Stochastic chaos and multifractal geophysics
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1. Introduction

There is no doubt that the ancient debate about the origin of order from disorder (“chaos”
versus “cosmos”) has been considerably invigorated by the rapid progress in our under-
standing of the nonlinear dynamics of deterministic systems with few degrees of freedom:
the “chaos revolution”. Over the last twenty years, in field after field, it has changed our out-
look. Regular, predictable planetary motion is no longer “typical”; irregular, random-like
chaotic behaviour is now the norm. What is particularly striking is that unlike the
Newtonian, quantum or relativistic revolutions, the deterministic chaos revolution has not
been associated with any decisive new applications. This is a good indication that the revo-
lution is only just beginning and that many surprises lie ahead.

In this paper, we argue that the principle reason for the paucity of applications is its
restriction to systems with few degrees of freedom. Based on a series of developments in the
last ten or fifteen years in fractals and multifractals, we develop a rather different framework
for handling nonlinear systems with many degrees of freedom; “stochastic chaos”. While we
believe this alternative to be quite broad - for example it potentially encompasses much of
our atmospheric, geophysical and perhaps astrophysical environment - we do not claim
exclusivity. Rather we view stochastic chaos as complementary to deterministic chaos with
the former being valid in systems involving many interacting components and the latter
being valid when only a few corresponding “degrees of freedom” are important. Both model
types belong in the physicist’s toolbox. So far, the utility of stochastic chaos lies primarily
in its ability to exploit a (nonclassical) symmetry principle called scale invariance, associat-
ed with fractals and multifractals. We will therefore argue that the ubiquity of fractals in
nature is an indication of the wide scope for applying stochastic chaos models!. More philo-
sophical and historical discussion can be found in [Lovejoy and Schertzer, 1998].

2. Deterministic chaos

Although the basic problem was recognized by [Poincaré, 1892] the general property of
nonlinear systems of having “sensitive dependence” on initial conditions only became wide-
ly known in the 1970’s somewhat after the work of Lorenz [Lorenz, 1963]. Popularly known
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as the “butterfly effect” this term denotes the general property of nonlinear systems to
amplify small perturbations. In the area of random-like behaviour of fluids, “turbulence”,
this lead to the idea that the latter arose through a series of instabilities, each one involving
amplification of a tiny noise degree of freedom. “Fully developed [fluid] turbulence” thus
came to be viewed ([Landau, 1944]) as the state obtained after an infinite number of such
instabilities had occured, i.e. when an infinite number of degrees of freedom had been excit-
ed in this way.

By itself, the butterfly effect did not make the “chaos” revolution. Two key develop-
ments were necessary. The first was the discovery that random-like behaviour of fluids
could in principle be the result of only three instabilities hence the focus on systems with a
small number of degrees of freedom. The second was the discovery of universal behaviour.
Lack of universality was disastrous for both theory and experiment since not only would the
behaviour of a nonlinear model depend (nontrivially) on every theoretical model detail but
experimentalists had no way of knowing in advance what experimental conditions were
important and which were irrelevant.

This lack of “universality” was partially overcome by [Metropolis et al., 1973] qualita-
tive idea of “structural universality” (followed shortly by the first experimental confirma-
tion, in a fluid system [Gollub and Sweeney, 1975]). However, the real breakthrough came
when [Feigenbaum, 1978] and independently [Grossman and Thomae, 1977] obtained
quantitative (“metric”) universality making it possible to quantitatively test the theory
empirically. This was soon done in certain fluid systems (e.g. [Gollub et al., 1980]), and in
several others. By the early 1980’s the rapid pace of developments lead to what could prop-
erly be called the “chaos revolution”.

2.2 Later developments and problems.

Although the basic qualitative implications - that random-like behaviour is “normal”, not
pathological - is valid irrespective of the number of degrees of freedom of the system in
question, the focus on small number of degrees of freedom systems - lead to a simultaneous
ballooning of hype concomitant with a drastic restriction of the scope of “chaos” to mean-
ing precisely deterministic systems with few degrees of freedom. This restriction, coupled
with the development of new empirical techniques for “reconstructing the attractor” (i.e.
quantifying the nature of the chaotic dynamics, notably via the Grassberger-Procaccia algo-
rithm, [Grassberger and Procaccia, 1983]), lead to a major focus on applications and to a
number of curious - if not absurd - results.

