Scale, scaling and multifractals in complex geosystems part 2

Cascades

Beta model

An initial attempt to handle intermittency reduces it to the simple notion of "on/off" intermittency, i.e. a cascade with the simple alternative alive/dead of the offspring.

In this example, the probability that an eddy will remain alive is $\lambda_0^{-C} = 0.87$ (using the scale ratio at each step $\lambda_0 = 4$ here and the codimension C = 0.2).

From top to bottom every second cascade step is shown (a factor of λ_0^2) is shown, 10 steps in all, the total range of scales is $2^{10} = 1024$). Notice the changing vertical scales

The α model is a two state (binomial) process with $\mu \epsilon$ = either $\lambda_0^{\gamma_+}$ or $\lambda_0^{\gamma_-}$ where $\gamma_+>0$ corresponds to a boost ($\mu \epsilon>1$) and γ to a decrease ($\mu \epsilon<1$).

Multiplicative Cascades

Generic statistical behaviour:

Characterizing K(q): universality

Discrete in scale (ex. β , α models)		Continuous in scale
ECI	- I Short Courco	

Characterizing K(q): universality

Route 2) "Mixing" of independent discrete cascades

Universal Multifractals

"Multiplicative central limit theorem"

 $C_1 = K'(1)$ $\alpha = K''(1)/K'(1)$ Characterisation of all statistics

Data Analysis

Fluctuation statistics and structure functions

The space-time variability of natural systems, can often be broken up into various "scaling ranges" over which the fluctuations vary in a power law manner with respect to scale. Over these ranges, the fluctuations follow

$$\Delta v = \varphi_{\Delta x} \Delta x^{H}$$
The flux at resolution Δx

Using Fluctuations: $S_q(\Delta x) = \langle \Delta v (\Delta x)^q \rangle = \langle \varphi_{\Delta x}^q \rangle \Delta x^{qH} \approx \Delta x^{\xi(q)}; \quad \langle \varphi_{\Delta x}^q \rangle = \left(\frac{L}{\Delta x}\right)^{K(q)}; \quad \xi(q) = qH - K(q)$ (generalized, qth order) Structure function

Hence, we seek H, K(q)

With universality: $K(q) = \frac{C_1}{\alpha - 1} (q^{\alpha} - q)$ i.e. we seek H, C₁, α EGU Short Course 2014

Empirical analysis: Estimating fluxes from the fluctuations

Multifractal cascade equation:

$$\left\langle \varphi_{\lambda}^{q} \right\rangle = \lambda^{K(q)}$$

Fluctuations:

Estimating the fluxes from the fluctuations

$$\Delta I = \varphi_{\Delta x} \Delta x^{H} \qquad \text{outer}$$

$$\varphi_{\lambda}' = \frac{\varphi_{\lambda}}{\langle \varphi_{\lambda} \rangle} \approx \frac{\Delta I(\Delta x)}{\langle \Delta I(\Delta x) \rangle}; \quad \lambda = \frac{L}{\Delta x} \qquad \text{scale}$$

Normalized flux at resolution λ

$$M_q = \left\langle \varphi_{\lambda}^{\prime q} \right\rangle \longleftarrow$$

 Estimate at finest resolution,
 then degrade to intermediate resolutions by averaging

Vertical cascades: lidar backscatter

From 10 airborne lidar cross-sections near Vancouver B.C.

 $Log_{10}M$ $M = \left< \delta I_{\lambda}^{q} \right> / \left< \delta I_{1} \right>^{q}$ q=2 0.8 Log_{10}M **q=2** 0.6 0.6 C₁=0.076 C₁=0.11 q=1.6 q=1.6 0.4 0.4 0.2 0.2 **q=**: q=1 - 0.5 0.5 1 $Log \quad 10^{10} q = 0.4$ Log 10^{λ} q=0.4 10km 20000km 12m 200m q=0, 0.2, 0.4..., 2 EGU Short Course 2014

