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Abstract

Multifractal analysis of the daily river flow data from 19 river basins of watershed areas ranging from 5 to 1.8 x 10°® km?
from the continental USA was performed. This showed that the daily river flow series were multifractal over a range of scales
spanning at least 2% t0 2'® days. Although no outer limit to the scaling was found (and for one series this was as long as 74
years duration) for most of the rivers, there is a break in the scaling regime at a period of about one week which is comparable
to the atmosphere’s synoptic maximum, the typical lifetime of planetary-scale atmospheric structures. For scales longer than 8
days, the universal multifractal parameters characterizing the infinite hierarchy of scaling exponents were estimated. The
parameter values were found to be close to those of (small basin) French rivers studied by Tessier et al. (1996). The
multifractal parameters showed no systematic basin-to-basin variability; our results are compatible with random variations.
The three basic universal multifractal parameters are not only robust over wide ranges of time scales, but also over wide
ranges in basin size, presumably reflecting the space—time multiscaling of both the rainfall and runoff processes.

Multifractal processes are generically characterized by first-order multifractal phase transitions: qualitatively different
behavior is shown for the extreme events in which the probability distributions display algebraic fall-offs associated with
(nonclassical) self-organized critical (SOC) behavior. Using the observed flow series, the corresponding critical exponents
were estimated. These were used to determine maximum flow volume exponents and hence to theoretically predict maximum
flow volumes over aggregation periods ranging from 2% to 2" days. These theoretical predictions are based on four empirical
parameters which are valid over the entire range of aggregation periods and compare favourably with the standard (GEV)
method for predicting the extremes, even though the latter implicitly involve many more parameters: three different exponents
for each aggregation period. While the standard approach is essentially ad hoc and assumes independent random events and
exponential probability tails (which, we show, systematically underestimate the extremes), the multifractal approach is based
on the clear physical principle of scale invariance which (implicitly) involves long-range dependencies, and which (typically)
involves nonclassical algebraic probabilities. © 1998 Elsevier Science B.V. All rights reserved.
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continental size and from a fraction of a second to
geological time scales. However, there exist several
similarities between small and large scale river
runoff characteristics. For example, Hurst (1951)
reported that the runoff from various rivers exhibits
long-range statistical dependences, indicating that
water storage and runoff processes occur over a
wide range with no characteristic time scale. Simi-
larly, works by Benson (1962); Benson (1964),
Strahler (1964), Thomas and Benson (1970) and
many others have shown that the runoff characteris-
tics, such as statistical moments and flood quantiles,
are power-law functions of the corresponding basin
area. Thus the river runoff over various ranges of
scales is scaling (follows a power law) in space and
time.

In spite of this, and although river runoff analysis
and modelling has been a central concern in hydro-
logical science for the past three decades, scaling has
received very little attention. The dominant
approaches have been various autoregressive multi-
variate models, such as AR, ARMA etc. (see, e.g.,
Salas, 1993). Such nonscaling models are not only
incompatible with the observed scaling behavior of
river runoff, such as Hurst (1951), but they have
other unsatisfactory properties such as the generation
of negative flows. Until very recently, the only
exceptions were the mono scaling approaches for
modelling the observed runoff time series
(Mandelbrot and Wallis, 1968; Mandelbrot and
Wallis, 1969) — essentially generalizations of
Brownian motion).

In order to statistically characterize the observed
flood peaks, a large number of ad hoc distribution
functions and an equally large number of parameter
estimation techniques have been proposed (Cunnane,
1988; Haktanir, 1992). In spite of their abundance and
increasing mathematical sophistication, the selection
of one rather than another is not based on physical
principles. There is no a priori reason why any one
of these would be compatible with the actual regional
flood generating process (Potter and Lettenmaier,
1990). As pointed out by Hubert et al. (1993), in the
absence of any connection with physical processes,
the role of the hydrologist is reduced to fitting essen-
tially arbitrary probability distribution functions to the
observed data using ad hoc statistical goodness-of-fit
criteria. Thus, there is a wide gap between mainstream

mathematical modelling and our physical understand-
ing of streamflow processes (see, e.g., Dooge, 1986;
Pilgrim, 1986; Klemes, 1986).

During the last 15 years great progress has been
made in studying scaling processes. In particular, it
is now known that, while fractals are adequate for
dealing with scaling geometric sets, multifractals are
the appropriate framework for scaling fields and time
series. Multifractals thus provide the natural frame-
work for analyzing and modelling various geophysi-
cal processes that are scaling over a range of space
and time scales. More specifically, for rain and clouds,
first mono fractal fields (Lovejoy, 1981; Lovejoy,
1982; Lovejoy and Mandelbrot, 1985; Lovejoy and
Schertzer, 1986) and then multifractals have been
used to study the scaling behavior of many geophysi-
cal fields, including those of direct relevance to
streamflow such as radar rain reflectivities (Schertzer
and Lovejoy, 1985; Lovejoy et al., 1987; Lovejoy and
Schertzer, 1990a; Gupta and Waymire, 1993; Lovejoy
et al,, 1996), lidar rain reflectivities (Lovejoy and
Schertzer, 1990b), rain gauge series (Duncan, 1993;
Fraederich and Larnder, 1993; Tessier et al., 1993;
Olsson et al., 1995a; Olsson et al., 1995b), river net-
works (Ijjasz-Vasquez et al.,, 1992; Rinaldo et al,,
1992; Rodriguez-Iturbe et al., 1992), clouds
(Schertzer and Lovejoy, 1987a, b; Gabriel et al,,
1988; Lovejoy and Schertzer, 1990a; Lovejoy et al.,
1993; Tessier et al., 1993; Davis et al., 1994), extreme
rainfall accumulations (Hubert et al., 1993), and topo-
graphy (Lavallee et al., 1993; Lovejoy et al., 1995). In
addition, the rainfall process — which is the principal
input for streamflow generation — respects a scale
invariance symmetry which can be exploited to
model it over a range of scales by multiplicative cas-
cade models (see, e.g., Lovejoy and Schertzer (1995)
for a review) which yield multifractal space—time
fields (Marsan et al., 1996; Over and Gupta, 1996).
Finally, Liu and Molz (1997) have shown that hydrau-
lic conductivities of rocks in boreholes are multifrac-
tal, and Lovejoy et al. (1998) have studied the
corresponding diffusive transport.