It is perhaps easiest to understand these aberrations by considering the example of the
climate system. It had been taken for granted that the climate involved a large (practically
infinite) number of degrees of freedom (classical estimates of the number in the atmosphere
alone are about 1027. However, for certain mostly theoretical purposes (especially to deter-
mine whether or not the climate is stable), low number of degrees of freedom models (“zero
dimensional” because they ignored all spatial structures/variations) were sometimes used
(e.g. [Budyko, 1969), [Sellers, 1969], [Ghil, 1976]). However, with the impetus of chaos,
detailed attempts were made (using standard frequency analysis) to compare characteristic
model oscillations with those of climate series [LeTreut and Ghil, 1983]. Soon afterwards,
new chaos tools were applied to the data; the (now classical) attempt was that of [Nicolis
and Nicolis, 1984] in which it was quite seriously claimed, that only four parameters
(degrees of freedom) were required 1o specify the state of the climate?! Somewhat later,
atlempts were made (e.g. [Kaplan and Glass, 1992]) to prove purely objectively from analy-
sis of data - that in spite of appearances - random-like signals were in fact deterministic in
origin.

These attempts were flawed on several levels. At a purely technical level, Grassberger
himsell [Grassberger, 1986] pointed out that Nicolis’ climate analysis was based on far too
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few points (less than 200!) and on artifically smoothed data; one could not in fact techni-
cally substantiate any conclusion on the finiteness of the number of degrees of freedom. A
more important (but still) technical point, was that it had already been forgotten that truly
random (“stochastic”) processes such as Brownian motion with infinite numbers of degrees
of freedom would also give a low finite dimensional result if subjected to the Grassberger-
Procaccia algorithm (e.g. [Osborne and Provenzale, 1989]). However what is paramount is
that these attempts were predicated on a basic confusion: the supposition that nature is (i.e.
ontologically) either deterministic or random. The best that any empirical analysis could
ever hope for would be to demonstrate that specific deterministic models fit the data better
(or worse) than specific stochastic ones. On the contrary, the terms “determinism” or “ran-
dom” denote specific aspects of our theories/models of nature; as scientists it is our job to
find the best type of model, not to dogmatically restrict the types of model to preconceived
categories?,

3. Stochastic chaos

3.1 General considerations

The justification for using small numbers of degrees of freedom chaos systems as mod-
els for complex geophysical, astrophysical, or ecological systems - each involving nonlin-
early interacting spatial structures (fields) - has two related aspects each of which we argue
are untenable. The first is the illogical inference that because deterministic systems can have
random-like behaviour, that random-like systems are - in spite of appearances - best mod-
elled as not random afier all. The second is that - again in spite of appearances - that the spa-
tial structures which apparently involve huge variability and many degrees of freedom span-
ning wide ranges of scale4, can in fact be effectively reduced to a small finite number.

Before making the alternative explicit, let us note an additional scientific development
that helps to make it more plausible: the axiomatization of probability theory by [Borel,
1908], and [Kolmogorov, 1933] which showed that probability is perfectly objective; statis-
tics need not be an expression of ignorance. Following general usage we denote such objec-
tive randomness as “stochastic”. The fundamental characteristic of stochastic theories/mod-
els which distinguishes them from their deterministic counterparts is that they are defined
on (infinite dimensional) probability spaces, hence they are automatically approximations to
systems with large but finite number of degrees of freedom. Formally, to determine whether
or not a theory/model is deterministic or stochastic, it suffices to enquire as to the mathe-
matical nature of the spaces upon which the primitive concepts of the theory/model are
defined (i.e. are they random variables/functions in the strict mathematical sense or not?).
Note also that purely formally, if only because a deterministic outcome is a special case of
a stochastic outcome, stochastic theories/models are in any case more general than their
deterministic counterparts.

The basic alternative for nonlinear dynamics with many degrees of freedom is now easy
to state. The idea, simply put, is to model/theorize random-like systems with large numbers
of interacting components by using objective random models: “stochastic chaos™!

3.2 Physical arguments for stochastic chaos;
the example of turbulence:

Stochastic chaos is particularly advantageous with respect to classical approaches when
a nonclassical symmetry is present: scale invariance. Although classical approaches are

often impotent in handling such systems in comparison, stochastic approaches (involving
scale invariant cascade processes) immediately yield a wealth of information.
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Consider the example of fluid turbulence which must be counted amongst the most dif-
ficult problems in physics. The basic dynamical - and deterministic - (“Navier-Stokes”)
equations have been known for nearly 150 years, yet the fundamental problem remains
whole: how to reconcile the (violent) nonclassical turbulent statistics/structures with the
equations. Two features symptomatic of this difficulty are that a) advances have often been
made using approaches having very little direct contact with the dynamical equations, b) the
alternatives (analytic closures, renormalisation, cascades) precisely involve hypotheses
about the possible stochastic behaviour of... the deterministic equations!