Horizontal cascade

Vertical cascade

Horizontal spatial Scaling exponents

		C ₁	α	н	β	L _{eff}
State variables	u, v w T h z	0.09 (0.12) 0.11, (0.08) 0.09 (0.09)	1.9 (1.9) 1.8 1.8 (1.9)	1/3, (0.77) (—0.14) 0.50, (0.77) 0.51 (1.26)	1.6, (2.4) (0.4) 1.9, (2.4) 1.9 (3.3)	(14 000) (15 000) 5000 (19 000) 10 000 (60 000)
Precipitation	R	0.4	1.5	0.00	0.2	32 000
Passive scalars	Aerosol concentration	0.08	1.8	0.33	1.6	25 000
Radiances	Infrared Visible Passive microwave	0.08 0.08 0.1–0.26	1.5 1.5 1.5	0.3 0.2 0.25–0.5	1.5 1.5 1.3–1.6	15 000 10 000 5000–15 000
Topography	Altitude	0.12	1.8	0.7	2.1	20 000
Sea surface temperature	SST (see Table 8.2)	0.12	1.9	0.50	1.8	16 000

$$\Delta I = \varphi \Delta x^{H} \quad \left\langle \varphi_{\lambda}^{q} \right\rangle = \lambda^{K(q)} \quad \lambda = L_{eff} / \Delta x \quad K(q) = \frac{C_{1}}{\alpha - 1} \left(q^{\alpha} - q \right) \quad E(k) \approx k^{-\beta}$$

Surface, solid earth exponents

	C ₁	α	Η	β
Rock Density	0.045	2.0	0.08	1.07
(vertical)				
Magnetic	0.11	2.0	0.17	1.12
susceptibility				
(vertical)				
Topography	0.12	1.8	0.7	2.1
Vegetation	0.064	2.0	0.16	1.19
index				
Soil moisture	0.053	2.0	0.14	1.17
index				

$$\Delta I = \varphi \Delta x^{H} \quad \left\langle \varphi_{\lambda}^{q} \right\rangle = \lambda^{K(q)} \quad \lambda = L_{eff} / \Delta x \quad K(q) = \frac{C_{1}}{\alpha - 1} \left(q^{\alpha} - q \right) \quad E(k) \approx k^{-\beta}$$

Extremes, Divergence of moments, Self-organized criticality

EGU Short

Divergence of moments in Laboratory turbulence

$$\Pr(\varepsilon > s) \approx s^{-q_{D,\varepsilon}}$$

Dissipation Range:

$$\varepsilon \approx v \underline{v} \cdot \nabla^2 \underline{v} \approx v \frac{\Delta v^2}{\Delta x^2} \qquad \Pr(\varepsilon > s) = \Pr\left(\frac{v \Delta v^2}{\Delta x^2} > s\right) \qquad q_{D,\varepsilon} = q_{D,v(diss)} / 2$$
Inertial Range:
$$\varepsilon \approx \frac{\Delta v^3}{\Delta x} \qquad \Pr(\varepsilon > s) = \Pr\left(\frac{\Delta v^3}{\Delta x} > s\right) \qquad q_{D,\varepsilon} = q_{D,v(inertial)} / 3$$

Laboratory Data:

Dissipation range estimate: $q_{D,v(diss)} \approx 5.4$; $q_{D,\varepsilon} \approx 2.7$ Inertial range estimate: $q_{D,v(inertial)} \approx 7.7$; $q_{D,\varepsilon} \approx 2.6$ EGU Short Course 2014

Radelescu, L+S+M 2002

Table 5.1a A summary of various estimates of the critical order of divergence of moments (q_D) for various atmospheric fields.