In particular, multifractals naturally contain singu-
larities of extreme orders and generically exhibit alge-
braic decays of the extreme events (associated with
self-organized criticality); they can provide a sound
theoretical framework to describe the observed
extremes in the river runoff series. An important
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generic property of multifractals is that their extremes
are power-law functions of their space—time resolu-
tions and can therefore be readily used to disaggregate
the properties of river runoff time series from coarser
(say, monthly series) to finer (say, weekly or daily)
time scales. Hubert et al. (1993) have shown that
multifractals can be used to characterize the observed
accumulated maximum rainfall volume over a wide
range of scales. Thus it is logical to examine the
applicability of multifractals to modelling of river
flow series and flood peaks over a range of space
and time scales. Recently, Gupta et al. (1994) reported
that streamflows are multiscaling with basin area,
whereas Turcotte and Greene (1993) reported the
algebraic decay of the probability distribution of
annual peaks from several rivers. More recently,
Tessier et al. (1996) — using 30 small basin rivers
in France — carried out the first multifractal analysis
of river flow data. Their analysis from one day to 30
years not only showed that river runoffs are multi-
fractal, with two regions separated at the ‘synoptic
maximum’ (roughly two weeks), but also provided a
much broader framework to model the rainfall-runoff
processes, starting from variables such as topography,
river network, etc. that generate and modify the
streamflow through the basin. In this paper we obtain
quantitatively similar results on basins with a much
wider range of scales; this shows that our character-
ization is robust. In addition to their use for studying
phenomena over wide ranges of time and space scales,
multifractals provide a natural framework for
studying them over the full range of intensities up to
the most extreme.

The main objective of this paper is to study the
behavior of the streamflow series over a range of
space and time scales using the multifractal frame-
work; in particular we extend the Tessier et al.
(1996) results both to larger basin sizes and to a
detailed study of the extremes. The paper is organized
as follows. First we give a brief description of the
river flow data used in the study (Section 2). A
spectral analysis of the river flow data is given in
Section 3. This is followed by a discussion of uni-
versal multifractals (Section 4) and the extremes
with their relation to SOC (Section 5). The character-
ization of maximum volume as a function of interval
duration under a multifractal framework has been
provided in Section 6.

2. Data

The flow data we analyzed are the daily streamflow
data from 19 gauging stations from the continental
USA. Those stations were selected randomly from
the USGS gauging station list and represent basins
of very different characteristics. Table 1 presents the
summary of the stations used in the study. The areas
of the basin range from 5 to 1.8 x 10% km?, covering
nearly six orders of magnitude. The lengths of the
series vary from 3422 to 26 663 days. The observed
flow series were normalized by dividing by the at-site
mean. The objective of the normalization was to take
out the basin size effect from the observed flow series,
which come from basins of various sizes, to allow
quantitative statistical comparison of different rivers
(for example, to obtain meaningful ‘ensemble’
statistics, used below). The total overall size of the
ensemble normalized flow data set was an equivalent
of 670.04 station years. Specific differences with the
data used in the Tessier et al. (1996) study include the
much wider range of scales of basins (the latter were
in the range of 40-200 km?) and the fact that the latter
had very little human intervention.

3. Spectral analysis and scaling regimes

The power spectrum of any field or series (daily
river flow data, in the present case) is by definition
an ensemble average quantity; a fact that must be
borne in mind when it is estimated from only one or
a few series. If each series is regarded as a different
realization of a multifractal process, then we expect
significant random series-to-series variability because
multifractal processes are highly intermittent (i.e.,
their sample-to-sample variability is much larger
than that expected by classical statistics). This inter-
mittency can be so extreme that certain structures or
fluctuations are almost surely absent in individual
realizations while simultaneously being almost surely
present on a large enough ensemble of realizations. In
other words, they are not ergodic (see Schertzer and
Lovejoy (1989) and Section 5 below for the notion of
‘sampling dimension’ which can be used to quantify
this). If the spectra from different basins are not very
different from each other, then the various series may
belong to the same ensemble. However, the power
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Table 1

Description of the stations used in the study, in order of increasing basin size

Station name Basin area (kmz) Data records (days) Mean flow (m®s™)
Rocky Brook, MA 5 7670 0.1
Pendleton Hill River, CT 10 12784 0.2
Kettle Brook, MA 82 20137 1.3
Mill River, MA 86 4674 1.2
North Nashua River, MA 164 7670 35
Yantic River, CT 231 20819 4.7
Indian Creek, CA 311 3422 1.6
Mccloud River, CA 927 22829 25.7
Ohoopee River, GA 2875 20583 28.7
Grand River, MO 5827 26663 34.8
Sabine River, TX 16 856 10135 28.7
Osage River, MO 37555 22676 300.1
Pecos River, NM 50608 20454 4.5
Canadian River, OK 67182 5022 18.6
Susquehanna River, PA 67314 22646 1042.3
Rio Grande River, NM 79772 22448 19.2
Arkansas River, OK 250385 16434 552.7
Colorado River, CO 638950 16709 135.2
Mississippi River, MO 1805222 21733 5150.8

Total no. of days for the ensemble: 244 566 = 670.04 Station years

spectrum is a sensitive indicator of the range of scales
over which a field is scaling. For any scaling field, the
power spectrum has a power-law dependency on the
corresponding frequency; that is:

Ew~w? (1)

in which w is the frequency, 8 is the spectral expo-
nent, and E(w) is the energy of the spectrum. Eq. (1)
states that for any scaling field there exists a log-log
linear relation between the frequency and the corre-
sponding power spectrum.