Perhaps one of the most successful of these alternatives is the paradigm of wurbulent cas-
cades which nonetheless respect the fundamental dynamical symmetry of invariance under
changes of scale. It is already remarkable that a rather immediate development of this para-
digm lead to the first quantitative laws of turbulence: the Richardson law of turbulent dif-
fusion [Richardson, 1926] and the scaling law for the velocity field itself [Kolmogorov,
1941]. Basing himself on three statistical hypotheses, Kolmogorov postulated a “quasi-equi-
librium™ for turbulence. The rate of large scale forcing energy leads to a flux of energy flow-
ing through the “inertial range” of intermediate scales towards small scales, where (at a
small “Kolmogorov scale”) it is dissipated. In the quasi-equilibrium regime the three quan-
tities should be equal, at least for an appropriate average.

It is remarkable that for over fifty years very little progress has been made in improving
the (nearly hand-waving) original Richardson and Kolmogorov arguments. This is true in
spite of the development of powerful analytical tools, including varicus “closure” and
Renormalization Group techniques. Without appeal to artificial ad hoc hypotheses?, these
attempts have lead neither to satisfactory derivations of the Richardson, nor Kolmogorov
laws®. The failure of these analytic approaches is even more striking since both are at best
“mean field” laws i.e. even these lowest order laws are still beyond the reach of present ana-
Iytical developments! Indeed, as first pointed out by [Landaun, 1944] and [Batchelor and
Townsend, 1949], these problems can be traced to the presence of a very strong type of inho-
mogeneity called “intermittency”. Not only does the “activity” of turbulence induce inho-
mogeneity, but the activity itself is inhomogeneously distributed. The cascade paradigm pro-
vides a convenient framework to study this phenomology yielding very concrete models and
interesting conjectures. In particular, it is now increasingly clear that a very general outcome
of stochastic cascades are the multifractal measures discussed in section 4.

3.3 Classical examples of stochastic chaos:
random walks and fractals:

Perhaps the best known example of stochastic chaos is the random walk. It also gives us
a simple example of stochastic universality - without which stochastic chaos - like its deter-
ministic counterpart - would be unmanageable and irrelevant. In fact - in order to obtain the
usual Brownian moticn - the only hypothesis necessary is that the variance of each elemen-
tary step is finite. Nevertheless - and this not widely enough known - when the latter hypoth-
esis is relaxed, universality still survives! Indeed, Lévy ([Levy, 1925]) showed that there
exists a universal attractor, called Lévy stable laws, depending only on three parameters, the
most important one, the Lévy index describes in fact how the variance divergences. As dis-
cussed below, these additive results have analogues in multiplicative cascade processes
(hence for multifractals).

The drunkard’s walk is a scale invariant process; which yields a mathematically simpler
object than cascades; the walker’s “Irail” is a scale invariant geometric set; a fractal. In con-
trast to this stochastic fractal set, the first fractal set - the Cantor set - was deterministic and
was originally proposed on purely mathematical grounds. Starting with ([Richardson,
1926], [Welander, 1955] and [Steinhaus, 1960] ), there have been periodic suggestions that
various physical systems ressemble fractal sets. However it wasn’t until [Mandelbrot, 1977]
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that the explicit development and use of scale invariant geometric (fractals) sets as physical
models became widely accepted. As we argue below, the major breakthrough in applications
occured in the 1980’s with multifractals; the extension of scale invariance to fields (see sec-
tion 4) rather than just geometric sets.

3.4 Self-Organized criticality

Contrary to standard deterministic chaos systems, self-organized critical (SOC; [Bak et
al., 1987]) systems are cellular automata with high numbers of degrees of freedom. For cer-
tain classes of discontinuous rules and appropriate boundary conditions, the systems were
found to evolve spontaneously to a “critical state” involving huge fluctuations. Viewed as a
high number of degree of freedom extension of deterministic chaos, the scaling of the SOC
could be considered to be “on the edge of chaos™ (refering to power law rather than expo-
nential decorrelations). However, for several reasons, SOC can be more profitably viewed
as an example of stochastic chaos. First, since the initial conditions must be random in order
to obtain any interesting result, the overall process is in fact stochastic (in spite of the deter-
ministic evolution rule). Recently, a new generation of SOC models have been developed
with stochastic evolution rules, thus the stochastic nature of the SOC paradigm is now quite
explicit. However, perhaps the most significant point is that SOC models share two basic
features with multifractal cascades: scale invariance and extreme variability pointing to a
deep connection between the two [Schertzer and Lovejoy, 1997], see section 4.2.

