeds and
incorporating anisotrophy using GSI parameters ¢ = 0.15, f=-0.10, e = 0.4. They
are visualized with ray-tracing techniques.

+0.20, C, = 0.09 £ 0.10, and H = 0.4 £ 0.2. An example of the scaling of the
(isotropic) power spectrum of one of these images is given in Figure | 1. The image,
along with its spectral power density, is seen in Plate 15%. In a general cloud scene
various cloud types coexist; this is an indication that we are dealing with non-linear
(position-dependent) GSI. We therefore extracted from the original twelve images
sixteen 256 x 256 pixel sub-images with fairly homogeneous cloud types (as deter-
mined by a professional meteorologist'?) and analyzed their GSI parameters, working

15 Dr. A. Bellon. McGill Weather Radar Observatory.
* Color plates follow numbered page 168.
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Figure 10 (continued)

under the hypothesis that various cloud types correspond to different linear approx-
imations to GSI. The results are shown in Table 2.

Although considering the number of parameters measured, namely B, c, f, e, and
the spheroscale, this is a small sample, we still see a clear clustering of parameters
by cloud type; for example, the cumulus cases are all rotation dominant (a® < 0,
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Figure 11 The power spectrum of a visible light cloud radiance field, wavelength 0.5 to 0.7
um, range of scales 1.1 to 560 km. The spectral slope determined by linear regres-
sion is fp = 1.77.

Table 2 Parameters of 16 subsections of NOAA-9 AVHRR channel 1 cloud radiance data,
arranged by cloud type, giving p, the slope of the power spectrum, the GSI
parameter a, and the size of the spheroscale. The parameter a is accurate to
within + 0.05 and i2 = 1. The mesoscale convective complexes (MCC) were self-
similar (isotropic) to within statistical error, so that any scale may be taken as
a spheroscale

Stratification dominant clouds Rotation dominant/isotropic clouds
Spheroscale Spheroscale

Cloud type B a {km) Cloud type B a { km)
Cirrus 192 0.10 6.3 Cumulus 1.04 0.19i 34
Cirrus 177 0.65 10 Cumulus 1.21  0.05f 31
Cirrus 157 0.25 4.7 Cumulus 1.04 0.28§ 28
Altocumulus 1.88 0.05 0.8 Stratus 1.79 0.0 23
Stratus 1.68 0.05 7.0 MCC 156 0.0 any
Stratus 1.65 0.05 2.9 MCC 183 0.0 any
Stratus 1.60 0.15 14
Stratus 1.84 025 9.4
Altostratus 191 010 94
Nimbostratus 1.88 0.25 7.6

with a comparatively large spheroscale.'s Likewise, both examples of a mesoscale
convective complex were nearly isotropic, while in general the cirrus clouds were
more strongly stratification dominant than the stratus clouds (g* was larger). Simu-
lated examples of cumulus and stratus types of cloud using some of the parameters
given in Table 2 and the values for a, C, and H given above may be seen in Plates
16 and 17*. We may note that, comparing the simulated cumulus to the example
16 Recall that the spheroscale is a scale at which structures are isotropic, and it need not exist. However,
in all the cloud cases examined it was determined that a spheroscale could be approximately found at
the scale indicated in Table 2, evidenced by the existence of a circular iso-energy contour in the 2-D

spectral energy density.
* Color plates follow numbered page 168.
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given, and likewise comparing the example of stratus cloud to that simulated, the
general structures correspond rather well. Certain of the structures evident in the
actual data are not present in the simulated examples. This is to be expected, since
any given realization, actual or simulated, will not be identical to another. This large
variability between different realizations of the same process is highlighted by the
differences between the simulated clouds of each type, which were created using
the same parameters. Still, the simulated cumulus consists, as does the real cumulus,
of clusters of fairly small clouds arranged in bands. Likewise, the stratus example
is a large scale complex consisting of a few fairly large, stratified structures, which
can also be noted in the simulated stratus. It is obvious that the large parameter
space involved in GSI requires that a large number of images of varying cloud types
be analyzed to draw further conclusions.

It is also true that a complete classification and modeling scheme using GSI may
have to take into account the properties of these cloud radiance fields not just in the
visible spectrum, but also in the infrared, as indeed was necessary for qualitative
visual classification. This is particularly true as regards the distinction between the
lower altitude water clouds, such as cumulus and stratus, and the higher altitude ice
clouds, cirrus. Currently, techniques are being developed for the analysis and mod-
eling of vector multifractals (Schertzer and Lovejoy, 1995a), which should provide
for a better understanding of the interrelations between different parts of the cloud
radiance spectrum, as well as to provide more visually realistic simulated clouds.
Indeed, it is naive to expect a scalar multifractal framework (such as that presented
here) to be completely adequate for studying clouds; the effect of the vector wind
field is frequently apparent (e.g., in cyclones). The extension of linear GSI to non-
linear GSI may also allow for a greater ability to realistically describe these fields,
allowing different types of basic anisotropy for different regions of the field.