Spectral analysis was conducted on all individual
series as well as being averaged over the ensemble of
normalized flow series (note that, due to the variable
length of the series, the number of series contributing
to the low frequency part of the spectrum depends
somewhat on frequency; see below). The power spec-
tra from the smallest, largest and some other basins
having intermediate areas are shown in Fig. la, and
the ensemble of normalized flow series is shown in
Fig. 1b. The log—log linearity shows that daily river
flow series have two scaling regimes with a break
separating them at about one week. The average 8
for individual flow series on the low frequency side
(~ one week to 10 years) was found to be 1.17 + 0.34,

where the standard deviation represents the series-to-
series variation of 3 about the mean; for the ensemble
normalized flow series the corresponding low fre-
quency value was 0.72 * 0.30 whereas, for the high
frequency regime (one day to one week), 8 =~ 2.47,
corresponding to much smoother variations. Although
no clear outer limit to the scaling was found (for some
rivers this was more than 73 years), for most of the
rivers there is a break in the scaling at high frequen-
cies; note that the extreme two lowest frequencies
have little statistical weight since they correspond
only to one or a few rivers and one or two long
fluctuations.

The time scale of the break varied between 3 and 24
days with an average value of less than 6 days
(obtained using the ensemble spectrum). For some
rivers there are dominant cycles at some specific
time intervals, typically at 3, 4 and 7 days, which
are known to be the results of the alteration of the
river regimes by human intervention involving
artificial regulating structures such as dams and bar-
rages (see, e.g., e, h in Fig. 1a). Many of these struc-
tures are operated following strict schedules such as
sediment flushing, release of water for consumptive
uses, periodic inspections of the parts and
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Fig. 1. a, Energy spectra of daily river flow series from different river basins from the continental USA: (a) Mississippi River, (b) Susquehanna
River, (c) Arkansas River, (d) Osage River, (e) Colorado River, (f) McCloud River, (g) North Nashua, (h) Mill River, (i) Pendleton Hill, (j)
Rocky Brook (in order of decreasing mean flow rate). b, Power spectra for the normalized flow series from 19 river basins. The series were
obtained by diving the observed flow series by respective means and combining together the resulting series from all sites.

machineries, etc.; these periods resulted in sharp spec-
tral peaks in several of the series. In addition to artifi-
cially induced periodicities, the spectra also show that
river flow series have annual cycles. The dominant
annual cycle of the river flow series can be seen
from the power spectra of the ensemble spectrum

(Fig. 1b). In view of the break in the scaling regimes
at about one week, in the following analysis the smal-
lest scale of aggregation will be taken as 8 days. These
findings are similar to those reported earlier by Tessier
et al. (1996) using the hydrologic data from 30 river
basins from France having areas between 40 and
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Fig. 2. Variation of the spectral slope with the basin area. The average slope corresponds to the average of all fitted individual slopes whereas
the slope of the average is the slope of the power spectrum for the ensemble of normalized flow series.

200 km?. They include the values of 3; see Table 3 for
a comparison. However, in Tessier et al. (1996) the
time of the break varied between 10 and 30 days with
an average value of 14 days. This difference may be
due to the increased effective storage (see below). A
scatter plot between the scaling exponent (8) as a
function of basin size (A) is indicated in Fig. 2.
There is no clear systematic pattern in the basin-to-
basin vartability of the spectral slopes; the differences
can probably be attributed to the statistical sample-to-
sample variability. Recall that on a single realization 3
is simply a statistical estimate of the ensemble value;
in multifractals it can be quite variable from one
realization to another.

River runoff phenomena are the combined effects
of the precipitation process (either rainfall or snow
melt) and the response of local watershed character-
istics such as antecedent conditions of the soil moist-
ure, pore size, channel geometry, local geology,
sediment type, climatic and other factors to the pre-
cipitation input. Thus, the gauged river runoff reflects
the overall behavior of the complex interactions
which prevailed between precipitation input and the
basin factors that modify it. It seems likely that the
rainfall process possesses a scale invariance symme-
try over a range of scales and there is a break in the
scaling regime for a time period of about two weeks.
This time is roughly the ‘synoptic maximum’ charac-
teristic of meteorological fields including the rainfall
process (see Koloshnikova and Monin (1965) for the
pressure field; Lovejoy and Schertzer (1986) for the
temperature field; and Tessier et al. (1993); Tessier
et al. (1996) for discussions on rain). The synoptic

maximum is the typical lifetime of structures of
planetary extent and provides a natural scale for separ-
ating meteorological from climatological regimes. In
the case of river runoff, the maximum scale is the
basin area and during the transition (that is, when
the precipitation becomes river runoff) it is expected
that those basin factors will smooth out the precipita-
tion break associated with the synoptic maximum
scale of the input (see Gupta and Waymire (1997)
for the runoff-generation mechanisms on hillsides
and for the time-scale separation of surface and sub-
surface flow velocities). The decrease in the break in
scaling regimes (from about 16 days for the small
basins studied by Tessier et al. (1996) to about 6
days here) is presumably due to this increased
smoothing effect; however, further study is warranted
in this regard.

4. Multifractals
4.1. Properties

The basic equation for the scaling of the probability
distributions of multifractal fields is (Schertzer and
Lovejoy, 1987a, b)

Pr(Ry>N) =N\ )

where A = T/7 is the scale ratio, R, is the intensity of
field at scale A, vy is the order of singularity, T is the
longest duration of interest and 7 is the duration of
observation. Eq. (2) states how the probability dis-
tributions of singularities of order y vary as a
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function of scale; the scale-invariant exponent is the
codimension function c(y); the = sign indicates
equality to within factors slowly varying with respect
to A. The scaling of probabilities also implies the
scaling of the gth order statistical moments, given
by

<¢l> =N N> 3

where K(g) is the multiple scaling exponent function
for the moments. The exponents K(g) and c(y) are
related to each other via the Legendre transform
(Parisi and Frisch, 1985) as

c(y)= mgX(qv—K(q)) 4

K(g)= mgX(qv -c(y))