4. Scale invariance symmetries and cascades

4.1 Cascades, and multifractals

Iniually, Richardson’s cascade was simply a conceptual scheme for explaining the trans-
fer of energy from the planetary scales, down to the small scales (roughly 1mm) where it is
dissipated by viscosity. However as mentioned above, a key feature is the time/space inter-
mittency which motivated the development of explicit multiplicative cascade models?: the
“pulse in pulse” model, [Novikov and Stewart, 1964], | Yaglom, 1966], “weighted curdling”,
[Mandelbrot, 1974], the “B model” [Frisch et al., 1978], the “o. model”, [Schertzer and
Lovejoy, 1983], the “random B model”, [Benzi et al., 1984], the “universal” and the “con-
tinuous™ cascade models [Schertzer and Lovejoy, 1987], the “p model”, [Meneveau and
Sreenivasan, 1987] etc. The simplest (“f model”) is obtained by making the simplistic
assumption that at each cascade step the turbulence is either dead or alive. Since the same
random mechanism is repeated unchanged scale after scale, the process is scale invariant; in
the small scale limit the “active” regions form a geometrical fractal set of points.

Ignoring for the moment the artificiality of the straight construction lines and the factor
of two break-up of eddies into subeddies, we can now make a step towards realism by intro-
ducing a slight modification: we continue to flip coins, but now we multiplicatively “boost”
or “decrease” the energy flux density (g;) than than boosting or killing the eddies (the “co
model™; A=L/l, the ratio of the large scale L to the small scale resolution /). The result is a
multifractal field with an infinite number of levels of activity: the singularities y.

Pr(e, > A7) = A7) N

where c is the codimension; “Pr” indicates “probability” and the “~” sign means equality to
within slowly varying factors. For c<D (the dimension of the oberving space), the set of
points exceeding a given intensity form geometric fractal sets with dimension® D(y)=D-c(y).
For large A structures with larger y dominate those with smaller y so that unlike classical sto-

42



chastic processes such as brownian motion or gaussian noise, we obtain the stochastic
appearance of structures.

This “o model” has all the essential ingredients of the more sophisticated models need-
ed for realism. The main improvement is the use of continuous rather than discrete scale
ratios. Not only does this eliminate the straight-line artifacts, but it generically yields “uni-
versal multifractals” i.e. special multifractals which - just like random walks discussed ear-
lier - occur irrespective of the details of the basic dynamical mechanism and depending on
only two basic parameters® ([Schertzer and Lovejoy, 1987]):

I A
C(Y)=C;(C}:x,+;j y il
| (2)

0<C,<D is the codimension of the mean and O<o<2 is the “Levy index”, O correspond-
ing to monofractality, 2 corresponding to the maximum degree of multifractality, the “log-
normal” multifractal!®.

Just as universality in low dimensional systems allowed for empirical tests; so too with
multifractal universality in these high number of degrees of freedom systems. To date, over
twenty geophysical, astrophysical and other fields and time series have been shown to be
multifractal!! over at least some range of scales (this includes cloud radiances, and liquid
water content, mountains, ocean surfaces, the distribution of galaxies, wind, temperature
and rain fields, river stream flow, lava flows, low frequency speech, music, finance, etc.; see
[Lovejoy and Schertzer, 1995] for a survey).

4.2 The multifractal (stochastic) butterfly effect
and self-organized criticality:

The significance of sensitive dependence on initial conditions, the “butterfly effect” is
that if the system is sufficiently unstable then a small disturbance can grow, totally mod-
ifying the future state of the system. In the atmosphere - which down to the viscous scale
of millimeters is scaling and presumably unstable - this would mean that the sequence of
weather events (which would include -in Lorenz’s metaphor [Lorenz, 1993] Texas torna-
does) would be different. In our stochastic multifractal cascade model, we may identify
an analogous “stochastic butterfly effect” by studying the small scale limit of the cascade
and by determining under which conditions the small scale can dominate the large.

Contrary to “additive” stochastic chaos such as Brownian motion, as cascades proceed
to smaller and smaller scales, the turbulent activity at a given point is not changed by a
smaller and smaller amount, rather, it is modulated by random factors; this leads to the
absence of (pointwise) convergence!2? of lim,_, €,(x). However, there is nevertheless a
kind of weak convergence of measures i.e. averages over finite regions of the completed
cascade will converge. To consider this problem, introduce the flux through a region of
scale A:

,(B,)= feAdng
b 3)

where B, is an intermediate sized “ball” (scale ratio A<A of dimension D). We can now
define the “dressed flux density”:

. 1
8/1(11) = IlmA_mv—ol(E—)'nA(Bl)

A

C))
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These finite averages are called “dressed” quantities to distinguish them from the “bare”
quantities obtained by stopping the cascade at the corresponding scale. The dressed cascade
takes into account all the small scale activity; €, is therefore more variable than g,; specif-
ically, due to the multiplicative nature of the cascades, it can be shown [Scherrzer and
Lovejoy, 1987] that:

