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Abstract

We study wind turbulence with the help of universal multifractals, using atmo-
spheric high resolution time series. We empirically determine the three universal
indices (H, Ci, and a) which are sufficient to characterize the statistics of turbu-
lence. The first, H, which characterizes the conservation of the field, is theoretically
and empirically known to be = 1/3, while C; corresponds to the inhomogeneity of
the mean field (C; = 0 for homogeneous fields, and C; > 0 for inhomogeneous and
intermittent fields). The most important index is the Lévy index a corresponding
to the degree of multifractality (0 < a < 2, @ = 0 for a monofractal). The two
latter indices are directly obtained by applying the double trace moment technique
(DTM) on the turbulent field. Analyzing various atmospheric velocity measure-
ments we obtain: a =~ 1.45 + 0.1 and C; ~ 0.25 & 0.1. These results show that
atmospheric turbulence has nearly the same multifractal behavior everywhere in
the boundary layer, corresponding to unconditionally hard multifractal (a« > 1)
processes. This describes the entire hierarchy of singularities of the Navier-Stokes
equations.
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1. INTRODUCTION

In the limit of high Reynolds number, turbulence is known to be scale invariant.'? One
of the points which has been important in characterizing fully developed turbulence is
to know whether it belongs to universal classes which could describe any high Reynolds
number turbulent flow.>* We test here such a scale invariant model of turbulence, called
the universal multifractal model,>® using different atmospheric turbulent datasets. This
model is determined by only three indices, which completely describe the scaling behavior
of the turbulent fields. We compare the values of these indices for various atmospheric
datasets, in order to confirm the hypothesis of their constancy.

2. THE DATA AND THEIR SPECTRA

The datasets are turbulent velocity measurements made in the atmospheric boundary layer:
the most important one was taken near Montreal, at 3 meters from the ground, with a high-
resolution hot wire anemometer, and the others with sonic anemometers in Paris, and in
Bordeaux (see Table 1 for a description of the experimental conditions).

Table 1 Description of the Characteristics of Three Atmospheric Datasets

Sampling Total
Dataset Frequency Place of Altitude Number of
# Anemometer (Hz) Acquisition (m) Data Points used B
1 Hot wire 2000 Montreal 3 720000 1.70
2 Sonic 200 Paris 20 25000 1.72
3 Sonic 10 Bordeaux 25 360 000 1.70

Their wind energy spectrum follows a power law over a wide range of scales:
E(k)~k™? (1)

with the rate of acquisition, the range of scaling, and 8 given in Table 1. Figure 1 shows
the power spectrum of the dataset #1. The values of the spectral slopes are very close
to the Kolmogorov-Obukhov phenomenological derivations predicting 8 = 5/3.12 We then
assume the validity of the refined® similarity hypothesis®:

Av(e) ~ g,/ eH (2)
where Av({) is the wind shear |v(x + £) — v(x)] at scale £, £, is the local rate of energy

transfer (from scales larger to scales smaller than £). The index H is the mean deviation
from conservation of the velocity shears, and is related to 8 by 8 2 2H +1 (e.g. see Ref. 7).

#Kolmogorov 1941 assumed ¢ to be homogeneous in space, i.e., € = &, whereas Eq. (2) takes into account
the small scale intermittency of turbulence with the introduction of a very intermittent energy transfer field.
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Fig. 1 The wind energy spectrum of atmospheric turbulence corresponding to dataset #1. For a wide
range of scales, it follows a power law relation E,(k) ~ K~ with § ~ 1.68 & 0.05 as predicted by Refs. 1
and 2.
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Fig. 2 A pattern of ¢, the rate of energy transfer from large to small scales, for atmospheric turbulence:
this is a very intermittent (and scaling) field.

This gives us H = 0.33 £ 0.03 for the three datasets, as predicted by phenomenological
models. In order to study the statistical properties of the very intermittent dissipation field
€¢, we perform a fractional differentiation of order 1/3 of the wind field (i.e., a multiplication
by k/3 in Fourier space,) and then take the third power: the result is a very intermittent
field, whose pattern can be seen in Fig. 2 for atmospheric measurements corresponding to
dataset #1. ‘
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3. UNIVERSAL MULTIPLE SCALING OF THE FIELD -

We have studied the energy flux € using multifractal measures resulting from a multiplicative
cascade process.®1! When the cascade has proceeded over a scale ratio A = % (the ratio
of the largest scale of interest to the smallest scale) the density of the conserved energy flux
has the singular behavior®1%13;

exr XY (3)

When A — oo (or £ — 0), v > 0 is an order of singularity. The statistical moments of
this field will have the following scaling behavior®:

{(2)7) = AK(@) (4)

where ( ) indicates ensemble averaging, and K (g) is a nonlinear function® which character-
izes all the statistics of the field. '

For universality classes (the stable and attractive limit obtained when mixing cascade
processes, see Refs. 5 and 6), the functions K (gq) depend only on two indices:

Cia .
K@={a-10 "0 o )

C1q 1n(q) a=1

where the Lévy index o (0 < o < 2) can be understood as an interpolation between the
two extremes and well known cascade models of turbulence: the f-model (a = 0)%8°
and the lognormal model (@ = 2)>!*15; and the second index corresponds to the mean
inhomogeneity of the field: Cy = 0 for homogeneous fields, and the larger C, the more the
intermittent field. We have estimated these indices for wind tunnel and atmospheric energy
fluxes, using a generalization of the (simple) scaling exponent K(q).