A priori, the only restriction on c(y) and K(q) is that
they must be convex. Although the nonlinear cascade
dynamics relating one scale to another scale are com-
plex, Schertzer and Lovejoy (1987b) have argued that
cascade processes possess stable (attractive) universal
generators and hence are insensitive to the details of
dynamics (see also Schertzer et al. (1995) on the
debate about strong versus weak universality and
Schertzer and Lovejoy (1997) for more debate
about universality, especially in rain; for other refer-
ences on multifractals with Levy generators, see
Brax and Peschanski, 1991; Evertsz and Mandelbrot,
1992; Gupta and Waymire, 1993). The universal K(q)
functions for a conservative process (i.e., the direct
result of a multiplicative cascade, see below) are
given as

i) for o # 1
K(g)= a—1 %)
Ciqlog(g) for a=1
y 1\
cy)=C| =—+—-) fora#l (6)
Cio' «

in which 0 = o« = 2 is the multifractal index,
0= C; = D is the codimension of the mean of the
field and l/o + 1/’ < 1, D is the dimension of the
observing space (D = 1 for time series). The value of
the multifractal index (a) is also the order of the
generator’s levy distribution and it quantifies the
distance of the process from monofractality. When

a = 0, the process is monofractal, whereas o = 2
corresponds to ‘lognormal’ multifractals, due to the
divergence of moments this is somewhat a misnomer.
For nonconservative processes a third parameter H
(described later) is needed. Universal multifractals
are the multiplicative cascade analogues of Levy pro-
cesses which are stable, attractive processes for
addition of random variables (Brownian motion
being a special case); they are thus believed to be
the generic consequences of scaling nonlinear
dynamics with a large number of degrees of freedom.
A basic realistic property of multifractal models is
that they are able to simulate the intermittency and
extreme variability present in the field while preserv-
ing the statistical properties over a wide range of
scales.

4.2. Estimation of the universal multifractal
parameters

For the observed daily flow series, the parameters o
and C of the multifractal model were estimated using
the double trace moment (DTM) technique (Lavallee
et al., 1993). The g, 5 double trace moment at resolu-
tion A and A is defined as

Trx(¢1)q= < ZG ¢Zde>q> o \K(@ n-(g-1D
By i

{

)

where the sum is over all the disjoint D dimensional
balls B, ; (here intervals of length 7=T7/\) required
to cover the time series, and K(q,7n) is the
double trace scaling exponent and K(gq, 1) = K(q) is
the scaling exponent. A simpler way of expressing
this is

((#3)ny =A@ ®)

where the notation indicates that the multifractal ¢ at
a (finest) resolution A is first raised to the power 7,
degraded to resolution A, and the gth power of the
result averaged over the available data. The scaling
exponent K(q, 1), related to K(g, 1) = K(g), is given
by

K(g, n)=K(gn, 1)—qK(z, 1) &)

Thus, in the case of universal multifractals, plugging
Eq. (5) into Eq. (9), K(g, n) has a particularly simple
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dependence on 7:
K(g, n=1"K(q) 10)

« can therefore be estimated on a simple plot of
K(q, 1) vs log(n) for fixed q.

The DTM technique yields direct estimates of the
parameters from conservative multifractal fields (the
direct results of a multiplicative cascade process; the
conservative quantity is a flux which is conserved
while going from one scale to other). However, a
priori, there is no reason to expect that an observed
quantity such as river flow should be a conserved
field. Rather, following the fractionally integrated
flux (FIF) model (Schertzer and Lovejoy, 1987b;
Schertzer et al.,, 1997), it will be connected to
the underlying conserved field via fractional
integration/differentiation of various orders (see
Oldham and Spanier (1974), Ross (1975) for the
latter). The order of the integration/differentiation
required is H, which since the latter are low convolu-
tions, is a basic long-range dependency factor, written
H in honour of Hurst. Theoretically, since H is the
degree of fractional integration needed to obtain the
observed runoff series from the underlying conserved
series, we should differentiate by order H (e.g., by
power-law Fourier filtering) to invert the scale-
invariant process and recover the conserved field.
However, Lavallee et al. (1993) have shown that it
is sufficient to differentiate by order =H. Hence, in
the present study, in order to get a conserved series,
the original series were replaced by their (absolute)
first derivatives, approximated by the absolute first
differences of the series. This is equivalent to assum-
ing H < 1; an assumption which we verify a posteriori
below. Since the absolute slope of the power spectrum
(B) for the majority of the river series including the
ensemble is close to unity (see Table 2), assuming a
priort a value of H < 1 is fairly reasonable; indeed, we
find for the low frequency regime H =~ —0.03 £ 0.14,
i.e., it is perhaps conserved (H = 0), so in this regime
the differencing may not be necessary.

The double trace moments for the ensemble flow
series for an aggregation period of 8 days are shown in
Fig. 3a. The log-log linearity between the trace
moments and the scale ratio A shows the scaling nat-
ure of the streamflow series. The corresponding plots
of the scaling exponent K(g,n) vs 7 are shown in
Fig. 3b. The DTM estimated values of o and C, are

given in Table 2. The average value of the parameter
« from the individual series is 1.65 *= 0.12, whereas
the corresponding value for the ensemble is 1.70 *
0.11. Thus the generators (roughly the logs of the
conserved quantities) of the daily river flow series
are somewhere between (an asymmetrical) Cauchy
(o« = 1) and the normal (&« = 2). An examination of
the variability of these parameters shows that there is
no systematic variation with basin area; thus the dif-
ference can be attributed to series-to-series variability
rather than to the area effect (due to the large inter-
mittency, « requires very large samples for accurate
estimation). Further, Eq. (6) shows that when o > 1,
o' > 2 and the singularities (y) are unbounded. In this
case it can be shown that we expect algebraic tails
associated with the multifractal phase transition and
self- organized criticality (Schertzer and Lovejoy,
1997; Schertzer and Lovejoy, 1998). From the esti-
mated values of o and C;, and taking the spectral
slope (B) of the conserved process, the value of expo-
nent H — the order of fractional integration required
to go from the conserved to the nonconserved
(observed) process — is given by (Lavallee et al., 1993)

o Bo1HKQ)

2 1)

in which K(2) can be estimated from C; and o using
Eq. (5). The average value of H from individual series
is 0.20 = 0.15 whereas for the normalized flow series it
is =0.03 = 0.14. The variability of the exponent H with
the basin area, as shown in Table 2, also supports the
hypothesis that the series-to-series variability is the
result of random sample-to-sample variability.