Exy = e,N1_(B) ‘ (3)

i.e. the bare density (g;) is modulated a the random scale independent (“hidden™ factor)
which has an algebraic (long-tailed) probability distribution leading to divergence of statis-
tical moments!? and SOC behaviour. In this way, the small scale aclivity occasionally gen-
erates violent (*hard™) events [Schertzer and Lovejoy, 1992] which on the contrary domi-
nate the variability due to the large scale (i.e. in eq. 5, g, is occasionally dominated by
I..(B,)): the “multifractal phase transition route to SOC” [Schertzer, 1994], This is the mul-
tifractal/cascade version of the butterfly effect: most of the time, the flapping of the wings
will lead to nothing special; T1..(B,) will be of order 1 and the perturbation will be small
compared to the existing large scale weather structures. However, in a probabilistically pre-
cise way, the overall effect of all the small scale dynamics (which includes those small
enough to be perturbed by a butterfly’s flapping) will occasionally dominate the effect of the
large scale dynamics. This specific cascade prediction has been verified empirically in a
dozen or so geophysical fields, including in the atmosphere the all important velocity field!4
[Schertzer and Lovejoy, 1985a), (Schmirt et al., 1994].

4.3 Nonclassical (anisotropic) zooms
and Generalized Scale Invariance:

Up until now, we have considered scale invariance intuitively using the example of cas-
cade processes in which a simple (coin tossing and multiplicative modulation) mechanism
is repeated scale by scale. This mechanism is the same in all directions (it is isotropic); the
resulting fractals and multifractals are therefore “self-similar” in the sense that a small piece
when blown up statistically resembles the whole. With the minor exception of “self-affini-
ty” (which involves squashing along a coordinate axis), self-similarity is the very special
case discussed in [Mandelbrot, 1983] and in most of the fractal/multifractal literature.
However, no natural system is exactly isotropic; many physical mechanisms exist which can
introduce prefered directions, the most obvious being gravity which for example leads to a
differentially stratified atmosphere, ocean and earth interior. Sources of anisotropy which
can lead to differential rotation are the Coriolis force (due to the earth’s rotation) or stress-
es (in fluids or rock) induced by external boundary conditions. Contrary to conventional
wisdom (which equates scale invariance with self-similarity, and hence with isotropy), scale
invariance still survives, although the notion of scale undergoes a profound change. The
resulting formalism of Generalized Scale Invariance (GSI; (Schertzer and Lovejoy, 1985b],
[Schertzer and Lovejoy, 1989), [Schertzer and Lovejoy, 1991], [Pecknold et al., 1996])
involves essentially two ingredients. The first is the definition of a unit (reference) scale (all
the vectors defined by the frontier of the ball B,), while the second is a family of scale
changing operators T, which describe how the unit scale is blown up or down. The funda-
mental restriction is that T, should only involve the scale ratio | so that there is no absolute
notion of size i.c. that T, is a group!s with generator G: T,=A-G.

4.4 Symmetries and the relation between stochastic
and deterministic chaos:

We have argued that even for (an apparently) mathematically well defined deterministic
problem such as hydrodynamic turbulence, that the basic obstacle is an adequate treatment
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of the scale invariance symmetry: the “puffs within puffs” of turbulent activity. On the other
hand, with practically no ingredients beyond this symmetry, stochastic cascades give imme-
diate insights: universal multifractals in which all the statistics are characterized by only
three fundamental exponents. In physics, due to the intimate connection between symme-
tries and dynamical equations (Noether’s theorem, ([Noether, 1918)) it is generally accept-
ed, that symmetries are synonymous with dynamics. Applied to the turbulent cascade
approach this suggests that the latter would be equivalent to the usual deterministic approach
if the remaining symmetries (i.e. other than scale invariance) of the Navier Stokes equations
were known. We could then - at least in principle - use them to restrict the cascades in the
appropriate way - presumably for example - to determine the remaining two universal mul-
tifractal parameters.

Steps in this direction have been made using “shell-models” (e.g. [Gledzer, 1973] ) as a
kind of compromise between cascades and deterministic chaos and as tools for exploring
intermittency in fully developed turbulence. They can be introduced as caricatures of the
Navier-Stokes equations via dynamical systems with limited numbers of degrees of free-
dom: at each scale corresponds an ordinary differential equation with a few (quadratic)
interactions with neighbouring scales. The main drawback is that it remains a bad compro-
mise: the crucial spatial dimensionality is merely lost, along with the algebraic discretiza-
tion of scales, the number of (possible) degrees of freedom grows only logarithmically with
the Reynolds number!