4. ESTIMATION OF o« AND C; WITH THE HELP OF
THE DOUBLE TRACE MOMENT (DTM)
ANALYSIS TECHNIQUE

The basic idea of the DTM technique'®!” is to generalize the application of statistical
methods to the quantity (e4)?. This is done by taking the nth power of 5 at the scale
ratio A (the outer or largest scale of interest to the smallest scale of homogeneity), and then
studying its scaling behavior at decreasing values of the scale ratio A < A:

(€2)"

((ex)m)

The moments of this new field then have the following multiple scaling behavior:

((ea)") (6)

) =

([19) ~ AK(am) (7

where K (g, 1) is the ¢, 7 double trace moment scaling exponent related to K (g, 1) = K(q)
by [{(ea)") is a constant]:
K(g,m) = K(qn) — ¢K(n) (8)

bK(q) is related to the strange attractor notation'® by: K(gq) = (¢ — 1)D — r(g) where D is the dimension
of the space.
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Fig. 3 A representation of ([55\',’1]"), vs. Ain a log-log plot for atmospheric energy flux: the straight lines
show that scaling of Eq. (4) is well respected. These straight lines correspond to ¢ = 2 and n = 0.43, 0.49,
0.56, 0.65, 0.74 (from bottom to top).

It gives for universality classes:

K(q, n) = n"K(q) (9)

By keeping ¢ fixed (but different from the special values 0 or 1), the slope of |K (g, 7)]
as a function of 7 on a log-log graph gives the value of the index «, which with the help
of the intersection with the line ( = 1) yields Cy. Varying g then allows for a systematic
verification of Eq. (9), and hence the universality hypothesis.

Figure 3 shows ([ef\’fl)‘]q) vs. A in a log-log plot for atimospheric energy flux corresponding
to dataset #1: the straight lines show that the scaling of Eq. (7) is well respected, and their
slope are the estimates of |K(g, 7). Figure 4 shows the curves log|K(g, n)| vs. log(n) for
different values of the parameter ¢, for atmospheric energy flux corresponding to dataset
#1: the straight lines show that Eq. (9) is well respected for a wide range of 7-values, and
their slopes give the estimates shown in Table 2.

Table 2 Estimates of the Indices « and C; obtained for the
Different Datasets presented in Table 1, showing that their
Values are likely to be Steady in the Atmosphere (at least in
the boundary layer)

Maximum
Dataset Scale Ratio «@ C:
1 2048 1.50 + 0.05 0.25 1 0.05
2 1024 1.45+0.1 0.29+0.1
3 512 14+£01 0.24%0.1
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Fig. 4 The curves Log|K (g, n)| vs Log(n) for ¢ = 2, 2.5 and 3 (from bottom to top) for atmospheric
turbulence. The straight lines show that Eq. (9) is well respected for a wide range of n- values, and their
slopes give the following estimates: o = 1.50 £ 0.05 for atmospheric turbulence corresponding to dataset
#1. We can then estimate C; = 0.25 = 0.05.

According to error estimates presented in Table 2, we propose the following values for
the indices a and C; in the atmospheric boundary layer: o ~ 1.45 £ 0.1 and C; =~ 0.25 &
0.1. We note that these values are in the same range that estimates obtained for wind
tunnel turbulence'®2%: o ~ 1.3+ 0.1 and C; ~ 0.25 + 0.05. These values of o and C;
show that turbulence is a hard multifractal process'®?1"23: because a > 1, divergence of
moments®10:20:24 s expected to occur.

5. MOMENTS OF THE ENERGY FLUXES AND
STRUCTURE FUNCTIONS OF THE WIND FIELD

With the help of these results, we compare empirical statistical moments with K(g) given
by Eq. (5), in Fig. 5: for moments order ¢ < 3.0 + 0.5¢ the empirical and “theoretical”
scaling exponents are in excellent agreement. This critical moment?1?* corresponds
either to a second order phase transition analogue (a maximum moment computable
due to the finite size of the dataset), or to a first order phase transition?” analogue

“Equations (2) and (4) give the scaling velocity structure functions: (Br(D]7) = A4 =z ((e2)/*)A~H9,
which gives the relation ¢(¢) = Hg—K(¥). Thus, in the case of database #1, it is useful to study the structure
function ¢(g) only up to moment order 3gmax = 9.0+ 1.5, unlike Ref. 25, which computed structure functions
up to order 18, and Ref. 26 which used the latter structure function to evaluate a.
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Fig. 5 A comparison between empirical statistical moments (squares) with K(¢) given by Eq. (4) (univer-
sality hypothesis, continuous line); for moments order ¢ < 3.0+ 0.5 for atmospheric turbulence the empirical
and “theoretical” scaling exponents are in excellent agreement. For larger moments, an empirical linear
behavior is observed which can be explained by multifractal phase transitions.

(corresponding to a critical order of divergence of momentsd). This question is studied
elsewhere.28

6. CONCLUSION

Using various atmospheric datasets, we obtain similar values of the three indices (H, Ch, a)
which completely characterize the statistics of turbulence: H = 0.33+0.03, C; = 0.25+0.1
and o = 1.45 £ 0.1 for the three atmospheric datasets studied. These results show that
turbulence is a “hard” multifractal process (¢ > 1), and that it belongs to theoretically
predicted universality classes.

ACKNOWLEDGMENTS

We acknowledge C. Hooge, Ph. Ladoy, D. Lavallée and Y. Tessier for fruitful discussions.
We are grateful to P. Schuepp, M. Duncan, F. Fabry, B. Katz and S. Buino for helping
to collect the atmospheric data in Montreal and the Atmospheric Radiation Measurement
program contract #DE-FG03-90ER61062 for partial financial support.

9This divergence of moments is expected to occur because of some very violent “head” small scale singu-
larities, which are not smoothed by integration: if the number of samples increases, more and more of such
singularities are encountered, and the statistical moments diverges.
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