The results reported by Tessier et al. (1996) are
compared with the present findings in Table 3. In
comparison, Tessier et al. (1996) find o = 145 *
02,C;=0.20* 0.1, H= —0.05 * 0.2 for the low
frequency runoff, values which are very close to those
found here (see Table 3). If the parameters «, C; and
H are universal for all river runoff series, which is
consistent with the similarity of the parameters
found here and by Tessier et al. (1996), and — as
argued in that paper — C, and a are roughly the
same as for precipitation (Tessier et al. (1996) find
C, = 0.1 £ 0.05 and o = 1.6 * 0.2), then the only
low frequency statistical difference between precipi-
tation and flow series is the degree of fractional
integration H. In this case, the value of H can be
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top to bottom, 7 =2.45,2.08, 1.5, 0.99, 0.52 and 0.1. b, Log K (g, ) vs log n using g = 2.0 for normalized flow ensemble aggregated at 8 days interval.

used to determine a linear transfer function relating
the river mnoff series to observed rainfall series. For
example, taking a value of H = —0.35 for low frequency
rainfall series, as reported by Tessier et al. (1996), and in
order to get the river runoff time series to have the same
statistics as that of the rainfall time series, fractional inte-
gration of order H = —0.03 — (-0.35) =~ 0.32 is required.
Note that if « and C, are different for rain and river flow,
then nonlinear transformations are necessary.

5. The distribution of extremes

5.1. Power law distribution and self-organized
criticality

For multifractal processes the variability of the field
goes down to such small scales that the typical
measurements are at much larger scales; for example,
the river flow is clearly variable at time scales much
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Table 2

Multifractal parameters for the daily river runoff series (the error estimates are the dispersions of the corresponding parameters estimated from

the individual series)

Basin area (km?) Parameters

6 o C, H
5 1.1 1.38 0.13 0.15
10 0.76 1.74 0.11 -0.02
82 0.97 1.8 0.12 0.1
86 1.51 1.69 0.07 0.32
164 0.99 1.66 0.12 0.1
231 0.73 1.7 0.11 -0.04
311 0.93 1.69 0.19 0.13
927 1.44 1.77 0.16 0.37
2875 1.16 1.62 0.13 0.19
5827 0.66 1.46 0.18 -0.02
16 856 1.37 1.44 0.13 0.29
37555 1.13 1.71 0.13 0.18
50608 0.84 1.74 0.26 0.16
67182 1.07 1.61 0.16 0.17
67314 1.17 1.65 0.11 0.18
79772 1.55 1.51 0.08 0.34
250385 1.42 1.69 0.14 0.33
638950 1.82 1.72 0.08 0.48
1805222 1.7 1.69 0.07 0.41
Average 1.17 = 0.33 1.65 = 0.12 0.13 = 0.05 0.20 = 0.15
Ensemble of normalized flows 0.72 + 0.30 1.70 = 0.11 0.12 = 0.03 -0.03 x0.14

less than a day. The measurements therefore average
out much of the corresponding small-scale variability.
However — contrary to the usual assumptions — not
all of the small-scale variability is smoothed out in
this way. In particular, for multifractal processes, we
expect that the statistics of the averaged quantities
will generally be quite different from those of the
corresponding field whose dynamics have been
stopped at the observation scale. The latter are the
(theoretical) ‘bare’ quantities whereas the empirically
measured ones (averages over small-scale activity)
are the ‘dressed’ quantities. While the bare quantities

Table 3

follow Eq. (3) with K(g) finite for all g, the dressed
quantities follow Eq. (3) up to a critical moment gp
after which they diverge; that is:

<¢!{> —w forg=gqp (12)
The divergence of the statistical moments corre-

sponds to the hyperbolic fall-off of the probability
distribution; that is:

Pr(¢y=5s)=s5"% fors>1 13)

in which s( > 1) is a threshold and ¢, is the inte-
grated field at scale . The divergence of high order

Comparison of estimates of parameters 3, «, C; and H for the ensemble of 30 river and rainfall series (small basins, Tessier et al. (1996), from
one month to 11 years, ratio 2'%) and the ensemble of 19 (normalized) river series 8 days to 11 years, ratio 2'; this study). Comparing the last
two lines, we see that the means of all the parameters fall within the corresponding one standard deviation error bars, indicating that the small

and large basin parameters may well be the same

Reference Parameters

B o H qs qp
Tessier et ‘al. (1996) (rain) 0.2 + 0.1 1.6 + 0.2 0.10 = 0.05 -035*x02 52=*05 36 £ 07
Tessier et al. (1996) (flows) 0.5+ 0.1 145 * 0.2 0.20 = 0.1 -005x02 42=*05 3207
This paper (flows) 0.72 £ 0.3 1.70 = 0.11 0.12 x 0.03 -003 =014 35*06 3.1x07
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statistical moments (Eq. (12)) and the equivalently
power-law distribution of the extremes (Eq. (13))
are the direct consequences of the multifractality.
The dressed codimension function c,(7y) relevant to
the hyperbolic region can be defined:

()
ci(y)=
c(yp)+4qp(y—"p)

for y = v,=K"(qp)
for v > v,
(14)

This associated quantitative change of behavior at yp
(equivalently, gp) can be theorized as a multifractal
phase transition (Schertzer et al., 1993; Schertzer and
Lovejoy, 1998) yielding self-organised critical (SOC)
events (Bak et al., 1987; Bak et al., 1988; Bak et al.,
1990).

In general, the upper limit of the exponent g to
which the statistical moments will remain finite
(i.e. gp) depends upon the type of field and the dimen-
sion (D) over which it is integrated or averaged (hence
the subscript). However, in general any finite number
of samples will almost surely miss the presence of rare
extremes in the field and hence empirical singularities
will have a maximum singularity v,. If we have N,
independent samples, each with a range of scales A,
larger and larger portions of the probability space will
be explored and more extreme singularities will be
encountered. Hence, the sampling dimension D can
be introduced to account for the fraction of the prob-
ability space actually explored (Schertzer and
Lovejoy, 1989):

log N;
D.=
* log A

(15)

i.e., only singularities y < v, with c¢(y,) = D + D can
be observed. Note that this equation (and hence Eq.
16 below) has only recently been given vigorous
mathematical proof, and this only in the special
case o = 2, D = 1, D, =0! (G.M. Molchem, private
communication). In other words, the process is
generally nonergodic and D; quantifies this. The
total dimension of the explored space thus becomes
D + D,, where D is the dimension of the embedded
space, D = 1 for time series. Since there is a one-to-
one correspondence between the order of singularity
and the moments (Eq. (4)), there will be a maximum
order of moment which can be accurately estimated:

qs = c(7y;). For (bare) universal multifractals, this is

D+D\
=\ ~¢, (16)

Thus, for small samples with g, < gp, the divergence
of moments is not observable. For ¢ = g, the moment
estimates will be dominated by the largest (most
extreme) events in the sample, which leads to the
linear rather than convex K(g) (corresponding to a
second-order multifractal phase transition).