However, these deficiencies can be avoided in the framework of more consistent carica-
tures of Naviers Stokes yielding space-time deterministic cascades [Grossmann and Lohse,
1993]: the number of eddies grow algebraically with scale, as well as the number of corre-
sponding equations of evolution. By keeping only a (well-defined) subset of triad of wave-
vectors and using a direct analogy [Arnold, 1966], [Obukhov and Dolzhansky, 1975]
between Navier-Stokes equations and Euler equation of the gyroscope, we obtain the
Scaling Gyroscopes Cascade (SGC). [Chigirinskaya et al., 1996] shows that while the full
SGC behaves very closely to observations of fully developed turbulence. The SGC (which
- except for its stochastic initial conditions - is deterministic) would therefore seem to be an
interesting model in between the usual the cascades and the deterministic Navier-Stokes
equations.

While providing a solid mathematical bridge between the classical and cascade
approaches in turbulence would be a major scientific acheivement, in our view it would
be wrong to be overly obsessed with this rapprochement. The reason is that very few nat-
ural systems correspond to pure hydrodynamic turbulence (i.e. exactly satisfying Navier
Stokes equations). Even the presence of gravity in a fluid with density variations (i.e.
buoyancy effects) takes us beyond this theoretical case; models already involve unsatis-
factory (e.g. “Boussinesq”) approximations!6. In other words, any empirical test of the
Navier-Stokes equations must therefore rely (at least implicitly) on the existence of uni-
versal properties! We have already seen that on the contrary, stochastic chaos when cou-
pled with GSI can very easily deal with gravity and much more complex anisotropy which
are outside the scope of the usual approaches. Physically, the use of GSI in this way
implies that the very notion of scale/size is not imposed from without, but is rather deter-
mined by the underlying nonlinear dynamics itself. This connection between the notion of
scale and dynamics is analogous to that of General Relativity between the distribution of
matter and energy and the metric (except that in GSI, size is not necessarily a metric con-

cept).

4.5 Interacting scaling fields: Lie cascades.

In addition to anisotropy, real turbulent systems (e.g. the atmosphere, oceans) involve
many nonlinearly interacting fields, and the true equations are not known. The traditional
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deterministic approach involves modelling the interactions with nonlinear partial differen-
{ial equations, and then discretizing the latter on large grids which are then solved numer-
ically. Due to limitations in computer capacity (both speed and memory)., only rather nar-
row ranges of scale (of the order of a factor of 102) are directly accessible (compared to the
actual range of roughly 109 in the atmosphere). In global models, this means that no struc-
(utes smaller than about 1000km can be directly taken into account!'”. The attempts Lo
model the subgrid interactions are called “parametrisations” and are plagued with prob-
lems'®. In the cascade approach, one directly takes into account abitrarily large ranges of
scale: what is less straightforward is to properly account for the interactions between dif-
ferent fields. This can be done by introducing a “state vector” at each space-time point; this
specifies the overall state of the system. Scale invariant vectors (the result of vector cas-
cades) are called “Lie cacades” ([Schertzer and Lovejoy, 19951): their study is only just
beginning.

5. Space-time multifractal processes and stochastic prediction

5.1 Causaliry.

Up until now, the cascades have been fundamentally deficient as physical models since
they have been static. In order to produce a dynamical model (i.e. one evolving in time), we
first note that a general property of dynamical geophysical processes is that larger structures
evolve more slowly than smaller ones; there exists a statistical relationship between the spa-
lial extent of fluctuations (eddies, size) and their duration (e.g. in turbulence. the “eddy turn-
over time”). In scale invariant systems we anticipate that the velocity relating the two is also
scaling; i.e. that the overall process is an (anisotropic) space-time multifractal process which
can be handled using GSI. However, space-time scaling is not enough; time is not simply a
redimensioned, rescaled spatial coordinate. The mode!l must also satisfy the condition of
“causal antecedence”, otherwise it would violate the (stochastic) causality discussed above
because effects could precede their causes. The resulting (causal) space-time scaling, multi-
fractal process can be considered as a (nonclassical, fractional, nongaussian) diffusion
process for the generators, see [Marsan et al., 1996], [Scherizer et al., 1997] for theoretical
and numerical details and examples.

5.2 Limits to predictablity and stochastic forecasting.

Let us now consider the problem of predicting deterministic and multifractal (sto-
chastic) chaos. There are two related problems. First, the theoretical limits to predictabil-
ity; how far ahead we could in principle predict with essentially perfect information. The
second. is to find the optimum forecasting technique given a certain quantity of initial
(and - for stochastic forecasts - past'?) information on the state of the system.