Field	Data source	Туре	q _D	Reference
Horizontal wind	Sonic Sonic Hot wire probe	10Hz, time 10 Hz Inertial range	7.5 7.3 7.7	Schmitt <i>et al.</i> , 1994 Finn <i>et al.</i> , 2001 Fig. 5.22, Radulescu <i>et al.</i> , 2002
	Anemometer Anemometer Aircraft, stratosphere Aircraft, troposphere Aircraft, troposphere Radiosonde Scaling gyroscopes cascade (SGC) model (Box 3.4)	15 minutes Daily Horizontal, 40 m Horizontal, 280 m – 36 km Horizontal, 40 m – 20 km Horizontal, 100 m Vertical, 50 m	5.4 7 5.7 ≈ 5 $\approx 7 \pm 1$ ≈ 5 5 6.9 ± 0.2	Fig. 5.22, Radulescu et al., 2002 Tchiguirinskaia <i>et al.</i> , 2006 Tchiguirinskaia <i>et al.</i> , 2006 Lovejoy and Schertzer, 2007 Fig. 5.10 Chigirinskaya <i>et al.</i> , 1994 Schertzer and Lovejoy, 1985 Schertzer and Lovejoy, 1985, Lazarev <i>et al.</i> , 1994 Chigirinskaya and Schertzer, 1996
Potential temperature	Radiosonde	Vertical, 50 m	3.3	Schertzer and Lovejoy, 1985
Humidity	Aircraft, troposphere	Horizontal, 280 m – 36 km	≈ 5	Fig. 5.10
Temperature	Aircraft, troposphere Hemispheric, global Daily, stations	Horizontal, 280 m – 36 km Annual, monthly Average over 53 stations in France, daily single station (Macon)	≈ 5 ≈ 5, 5 4.5, 4.5	Fig. 5.10 Lovejoy and Schertzer, 1986, and unpublished analysis respectively Ladoy <i>et al.</i> , 1991
Paleotemperatures	Ice cores	350 years (time), 0.55 m, 1 m (depth)	5, 5	Lovejoy and Schertzer, 1986, Fig. 5.21 respectively
Geopotential anomalies	Reanalyses	500 mb, daily	2.7	Sardeshmukh and Sura, 2009
Vorticity anomalies	Reanalyses	300 mb, daily	1.7	Sardeshmukh and Sura, 2009
Visible radiances (ocean surface)	Remote sensing	7 m resolution MIES data	3.6	Lovejoy et al., 2001
Passive scalar (SF ₆)	Fast response SF ₆ analyzer	1 Hz	4.7	Finn <i>et al.</i> , 2001
Vertical CO ₂ flux (above a field)	Aircraft new ground	Horizontal \approx 1 km resolution	5.3	Austin <i>et al.</i> , 1991
Seveso pollution	Ground concentrations	In-situ measurements	2.2	Salvadori <i>et al.,</i> 1993
Chernobyl fallout	Ground concentrations	In-situ measurements	1.7	Chigirinskaya <i>et al.,</i> 1998; Salvadori <i>et al.,</i> 1993
Density of meteorological	WMO surface network	Geographic location of stations	3.7 ± 0.1	Tessier et al., 1994

L+S 2013

q_D estimates for various geophysical fields

Most exponents: range 3-5

	Field	Data source	Туре	q _D	Reference
	Radar reflectivity of rain	Radar reflectivity factor	1 km ³ resolution	1.1	Schertzer and Lovejoy, 1987
	Rain rate	Gauges Gauges Gauges High-resolution	Daily, Nimes Daily, time, France Daily, USA 8 minutes	2.6 ≈ 3 1.7-3 ≈ 2	Ladoy <i>et al.</i> , 1991 Ladoy <i>et al.</i> , 1993 Georgakakos <i>et al.</i> , 1994 Olsson, 1995
q _D esπma	ites	gauges High-resolution	15 s	2.8-8.5	Harris et al., 1996
for variou hydrologi fields	is cal	gauges Gauges Gauges Gauges Gauges Gauges	Daily, time 1–8 days Hourly, time Daily, four series from 18th century Hourly, time Hourly, time	3.6 ± 0.07 3.5 4.0 3.78 ± 0.46 ≈ 3 ≈ 3	Tessier <i>et al.</i> , 1996 De Lima, 1998 Kiely and Ivanova, 1999 Hubert <i>et al.</i> , 2001 Fig. 5.10c; Schertzer <i>et al.</i> , 2010 Fig. 5.20b; Lovejoy <i>et al.</i> , 2012
		High-resolution gauges	15 s, averaged to 30 minutes	2.23	Verrier, 2011
	Raindrop volumes	Stereophotography	10 m ³ sampling volume	5	Lovejoy and Schertzer, 2008
	Liquid water at turbulent scales	Stereophotography	Total water in 40 cm cubes	3	Lovejoy and Schertzer, 2006b
	Stream flow	River gauges (France)	Daily	3.2 ± 0.07	Tessier <i>et al.</i> , 1996
		River gauges (USA)	Daily	3.2 ± 0.07	Pandey et al., 1998; Tessier et al., 1996 Schertzer et al. 2006
Mast superants 2		(France)	Dany	2.5-10	Schertzer et ul., 2000

Table 5.1b A summary of various estimates of the critical order of divergence of moments (q_D) for various hydrological fields.