A further application of the modeling of cloud systems currently being under-
taken is the simulation of radiative transfer in multifractal clouds (for a 2-D version,
see Davis et al., 1992; Naud et al., 1996; in 3-D, see Stanway et al., 1996). A 3-
dimensional anisotropic cloud liquid water field is generated using the measured
multifractal parameters (by the process described in Simulation), with a stratification
in the vertical direction with respect to the horizontal (see Figure 12 for an image
of the simulated cloud, and Figure 13 for the radiation field). Photons are then
forward scattered through the cloud, using an isotropic phase function, with the
intensity being estimated at the detector using spherical harmonics to help smooth
out the high-frequency Monte Carlo noise. The resultant radiation fields may then
be compared with satellite data. We are convinced that explicit cloud and radiation
models of this type are essential for understanding cloud/radiation interactions (see
also Davis et al.,, 1990; Gabriel et al., 1990; Lovejoy et al., 1990; Davis, 1992;
Lovejoy and Schertzer, 1995; Naud et al., 1996 for more on radiative transfer in
fractal and multifractal clouds).

Aeromagnetic Anomaly

The magnetic field of the Earth is a superposition of the main field internal to
the planet, of fields arising from electrical currents flowing in the ionized upper
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Figure 12

Figure 13

Three-dimensional multifractal cloud simulation, using universal multifractal param-
eters measured from satellite data. Only regions exceeding a minimum liquid water
density are shown, the gray scale is proportional to the log of the density. The
parameters are o = 1.35, C, = 0.10, H = 0.40, and the vertical stratification is
characterized by Hz = 0.55 (close to that for the wind field).

The results of Monte Carlo scattering of 150 000 000 photons through the cloud in
Figure 12 with the mean optical thickness at the vertical as 1.0, seen from above.
The sun was incident at 0.0 radians, with the results smoothed to partially remove
the high-frequency Monte Carlo noise. Note that more realistic clouds would have
highly forward-peaked phase functions.

atmosphere, and of fields induced by currents flowing within the Earth’s crust. We
analyzed airborne data of (the modules) of these magnetic fields, with the (transient)
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atmospheric effects statistically removed (by a complex set of pre-processing filter-
ing operations'?). Seven data sets from varying regions of Canada were analyzed
for their multifractal parameters. The aeromagnetic fields, whose properties are
discussed in depth in Pecknold et al. (1996), were obtained on 256 x 256 (maximum)
sized square grids which were coarse grained to 128 x 128 over an approximately
200 x 200 km area, yielding a maximum resolution of ~1.6 km (see Plate 18* for
an example). The coarse graining was performed to eliminate significant artifacts at
the highest frequencies, due most likely to the limited resolution of the measuring
device, oversampling, or noise. Additionally, as can be seen from the power spectrum
of the data (Figure 14), a fairly sharp break in the scaling occurs at about 10 km.
This is believed to be caused by a high-pass filter used in the pre-processing to
remove the transients as mentioned above. Below we study the multifractal behavior
only over the range of scales in the high frequency regime.

log, E(k)

Iogwk

Figure 14 The power spectrum of seven aeromagnetic anomaly fields. The spectral slope for
high frequencies is i = 2.0; for low frequencies B = 0.53. The relative flatness of the
low frequency regime is believed to be an artifact of the data pre-processing to
remove transients.

The universal multifractal parameters of the aeromagnetic field were measured
(Pecknold et al., 1996) as o = 1.9 £ 0.1, C, = 0.10 £ 0.02, and H = 0.70. An analysis
of the GSI parameters for one of the datasets was performed (latitude 87° W,
longitude 50° N) yielding values of ¢ = 0.05, f= 0.10, e = 0.22, a rotation dominant
system. In this dataset, however, no spheroscale appears to exist (this is confirmed
by statistical analysis). We may see this by looking at the spectral energy density
in Plate 18*: the shapes of the balls describing the anisotropy in this dataset are
somewhat rhomboid-like (this may be seen best towards the center of the image,
since the larger spectral density contours, corresponding to small-scale structures,

17 Using proprictary software.
* Color plates follow numbered page 168.
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are fairly noisy). The system was found to be reasonably well described by a family
of fourth order polynomial balls, as described in Pecknold et al. (1996); the simple
quadratic family of ellipses is insufficient to describe this system. The acromagnetic
field was simulated using the GSI and universal multifractal parameters measured
for this dataset, and this is also shown in Plate 18. The general structure is seen to
be quite similar to that of the dataset.