Now consider g¢,>gp, or equivalently
¥s=K"(g,)>vp = K'(gp). In this case we must use
the dressed codimension so that c¢,;(yy) = D + D..
This is shown systematically in Fig. 6. For ¢, > ¢p
we then obtain a more violent first-order multifractal
phase transition at g = gp: a discontinuity in the first
derivative of K(g).

The probability of exceedances as a function of the
threshold discharge for some typical river basins is
shown in Fig. 4a. Similar plots were obtained for
the other river basins as well. For the ensemble of
normalized flows, the plot of the threshold discharge
against the probability of exceedance is given in
Fig. 4b. The plot plausibly shows the algebraic nature
of the decay of the distribution of the extreme flows.
The flattening of the distribution for small discharges
is due to the fact that the power law behavior takes
place only after a certain threshold (y > yp = K'(gp)),
as given by Eq. (12) and (13). The deviations in the
very large values of discharges may be the resulits of
the finite sample size at this range. Using the multi-
fractal parameters, the theoretical values of the
exponents (g,) were also determined and are shown
in Table 4. The slopes of the best-fit straight lines (gp)
for the extremes were determined for all individual
series and are given in Table 4. The value of the
exponent g varied between 1.5 and 25. Since g; is
the highest order moment which is readily estimated,
whenever gp’ > g, the estimate is suspect (actually,
since D depends on the entire range of scales whereas
the histogram is only at a single highest resolution, it
is somewhat overly stringent). We therefore removed
the two unusually large values of 11 and 25 for two
rivers (where gp > gq,); the average value of the
resulting exponent (gp) was 3.37 = 0.86, which is
close to the values reported by Tessier et al. (1996)
which are 3.2 = 1.5 for low frequencies but 2.7 = 1
for high frequencies (see Table 3). Hence, the
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Fig. 4. a, Plots between the discharge (s) and the probability of exceedance for typical river basins: (a) Rocky Brook, (b) Indian Creek,
(¢) Osage River, (d) Mississippi River. The flattening of the curve at low discharge implies that the power law distribution holds only after
some threshold. The fitted slopes are the estimates of the exponent gp. b, Same as Fig. 3a but for the ensemble of normalized flows. ¢, Plots
between the observed discharge (s), quantiles from the GEV distribution and the probability of exceedance for the normalized flow series. The
slope of each line was estimated using the straight line portion at the extreme end.

approximate critical order of divergence of moments
that can be determined using the observed daily
data river flow series varies between 2 and 3.
Those values are not so different from those
reported by Turcotte and Greene (1993) (they
denoted gp by the symbol ‘D’, which may cause it
to be confused with a fractal dimension). The most

reliable result is from the normalized ensemble
which has a higher g, which is due to the
increased number of samples (Fig. 4b); we find
gs =~ 3.48 > gp = 3.12. Note however that the
small difference between g and ¢, shows how
difficult such estimates are (they require large
databases; preferably many rivers).



74

Probability of Exceedance (Pr(Q>s))

G. Pandey et al./Journal of Hydrology 208 (1998) 62-81

A,
-1 A
1 A
R ry
i A
AAA
107 3 Sy
10-2 E
] Slope qp =-3.12
103
1074 =
- A
107 o a
. a
¥ I‘lilll]] L LI IIT—llr L] T 1171
0.1 1 10

0.01

0.001

0.0001

it sl sl Lo i 1a4ai)

ol

o—a-=—=-e Observed position

Slope qp, from multifractal theory = 3.12
(Eq. 13)

Normalized Discharge

GEYV fitted

/

Slope of the tail =-4.5 /

(For GEV)

0.1

T T Ty T T T

1
Normalized Annual Discharge (s)

Fig. 4. (Continued ).



G. Pandey et al./Journal of Hydrology 208 (1998) 62—81 75

Table 4

Estimation of the parameters g, gp and v, for individual as well as normalized flow series (the average gp was determined after excluding the
last two values which had g, > g, and so were judged unreliable). The singularities v, and v, — H respectively correspond to the theoretical
value (estimated using c(v,) =D+ D, when gp > g, and c(y,;) =D+ D, when g < g,) without and with adjustments for the filtering process,
and vy is the slope of the observed maximum. The GEV fitted slope is the slope of the extreme tail of the generalized extreme value
distribution (Eq. (17)). In the table, “‘average’ corresponds to the average of individual exponents

Basin area (km?) gs qp 75 (theory) Ymax (Observed) ¥s — H =vYna GEY fitted slope
(theory)
5 44 2.74 0.52 0.39 0.36 6.95
10 3.6 2.37 0.51 0.49 0.53 2.54
82 33 241 0.52 0.49 0.42 24
86 4.8 49 0.41 0.25 0.09 9.6
164 36 33 0.52 04 042 5.1
231 37 2.57 0.54 0.48 0.58 28
311 27 224 0.64 0.55 0.58 2.5
927 2.8 3.5 0.61 0.28 0.24 2.8
2875 35 4.18 0.53 0.39 0.34 5.1
5827 32 3.26 0.60 0.54 0.62 6.0
16 856 4.1 3.6 0.50 0.36 0.21 2.76
37555 33 442 0.55 0.39 0.37 5.44
50608 2.17 224 0.73 0.58 0.57 142
67182 3.1 4.6 0.58 0.33 0.41 44
67314 3.8 3.25 0.50 0.45 0.32 37
79772 53 4,17 0.41 0.28 0.07 2.8
250385 32 3.6 0.56 0.47 0.23 37
638950 43 113 044 0.16 -0.04 29
1805222 4.8 25 041 0.19 -0.01 10.0
Average 3.67 £ 0.8 3.37 * 0.86 0.64 = 0.08 0.39 + 0.12 0.33 0.2 49 * 9.1
Ensemble 348 + 0.6 3.12 + 0.7 0.53 = 0.07 0.53 = 0.11 0.67 = 0.17 4.5