To compare and contrast the predictability of the two types of system, consider a sys-
tem whose energy flux at resolution & (g,(1)) is known at time t. In deterministic chaos,
we assume that there will be a tiny error (dispersion) in this value leading to (an expo-
nentially growing) dispersion in the (deterministic) trajectories in phase space. In the sto-
chastic chaos system, we assume perfect knowledge at time t; the dispersion in the values
of g, (t+At) arises because of the intrinsic stochastic nature of the system, not due to mea-
surement errors. In order to quantify the predictability, first recall that each singularity
(intensity) determines a unique order of statistical moment (q). Since we anticipate that
the intense phenomena will be less predictable than the weak, we can quantify this by
using the root mean square (RMS) error of the conditional g order statistical moment
(conditioned on the measurement g, (1) as:
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In comparison, deterministic chaos systems are essentially defined by their predictabili-
ty properties: the fact that errors grow exponentially fast (the “sensitive dependence” on ini-
tial conditions); the growth rate is the “Lyapunov exponent™ 1,

E = eau'r,

9 (7N

Predictability is severely limited, (essentially to the reciprocal of the Lyapunov expo-
nent), but is not necessarily a function of the intensities of phenomena. If we require an
average error over many different initial conditions (corresponding in the stochastic case to
ensemble averages), then the limits to predictability will be a corresponding average
(inverse) Lyapunov exponent (note that this exponential growth only occurs for fairly small
time intervals; eventually, the error “saturates™ at a large value).

In the multifractals, the result will depend on the effective?! temporal resolution of the
series??; we consider forecasting a series at space-time resolution T. We have:

siq)
E (At)= [EJ I
T (8)

where s(q) is a generally convex exponent (e.g. in the simplest model, the “log-normal”
multifractal, s(q)=C,q2). Two fundamental differences can be noted?3. The first is that rather
than exponential increase in error, due to the scale invariance, one obtains a power law
increase. The other is the fact that intense events (which correspond to large q) are much
less predictable. '

6. Conclusions

We have argued that in the past twenly years deterministic chaos has become nearly syn-
omous with nonlinear models of systems with few degrees of freedom. In contrast, many
(most?) applications of nonlinear dynamics involve large numbers of degrees of freedom
and can be simply and naturally modelled by “stochastic chaos™ i.e. objective random mod-
els involving probability spaces (an infinite number of degrees of freedom). We criticized
dogmatic attempts to exclusively use deterministic models; both stochastic and determinis-
tic chaos models should be parts of scientists’ toolbox of models.

To date, the primary utility of stochastic chaos is the facility with which it enables us to
exploit a nonclassical symmetry: scale invariance. We argued that scale invariance is much
richer than is usually supposed providing for example, a potentially unifying paradigm for
geophysics?5, Probably the most familiar examples of scale invariant objects are geometric
fractal sets, however mathematically and physically, fields such as the temperature, wind,
cloud brightness/density etc. are much more interesting; these are multifractals, which are
generically produced in cascade processes. Such cascades involve a dynamical generator
which repeats scale after scale from large to small scale structures. In this way, it builds up
tremendous (nonclassical) variability associated with Self-Organized Criticality. Contrary to
conventional structureless (“white™) noise (randomness) the variability is so strong that
there is insufficient “self-averaging” the resulting fields display intense “singularities™
whose origin is purely random. Another insufficiently appreciated aspect of scale invariance
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is that it need not be self-similar (isotropic, the same in all directions). On the contrary, phys-
ical systems always involve prefered (possibly scale dependent) directions (especially grav-
ity) leading to differential stratification and rotation of structures with scales; such
anisotropic scale invariance requires the formalism of Generalized Scale Invariance (GSI)
which defines new (anisotropic) ways of “zooming"/"blowing up” structures. In GSI the
system’s dynamics determines the notion of size, the latter is not imposed from without in
an ad hoc way.

Stochastic chaos combined with the scale invariance symmetry (“multifractals™) may
allow us to take the chaos revolution a step forward by finally bringing large numbers of
degrees of freedom systems into its purview. It already is making rapid progress in over-
coming longstanding basic problems including the nature of turbulence, the weather and cli-
mate.

Notes

'Eractals also arise in deterministic chaos; strange attractors are fractal sets which are
defined in abstract phase spaces. The observed (real space) trajectories are typically much
lower dimensional subspaces and are often nonfractal (smooth). In the stochastic chaos sys-
tems discussed here, on the contrary, it is rather the real space structures which are fractal,
the corresponding phase spaces are nonfractal.

2See also [Fraedrich, 1986] .