Most exponents: ≈ 3

EGU Short Course 2014

L+S 2013

Simulations

s >> 1

Extremes: "Fat tails"

General multifractal statistics, convex K(q) Universal multifractals ("multiplicative central limit theorem")

 $q < q_D$

Fractionally Integrated Flux (FIF) model (both additive and multiplicative)

S+L 1987 The process $I(\underline{r}) = \varepsilon_{\lambda}(\underline{r}) * |r|^{-(D-H)}$ $\tilde{I}(k) = \tilde{\varepsilon}_{\lambda}(\underline{k}) |\underline{k}|^{-H}$ Convolution= Fourier space= power law filter fractional integration order H The statistics $S_{q}\left(\underline{\Delta r}\right) = \left\langle \Delta I\left(\underline{\Delta r}\right)^{q} \right\rangle = \left\langle \varepsilon_{\lambda}^{q} \right\rangle \left|\underline{\Delta r}\right|^{qH} = \left|\underline{\Delta r}\right|^{\xi(q)}$ $\xi(q) = qH - K(q)$

structure

function

 $\langle \varepsilon_{\lambda}^{q} \rangle = \lambda^{K(q)}$ exponent

Note:

 $\lambda = L / \Delta r$

qth order

structure

function

fluctuation

FIF modeling: clouds and radiative transfer

Cloud liquid water (top)

Cloud top visible

Cloud liquid water (side)

Cloud bottom visible

The physical scale function and differential scaling

$$\left|\underline{\Delta r}\right| \rightarrow \left\|\underline{\Delta r}\right\|$$

Usual distance (=vector norm)

Scale function (scale notion)

Scale symmetry

$$\left\|\lambda^{-G}\underline{r}\right\| = \lambda^{-1}\left\|\underline{r}\right\|$$

Fly by of anisotropic (multifractal, cascade) cloud

Horizontal versus vertical borehole rock densities

Vertical boreholes (β_v =1.2)

CYCLES/KM

Lovejoy and Schertzer 2007 (adapted from Leary 1997)

 $H_z = (\beta_h - 1)/(\beta_v - 1) = 2$

Short Course 2014

CYCLES/KM

Stratified Multifractal Crust, Mantle rock density simulation

Vertical cross-sections

3000km

128km

Lithospheric rock density

512km Sphero-scale $l_s=256$ km, with 1 pixel = 1km.

Mantle density

6000km

Sphero scale = 1 pixel. Each pixel is 50 km, sphero-scale = 25km. Hot (low density) plumes shown as white/red (this is a model for either density or temperature fluctuations (the two being proportional; we assume constant expansion coefficient). These are for fluctuations with respect to the mean vertical profile

Simulated magnetization field for horizontally isotropic crustal magnetization

Parameters: are H_z =1.7, s = 4, H = 0.2, α =1.98, C₁ = 0.08, I_s = 2500 km, EGU Short Course 2014

The unity of geosciences: clouds and rocks

Generalized Scale Invariance

The scale changing operator T_{λ} which transforms the scale of vectors by scale ratio λ

 T_{λ} is the rule relating the statistical properties at one scale to another and involves only the scale ratio. This implies that T_{λ} has certain properties. In particular, if and only if $\lambda_1 \lambda_2 = \lambda$, then: $B_{\lambda} = T_{\lambda}B_{1} = T_{\lambda,\lambda,\lambda}B_{1} = T_{\lambda,\lambda}B_{\lambda,\lambda} = T_{\lambda,\lambda}B_{\lambda,\lambda}$