5.2. The standard approach

At this point it will be useful to discuss the common
engineering practice of fitting ad hoc probability
distributions to the observed flood peaks. Statistical
characterization of the flood series and subsequent
estimation of the flood quantiles associated with a
particular risk has become a subject of constant
research in the hydrological sciences. The usual
approach is to pick an annual maximum from the
observed daily flow series (however, in some cases
n highest peaks are also considered, where n is the
length of the annual flood series). Assuming that
those peaks represent independent stochastic events,
a probability distribution function is fitted and the
quantiles associated with certain risks are determined.
Over the last 30 years, many probability distribution
functions and an equal number of parameter
estimation techniques have been developed (see
Haktanir, 1992). The inferences are based upon the

statistical goodness-of-fit tests and there is no attempt
to give any physical justification for the choice (Potter
and Lettenmaier, 1990); indeed, the assumption of
statistical independence contradicts the observed
scale invariance with its associated long-range corre-
lation structure. Hence, although the methodology
provides engineers with flood quantiles for design
purposes, its theoretical basis is suspect. Aside from
their ad hoc nature, the models are valid only over a
particular (unique) aggregation time scale; that is, the
inferences are valid only for the time scale for which
the model is calibrated. For example, since the models
are developed using the annual flood data, the infer-
ences are valid for the annual aggregation scale. The
behavior of the process at finer resolution (say
monthly or weekly) as well as coarser resolution
(say biannual or decadal) is not considered and
these models cannot be used at other scales.
Besides, it is not very difficult to see that several
of these distribution functions give a very rapid
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Fig. 5. Variation of the exponents g5, g and ggey with basin area. The exponent gggy corresponds to the best fit of the extremes, using the

GEV distribution for the annual peak flows.

fall-off (‘thin’, exponential) probability tail (i.e,
log(Pr(Q > s5)) =« - s) rather than the slow (‘fat’)
hyperbolic (i.e., log(PH{Q > s)) x — log(s)) decays
of the extremes. In general, exponential distributions
will not be scaling; hence they are in contradiction
with the multifractal nature of the flow series (the
multiscaling as a function of resolution).

Based upon intensive simulation studies, the gen-
eralized extreme value (GEV) distribution has been
recommended to model the annual maximum of the
observed daily flood series by the Natural Environ-
mental Research Council (1975) (ERC), Hosking
et al. (1985), Lettenmaier and Potter (1985) and Potter
and Lettenmaier (1990). Due to its large number of
parameters, the distribution is considered general
(it notably includes the Gumbel distribution as
a special case). The cumulative distribution
function (cdf) or the probability of nonexceedance
(PH(Q = s5) = F(s)) for the GEV distribution is

given as

Fls)= exp[—(l - {a3(s—a1)}/a2)l/“3}, a3 #0

exp[—exp{ —(s—a))/ay}],  B=0
a7

where a,, a@; and a; are respectively the location,
scale and shape parameters of the distribution. Note
that, while at a given scale both GEV and universal
multifractal distributions have three parameters (four
for multifractals if we include gp), the former
requires a different empirical set of parameters for
every aggregation period while the multifractal
model requires only three for the entire range of
aggregation scales (here >10°). In addition, we will
now show that even over a fixed aggregation scale the
multifractal model gives a better fit to the extremes.

In order to compare and contrast this approach with
the multifractal one, the GEV distribution was fitted to
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Fig. 6. Bare and dressed (c(7y), cd(7y)) corresponding to the para-
meters found for the ensemble of normalized flows: C, = 0.12,
a=1.70, gp=3.12. Also shown are various significant singularities
(v): vp = K'(gp), which is where the dressed codimension
separates from the bare one. Also shown are the maximum singu-
larities present in a single realization of dimension D = I (ys4 (p-1)),
and in the 19 realizations/samples studied in the text with sampling
dimension Dg = log 19/1og2" = 0.35; effective dimension
D+D =135 (v, (D=1.35)). Since yp and vy oy are very
close, the hyperbolic behaviour of the tails is very hard to discern
on a single river flow series.

all individual flow series and to the normalized flow
series. The probability of exceedances as a function of
quantile (s) for the normalized flow series is shown in
Fig. 4c. It can be seen on a log—log plot that the
distribution curves slowly; the logarithmic derivative
at the extreme low probability end is an estimate of
the best-fit asymptotic hyperbolic distribution, i.e.,
that closest to the multifractal model but with a dif-
ferent slope. The magnitudes of the slopes of the
extreme tails obtained from the GEV distribution are
given in Table 4 and are shown graphically in Fig. 5.
Although the tail of the GEV fitted distribution shows
similar behavior (i.e., on a log—log plot the distribu-
tion curves slowly), the magnitudes of the slopes are
mostly higher than those of the g and g, given by the
multifractal model (Table 4). For the normalized flow
series, the values of the exponents gp and g, were
respectively obtained as 3.48 = 0.64 and 3.12 *
0.70, whereas the slope of the tails for the GEV is
4.5; this implies that the GEV distribution always
underestimates the extremes. Note that the observed
scaling of the flow statistics as a function of the aggre-
gation scale x implies that the annual flood series are
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Fig. 7. Accumulated runoff volume for different time periods. The best fit is the slope ( = 1 - v max) of the fitted line using the accumulated
volume from 8 days to 4096 days (from top to bottom: Mississippi River, Susquehanna River, Arkansas River, Osage River, Colorado River,
Sabine River, Grand River, Ohoopee River, McCloud River, Rio Grande River, Canadian River, Indian Creek, Pecos River, Yantic River,
North Nashua River, Kettle Brook, Mill River, Pendleton Hill River and Rocky Brook).
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not independent of each other. This violates the basic
assumption of fitting the GEV and the Gumbel distri-
bution to the observed daily river flow data (see also
Bendjondi, H. et al. 1997).