3Since 1988, the European Geophysical Society’s regular sessions on Nonlinear process-
es played an important role in catalyzing much of this discussion. In particular the provoca-
tive issue of “Chaos versus Stochasticity in Geophysical Sciences” was the theme of three
lively sessions (1993 - 1995) (organized by the authors and A.R. Osborne, A. D. Kirwin, S.
B. Hooker).

4Below, we show how this fraction can be quantified (scale by scale, intensity by inten-
sity) with the codimension function; in the atmosphere, this depends on the intensity of the
phenomena, but the effective number of degrees of freedom is still typically enormous.

sSee especially the semi-analytical closure Eddy Damped Quasi Normal approximation
or the rather involved Lagrangian History Direct Interaction approximation; for review sce
[Lesieur, 1987].

6Note that “calm” (gaussian) stochastic models have been used in turbulence since the
the 1960’s essentially as technical adjuncts to RNG type approaches; see [Herring, 1997]
for a discussion.

7The study of multiplicative random processes (at first reduced to the product of random
variables) has a long history (see [Aitchison and Brown, 1957]), going back to at least
[McAlsister, 1879] who argued that multiplicative combinations of elementary errors would
lead to lognormal distributions. This law has almost invariably been used to justify the use
of lognormal distributions i.e. it was tacitly assumed that the lognormal was a universal
attractor for multiplicative processes.

8Since ¢ is generally unbounded, events with ¢>D will be produced by the process.

However, if we attempt a geometric interpretation we see that it will involve impossible neg-
ative (“latent”) fractal dimensions; hence the latter is quite restrictive. Aside from avoiding
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this “latent dimension paradox”, the codimension formalism has the further advantage of
being independent of D, the dimension of the observing space.

9Most observables (such as the velocity shear Av, in turbulence) are not the direct out-
come of cascade processes; they are not conserved scale by scale the way the energy flux is
conserved in turbulence: they involve a third parameter (H) characterizing the degree of
nonconservation e.g. the Kolmogorov scaling gives: Av,=g; 308 with H=1/3.

10Note that the term “lognormal” is not accurate since the divergence of moments leads
to “multifractal phase transitions” i.e. to deviations from eq. 2 for y >y, where Yp is a criti-
cal order of singularity; see below,

IMost of these do indeed appear to be universal multifractals - at least to within the
accuracy with which they have been estimated,

12n spite of this, most definitions of multifractals implicitly assume precisely such con-
vergence, being based on point singularities; “Holder” exponents.

13Specifically, (”x(B.)"}: w; =g, Where qp is a critical order of moments which

depends on the dimension of the integration set B,; this implies

Pr[l‘lm(B]) > 5) =55 s>>1

M[Schmitt et al., 1994] found q,=7 for the horizontal component of the wind, but the size
of the sample used (ten million measurements) was only barely enough to quantify the
effect.

15Actually, T; need only be a semi group since inverse operations need not be defined.

16lndeed while the observed scaling stratification of the atmosphere is almost trivial to
handle with GSI (G need only be a diagonal matrix not proportional to the identity), it is not
obvious that the observed anisotropic scaling is compatible with any known deterministic
dynamical equations!

1"The nominal resolution of global weather models is somewhat better than this, but due to
the artificial dissipation mechanisms (e.g. “hyperviscosity™), a factor of roughly four is lost.

18[ndeed, if the recent empirical estimates of low, finite qp, for various atmospheric fields
including the wind, temperature and rain fields are correct, then the multifractal butterfly
effect is indeed operative and shows that consistent deterministic parametrisations of the
small scale activity cannot be acheived even in principle.

19The basic idea of stochastic forecasting is precisely to exploit the stochastic “memory”
of the system (i.e. correlations/interrelations between past and future). The most trivial
example of a stochastic forecast is persistence; e.g. that tommorrow’s weather will be the
same as today’s.

2However, it does depend on the trajectory, and different intensities will be associated
with different trajectories. Here we ignore this possible dependence of 1, on q.
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21For spatially averaged data, T is the typical lifetime of the structures which are aver-
aged out. If there is only temporal averaging (“point” spatial measurements), then T is the
averaging time/resolution.

22In the atmosphere, this appears to ve valid up to the “synoptic maximum” which is the
time scale of planetary sized structures; roughly two weeks.

23In turbulence closures, scaling errors of the form of eq. 8 are obtained, but due to their
inability to handle intermittency, s(q) is independent on q; strong and weak c¢vents are equal-
ly predictable.

2Since in the appropriate limit, power laws can be considered exponentials with zero
Lyapunov exponents, this scaling could be considered the “edge of chaos™.

25Perhaps also for astrophysics where notably the large scale structure of the universe
appears to be multifractal, see [Coleman and Pietronero, 1992], [Garrido et al., 1996,
Labini and Pietronero, 1996], [Lovejoy et al., 1998].
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