

and Climate

SHAUN LOVEJOY and DANIEL SCHERTZER

Emergent space-time scaling laws in precipitation: Weather, macroweather and climate regimes

Hydrofractals 2013, Kos 18 October, 2013

S. Lovejoy McGill, Montreal

The Emergence of physical laws

Quantum mechanics

Classical Mechanics

Classical Statistical mechanics (Boltzman equation) Continuum mechanics, thermodynamics

The emergence of atmospheric dynamics (Classical)

e.g. Kolmogorov $\varphi = \epsilon^{1/3}$, H=1/3

Vortices in strongly turbulent fluid

(M. Wiczek, numerical simulation, 2010)

φ≈constant, quasi Gaussian

C)

Emergence of Atmospheric laws (Modern)

Differences, tendencies, wavelet coefficients

Cascading Turbulent flux Anisotropic Space-time Scale function Fluctuation /conservation exponent

Fourier domain:

$$\begin{pmatrix} Variance_{observables} \\ wavenumber \end{pmatrix} = \begin{pmatrix} Variance_{flux} \\ wavenumber \end{pmatrix} (wavenumber)^{-2H} \qquad \text{Space: } E(k) \approx k^{-\beta} \\ = (wavenumber)^{-\beta} \qquad \text{Time: } E(\omega) \approx \omega^{-\beta} \end{cases}$$

The emergent laws hold up to planetary scales (Horizontal scaling)

 $E(k) = k^{-\beta}$

From small scales

Stereophotography of drops (HYDROP experiment) (storm 295 no. 2)

The angle averaged drop spectra 5 storms, 18 triplets

Direct evidence that rain behaves as a passive scalar at large enough scales

Visible, near infra red, thermal infra red

These huge scaling ranges are possible because the scaling is *anisotropic*

Isotropic turbulence - including Geostrophic turbulence - is irrelevant in the atmosphere!

$$\left|\underline{\Delta r}\right| \longrightarrow \left\|\underline{\Delta r}\right\|$$

Anisotropic Scaling D_{el}=2 D_{el}=2.33 D_{el}=23/9=2.55 $D_{el}=3$ Bolgiano-Obukhov The 23/9D model: $\Delta v(\Delta x) = \varepsilon^{1/3} \Delta x^{1/3}; \quad \Delta v(\Delta z) = \phi^{1/5} \Delta z^{3/5} \quad H_z = (1/3)/(3/5) = 5/9$ Volume≈LxLxL^{Hz}≈L^{Del} D_{el}=2+H_z=23/9 Kolmogorov

Zoom factor 1000

Vertical crosssection

The turbulent fluxes follow multiplicative cascades, multifractal behaviour

$$\Delta I = \varphi \left[\left[\left(\Delta x, \Delta y, \Delta z, \Delta t \right) \right] \right]^{H}$$

$$\frac{\varphi}{\langle \varphi \rangle} = \frac{\Delta I}{\langle \Delta I \rangle}$$

Scale-dependent TRMM PR Attenuation Corrected Reflectivity Factor [Z_{λ}] (1176 consecutive orbits -- ~70 days)

$M = \langle \phi_{\lambda}^{q} \rangle / \langle \phi \rangle^{q}$ Rainrate Moments: (time)

Conclusion:

Qualitatively: gauges, radar, reanalyses have similar space-time cascade structures

Quantitatively:

They are all different: which one is right?

Spatial Scaling:

Comparison other geofields

		<i>C</i> ₁	α	Н	β	$L_{e\!f\!f}$ (km)
State	<i>U</i> , <i>V</i>	0.09	1.9	1/3,	1.6, (2.4)	(14000)
variables				(0.77)		
	W	(0.12)	(1.9)	(-0.14)	(0.4)	(15000)
	Τ	0.11,	1.8	0.50,	1.9, (2.4)	5000
		(0.08)		(0.77)		(19000)
	h	0.09	1.8	0.51	1.9	10000
	Z.	(0.09)	(1.9)	(1.26)	(3.3)	(60000)
Precipitation	R	0.4	1.5	0.00	0.2	32000
Radiances	Infra Red	0.08	1.5	0.3	1.5	15000
	visible	0.08	1.5	0.2	1.5	10000
	Passive	0.1-0.26	1.5	0.25-0.5	1.3-1.6	5000-
	microwave					15000
Topography	Altitude	0.12	1.8	0.7	2.1	20000
			Î	Î		↑
	S o	parseness f mean	Index of multi- fractality	Scale by scale conservation	exponent	Effective External scale

Parentheses = reanalysis values

Extremes

Temporal structure

Two data sources only GRIP, 20CR

Lovejoy and Schertzer 2011

Trichotomy:

Weather – macroweather - climate

Basic characteristics of the three regimes $\langle \Delta I \rangle = \langle \phi \rangle \Delta t^{H}$

= constant

'Climate is what you expect, weather is what you get." -Lazarus Long, character in R. Heinlein 1971

<u>Weather:</u> $\Delta t < \tau_w$ (~ 10 days): H>0, Fluctuations grow with scale "unstable"

Macroweather:

(10 days \approx) $\tau_w < \Delta t < \tau_c$ (\approx 10- 100 yrs): H<0,

Fluctuations diminish with scale; atmospheric states are "stable".

"...Weather is what you get"

"Macroweather is what you expect..."

Climate:

(10- 100 yrs ≈) τ_c <≈ ∆t <≈ 100 kyrs: H>0,

Fluctuations grow with scale; atmospheric states are "unstable", subject to "climate change".

"The climate is not what you expect..."

Real space analysis

Range of exponents over which average fluctuations at scale Δt corresponds to frequency $1/\Delta t$

 $\langle \Delta I \rangle = \langle \phi \rangle \Delta t^{H}$ = constant $E(\omega) = \left\langle \left| \tilde{I}(\omega) \right|^2 \right\rangle = \omega^{-\beta} \qquad \beta = 1 + 2H - K(2)$ Fluctuation Range of H Range of β **Statistic** Comment **Multifractal** "correction" $-\infty < \beta < \infty$ Spectrum $E(\omega) \approx \omega^{-\beta}$ $-\infty < H < \infty$ Difference "Poor man's wavelet" 0<H<1 1<β+K(2)<3 **Tendency Fluctuation** Average with overall -1<H<0 -1<β+K(2)<1 mean removed (standard Simple deviation= interpretation "Climactogram", also called the "Aggregated Standard Deviation") Difference of means of Haar -1<H<1 -1<β+K(2)<3 first and second halves of interval **Detrended Fluctuation** Also multifractal extension -1<H<(n+1) $-1 < \beta + K(2) < 3 + 2n$ Analysis (DFA, polynomial (MFDFA), usually linear: n=1. order n Not a wavelet 2nd Derivative of a Mexican Hat Wavelet -1<β+K(2)<5 -1<H<2 Gaussian **Generalized Haar** $1-2m<\beta+K(2)<3+2n$ Interpretation not simple -m<H<n

Conclusions

- High level (emergent) turbulent space-time laws Precipitation as a turbulent process
- Cascades:
- -Multiplicative Cascades in space-time, data, models, reanalyses
- -Cascades are Anisotropic: vertical and horizontal cascades are different.
- -Power law extremes

Temporal scaling trichotomy: weather-macroweather-climate

Applications

-Stochastic space-time precipitation modelling -Solving the problem of measuring areal precipitation -Improving numerical models (of atmosphere and hydrology) -climate, climate change, anthropogenic effects