Sea Ice

Finally, the radar reflectivity of sea ice was examined. Recent work has shown
scaling of synthetic aperture radar reflectivity fields of sea ice over almost three
orders of magnitude (Falco et al., 1996), and found multifractal statistics over the
range of ~12 m to 6 km. These multifractal parameters and the GSI parameters of
two different scenes of SAR reflectivity fields from sea ice, in several wavelength
and polarization combinations, were estimated. The fields were 512 x 512 pixels,
with a resolution of 12.5 m. The measurements were by the Jet Propulsion Laboratory
airborne SAR operating simultaneously at the C band (5.6 cm) and L band (25 cm)
wavelength ranges, transmitting and receiving from separate antennas in three linear
polarization combinations: HH, VV, HV, where the symbols represent horizontal (H)
and vertical (V) polarizations in the transmitted and received beams respectively.
The data images were taken from an altitude of 9 km over the Beaufort Sea (76° N
- 165° W) in March 1988 (Drinkwater et al., 1991). One of the images analyzed is
shown in Plate 19%. In the image, ridges, lees and ice types of various ages can be
identified. The scaling of the power spectrum of this example is shown in Figure
15, giving a spectral slope of B = 0.83. In some cases, the scaling of the power
spectrum is affected by the large anisotropies present in the system. The universal
multifractal parameters for sea ice were given by 0 = 1.85+0.05, C, =0.01 £ 0.01,
and H = —0.05 to —0.15, with only the value of H varying with polarization and
wavelength,

The GSI parameters were not very sensitive to the polarizations, but did vary
from scene to scene. In the case of our image, the parameters were found to bec=
0.21,f=0.0, and e = 0.0. This field was also analyzed for its unit ball, and it was
found that it was best described, as in the case of the aeromagnetic anomaly dataset,
by fourth order polynomials. In fact, the original aim of extending the simplest case
of linear GSI, described by elliptical families of balls, to the families of quartic balls,
was to provide a description of the ridges, fissures and lees present in SAR ice
images (Pecknold et al., 1996). These structures do not seem to be adequately
modeled by the framework of linear GSI with a spheroscale, since they have pro-
nounced nonconvex Fourier space isolines (corresponding to the balls; see €.g.,
Figure 5 above). A simulated sea ice field made using the parameters given above
is found in Plate 20*. We note that the large scale structures, in particular the floes
and fissures, are not reproduced, although some degree of clustering into larger scale
structures may be noted, as well as certain aspects of the texture, We suspect that

* Color plates follow numbered page 168.
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Figure 15 The power spactrum of a sea ice radar reflectivity field. The spectral slope deter-
mined by linear regression is p = 0.83.

use of tensor, rather than scalar, multifractals may lead to significant improvement
since the ice field is determined largely by stress and strain tensors.

SUMMARY

The quest for more realistic ways to represent and model geographical and
geophysical systems, together with the fact that most remotely sensed fields exhibit
scaling over the physically significant ranges, has led to the recognition that multi-
fractals are a fundamental theoretical tool. The framework of scalar universal mul-
tifractals, together with linear generalized scale invariance, permits fairly realistic
modeling both of the statistical properties and of the visual characteristics of many
geographically and geophysically significant fields. It does this with only six basic
exponents — three describing the infinity of fractal dimensions, and another three
describing the anisotropy (and therefore texture and morphology) over the entire
scaling range. We have a relatively simple yet surprisingly realistic description of
the field — and of its aggregation/resolution dependent properties — over arbitrarily
wide ranges of scales. In comparison, standard modeling techniques start from
approximate non-linear deterministic partial differential equations and then seek to
integrate these over a numerically manageable range of scales, typically only about
two orders of magnitude. They necessarily make unrealistic homogeneity assump-
tions about the unresolved scales which can in fact result in a feedback of large
uncontrollable errors on the resolved scales.!® Even when this is accomplished they
still give no information about how the results can be extended to smaller (or larger)
scales. The main extensions of the multifractal framework which will be necessary
'8 These assumptions go under the general rubric of “parameterization”; the existence of self-organized

critical (small scale) fluctuations generally predicted by multifractal cascade theory indicates that such
deterministic parameterizations cannot generally succeed.
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are from scalar to vector and tensor multifractals (and their more complex univer-
sality classes), and from linear GSI (position independent) to a full non-linear
(position dependent) version. In short, it is easy — without leaving the general
scaling multifractal framework — to introduce more parameters and increase
realism.