 $T_{\lambda} = T_{\lambda_{\gamma}} T_{\lambda_{1}} = T_{\lambda_{1}} T_{\lambda_{\gamma}}$ it is also commutative

This implies that T_{λ} is a one parameter multiplicative group with parameter λ : $T_{\lambda} = \lambda^{-G}$

One parameter Lie group, G= generator

Example of anisotropic "Blow down" NVAG NVAG $T_{\lambda} = \lambda^{-G}$ A generalized blow-down with increasing of the acronym "NVAG". If G = I, we would have obtained a standard reduction, with all the copies uniformly reduced converging to the centre of the reduction. Here the parameters are $G = \begin{pmatrix} 1.3 & -1.3 \\ 0.3 & 0.7 \end{pmatrix}$ and each successive reduction is by 28%. G=identity: $||\underline{r}|| \rightarrow |\underline{r}|$ Scale function equation $\left|\lambda^{-1}\underline{r}\right| = \lambda^{-1}|\underline{r}|$ $\begin{aligned} \left\|\lambda^{-G} \underline{r}\right\| &= \lambda^{-1} \left\|\underline{r}\right\| \\ \text{generator} \\ \text{Scale ratio} \end{aligned}$ Scale function: size of vector <u>r</u> **EGU Short Course 201**

Roundish unit ball

k = 0: we vary r (denoted i) from -0.3, -0.15, ...0.45 left to right and e (denoted j) from -0.5, -0.25, ...0.75 top to bottom. On the right we show the contours of the corresponding scale functions.

$$G = \left(\begin{array}{cc} 1 & r-e \\ r+e & 1 \end{array}\right) \quad \textbf{e}$$

Highly anisotropic unit ball: *k* =10

Polar coordinate scale function for unit ball $\|\underline{r}\| = r\Theta(\theta'') = 1 \quad \text{with}$ $\Theta(\theta'') = 1 + \frac{1 - 2^{-k}}{1 + 2^{-k}} \cos \theta''$

Hence: $\max(\Theta(\theta'')) / \min(\Theta(\theta'')) = 2^{k}$

e = 0

r is increased from -0.3, -0.15, ...0.45 left to right, from top to bottom, *k* is increased from 0, 2, 4,..10.

e = 0.75

r = 0

e left to right is: -0.5, -0.25, ...0.75.

r = 0.15

In all rows, from top to bottom, *k* is increased (0, 2, 4,..10),

Char	ngin	g G	http://w	ww.physics.m	ncgill.ca/~gan	g/multifrac/	index.htm
	<u>IM</u>	ultifi	ractal	expl	orer		ular sphero-scale
	l introdu l isotrop	action I multifrac	tals clouds top 3 <mark>SI </mark>	ography I misc I m	ovies I glossary I j	publications I	$G = \begin{pmatrix} 1-i & -j \\ j & 1+i \end{pmatrix}$
				simulations	I scale functions		
GANG	k=0	i=-0.3	i=-0.15	i=0	i=0.15	i=0.3	i=0.45
home		46.5.53					
people	j=-0.5			ALL DA	8 3. 1 De		19112
projects							
	j=- 0.25						
	j=0						
	i=0.25		U Sh	ort Ca	burse	2014	

H=0.7, α =1.8, C₁=0.12

EGU Snorl Course ZUI

Extension from space to space-time (including waves)

Cascades from localized to increasingly unlocalized structures: $H_{wav} = 1/3-H_{tur}$

Predictability and stochastic forecasting

Algebraic divergence of realizations

Space-time Cascades, stochastic nowcasting (rain)

Realization ARealization BForecast based on first(all same initially)16 time stepsEGU Short Course2014

Conclusions

1. High level stochastic turbulence laws emerge from (deterministic) continuum mechanics at strong nonlinearity

- 2. Regimes: Weather, macroweather, climate
- 3. Analysis techniques: Haar fluctuations: accurate yet simple to interpret

4. Generalize classical laws: a) : Intermittency using cascadesb) wide range of scales using anisotropic scaling, stratification

5. Unity of the geosciences: anisotropic scaling, multifractality