6. The scaling of extreme flow volumes

Estimates of maximum flow volumes at a variety of
aggregation scales are needed in various water
resource management problems such as storage plan-
ning, flood control, in the estimation of the maximum
yield, etc. Hubert et al. (1993) gave a simple multi-
fractal theory to estimate the maximum accumulated
rainfall volumes is the maximum order of singularity
for ¢. Using Eq. (2), the maximum accumulated
volume in time 7 scale of resolution A = T/7, is
given as

(Vol),=rQr o 7' 77 (18)

Thus multifractal theory shows that the slope of the
plot between the maximum volume and 7 should be
algebraic. In order to characterize the maximum
accumulated volume, we need only estimate <y pg,
where yma is the maximum order of singularity of
the flow rate. Although models exist with a finite
upper bound on v (e.g. microcanonical cascades,
the o-model, the log Poisson model, or universal
multifractal with o < 1), in general, the process
will be unbounded (in particular, as here when
a = 1) and the actual sample maximum will depend
on the sample size (shown in Fig. 6) and be equal to
the sampling singularity v,, introduced earlier. For a
single realization the dimension of the set of extreme
events on the time axis must >0, hence c(y) = L.
Hence, using Eq. (4), for a conservative multifractal
process Hubert et al. (1993) obtained:

/e _ Cl

a-1 {19

in which o' is the exponent such that /e + 1/’ = 1
and vy, The effective order of singularity ()
estimated above is the singularity for the underlying
conserved process. Since river runoff (Q) is obtained
from the conserved process (¢) by a fractional inte-
gration of order H, for high enough order singularities
this is equivalent to a shift in the order of singularities

((Q,dd),TH) ie., vy — ¥ — H); hence we obtain
Q, =7 " with yyx = v, — H. Since H = 0 for
rainfall at these scales, Hubert et al. (1993) did not
explicitly take this effect into account.

The plots of the observed maximum accumulation
volume as a function of the time scale (7) are shown in
Fig. 7; the slopes = 1 — y .. The straight lines are the
regression estimates using the aggregated volumes at
8 days and larger time scales (i.e., low frequency
regime). The estimated values of the relevant
exponents for all individual stations are given in
Table 4. Based upon the analysis, two inferences
were made. First, as predicted, there exists a linear
log-log (scaling) relationship between the observed
maximum and the accumulated time (Fig. 7). Second,
the estimated (1 — . )/slopes from different rivers
yield estimates of + ., Which are close to the theore-
tical value vy, — H (Table 4). For some stations, there is
a break in the scaling at around one week. This obser-
vation is compatible with that from spectral analysis,
which also showed a break in the scaling regime at
around the same period. The theoretical values of 7
(or v, whenever gp < g,) estimated from the multi-
fractal parameters (C, and «) are given in Table 4.
The average theoretical value of ypx = ys — H is
0.33 * 0.2 and that obtained from the scaling of the
extremes is 0.39 = 0.13 (note that, in any case, v, and
¥ max are both expected to have some random series to
series variability since v is a random variable). The
closeness of ¥ ma and v, — H shows that the scaling of
the accumulated maximum volumes may well be the
direct consequences of the multifractal nature of the
river flows and are correctly estimated from the multi-
fractal parameters. This implies that the multifractal
model can indeed be used to satisfactorily model the
maxima of the river flow series over a wide range of
time scales (including presumably even extrapolating
to longer scales than the length of the records since the
scaling in Fig. 7 appears to continue to the largest
observed scales).

7. Conclusions

Multifractal analysis of the daily river flow data
from 19 river basins of varying watershed areas was
carried out. The initial analysis of the scaling nature
and its limits were assessed using spectral analysis.
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For most of the rivers, there is a break in the scaling
regime at a period of about one week. This time is
roughly half of the atmospheric synoptic maximum,
which is the typical lifetime of planetary-scale
atmospheric structures including rain events. In gen-
eral, for the river flows studied here, no upper limit for
scaling regimes was found (for some river basin the
series is more than 73 years long). The magnitude of
spectral slope for the low frequency region varied
from 0.73 to 1.88 with an average value of 0.72 for
the normalized ensemble. It was also observed that the
variability in the spectral slope and scaling is almost
independent of the area of the basin considered, even
though the latter varies over nearly 6 orders of mag-
nitude.

For all individual flow series, as well as for the
normalized flow ensemble of the universal multi-
fractal parameters characterizing the infinite hierarchy
of scaling exponents were estimated. Those para-
meters were in close agreement with those reported
by Tessier et al. (1996) on much smaller basins. The
variations of the multifractal parameters with the
basin area suggests that the basin-to-basin variability
was random rather than systematic. Using the
observed flow series, the critical exponents (gp) char-
acterizing the multifractal phase transition and self-
organized criticality (i.e., algebraic decay of the
extremes) were estimated. On the basis of the present
findings, the maximum order of moments that can be
safely estimated using the daily river data lies
(depending on the river) between 2 and 5. All the
higher moments will be dominated by a single
extreme value in the series. The algebraic fall-off of
the extremes was most clearly observed in the ensem-
ble distribution of normalized flows. The values of o
also show that the order of singularities is in general
not bounded. This algebraic decay of the probability
distribution also brings into question the routine
fitting of probability distributions with exponential
tails (e.g., by using GEV statistics). It was also
observed that the universal multifractal parameters
were able to describe the scaling behavior of the maxi-
mum accumulations from nearly one week to the limit
of the series (more than 11 years).

The work here provides the basis for using univer-
sal multifractal models for various engineering
problems, including the (causal) transfer functions
for modelling the rainfall runoff process including

the flow generating processes (e.g. precipitation) and
the factors that modify the flow of water through the
basin (e.g. topography). Another potential application
of multifractal flow models is to disaggregate the
statistical properties of the river flow series from lar-
ger time scales (say year) to shorter resolution (say
month or week). Most of all, the multifractal model,
which is based upon the physical symmetry principle
of scale invariance, could provide a sound theoretical
basis for the entire flood frequency procedure, which
so far has been quite ad hoc.
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