Further work is still necessary to obtain a more accurate and comprehensive
picture of the place of universal multifractals and GSI in the study of geographical
and geophysical systems. For example, the analysis of GSI parameters of clouds to
determine the relationship between this anisotropic parameterization and the cloud
classification is ongoing. Likewise, the problem of recognition of sea ice may be
examined by relating its anisotropies to its morphology, and an analysis of aero-
magnetic anomalies may provide some clues as 10 the underlying structure and
composition of the Earth’s crust.

More complete analysis of available topography data will also be performed.
Currently, the entire continental U.S. at a resolution of 3" of arc is being analyzed
for scaling and for its multifractal parameters. Preliminary estimates of the topog-
raphy of the Earth at a resolution of 5" are also continuing, and show consistency
with the results obtained thus far for smaller data sets.

Finally, new methods are being developed for analysis and modeling, such as
techniques for analyzing and simulating multifractal fields on a sphere, a necessity
in conjunction with the extension of global data (see Plate 21%* for an example of
simulated topography on the sphere, Tan et al., 1996). Additionally, methods dealing
with vector and tensor fields (“Lie cascades.” Schertzer and Lovejoy, 1993a) promise
to provide further insight into the more complicated physics that underlies the
systems that we observe. The present techniques of multifractal modeling, dealing
as they do with scalar fields and cascades of scalar quantities, are insufficient to deal
completely with interrelated fields such as the multiple channel satellite-imaged
cloud radiance fields. Likewise, dealing with vector fields such as velocity fields
also suggests the need for further developments in the modeling of multifractals.
Thus, this framework of Lie cascades provides hope for yet more realistic and
accurate modeling of the world around us.
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Plate 11 (Chapter 16)  Simulated fields with varying multifractal parameters.
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The palette is rainbow, with high values red and low values purple. From top
to bottom, « = 0.06, 1.2, and 1.8. C,= 0.05 on the left and 1.2 on the right.
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&m 12 (Chapter 16)  Varying the H-filter of the simulated field: o = 1.7, H= 0.05. Clockwise from top
leit H=-1.0, H= 0.0, H=1.0, H=2.0
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Top. An example of U.S. landscape topography data, with 90-m resolution and size 512 x 512,
visualized with ray-tracing. High values are brown; low values are green.

Bottom. The 2-D power spectrum of the data, showing anisotropies by the non-circular shapes.
8| parameters are ¢ = 0.15, f= -0.10, and e = 0.04. The theoretical balls have been overlaid,



Plate 15 (Chapter 16)

Top. An example of AVHRR channel 1(visible spectrum) cloud data from NOAA-9 satellite, 1.1-km
resolution, size 512x512.

Bottom. The 2-D power spectrum of the top image, showing stratification and differential rotation:
the GSI| parameters are ¢ = -0.04, f=0.14, and e = 0.35. Theoretical curves corresponding to this
have been overlaid.

Plate 16 (Chapter 16)

Comparison of stratus cloud data (top) with
simulated stratus (right top and bottom), using
INe measured parameters: o = 1.13, C, = 0.09

1

H=0.4, and GS| parameters of ¢ = 0.10, f= 0.0,
and e = 0.05, with a spheroscale of = 5km.




Plate 17 (Chapter 16)

Comparison of cumulus cloud data (top) with
simulated cumulus (right top and bottom),
using the measured parameters:

a=1.13, C,=0.09, H=0.4 and GSI
parameters of c= 0.10, f=-0.5, and

e = 0.30, with a spheroscale of = 30km.

Plate 18 (Chapter 16)

Aeromagnetic anomaly data. Clockwise from top
left, an aeromagnetic anomaly data set, its 2-D
power spectrum, and a simulated field made using
{he measured parameters: o. = 1.9, C, = 0.15, and
H=0.65; and ¢=0.05, f=0.10, and e = 0.22.
Iote that for larger scales, the noise in the power
spectrum of the data set alters the apparent shape
of the ballls.

Plate 19 (Chapter 16) Sea ice radar reflectivity data. On the left is a data set, C band, polarization HH,
with resolution of 12.5 m and size 512 x 512. On the right is its 2-D power spectrum. The GSI param-

eters measured were ¢= 0.21, f= 0.0, and e = 0.0.




Plate 20 (Chapter 16) An example of simulated sea ice radar reflectivity, using « = 1.85,
C, =0.01, H=-0.10. The GSI parameters used were ¢= 0.21, f= 0.0, and e=0.0.

Plate 21 (Chapter 16) An example of simulated topography on a spherical surface
(from Tan et al., 1996). Here, .= 1.7, C, = 0.10, H=0.5.



