Why the warming can't be natural: the nonlinear geophysics of climate closure

Lorenz Lecture 16 December, 2015 S. Lovejoy, McGill, Montreal

Climate Closure

Published Oct. 20, 2015 >1000 comments

Vortices in strongly turbulent fluid

Pioneers of turbulence

Space

Planetary scale space-time scaling: 1400 MTSAT IR images

Time

Megaclimate Veizer: 290 Mys - 511Myrs BP (1.23Myr)

Megaclimate Zachos: 0-67 Myrs (370 kyr)

Macroclimate Huybers: 0-2.56 Myrs (14 kyrs)

Climate Epica: 25-97 BP kyrs (400 yrs)

Macroweather Berkeley: 1880-1895 AD (1 month)

Weather

Lander Wy.: July 4-July 11, 2005 (1 hour)

The climate is **not** what you expect...

"Climate is what you expect, weather is what you get."

-Lazarus Long, character in R. Heinlein 1973

"Climate in a narrow sense is usually defined as the "average weather"" -Intergovernmental Panel on Climate Change, 2007

Expect macroweather!

Intermittency Multifractality, Cascades

Is H enough?

Schertzer and Lovejoy 1983

Multiplicative Cascades

Generic statistical behaviour:

Stratification, Scaling Anisotropy and Generalized Scale Invariance

Anisotropic Scaling (Generalized Scale Invariance) (Schertzer and Lovejoy 1985)

The unity of geosciences: clouds and rocks

Statistical testing of Anthropogenic Warming

The Natural Warming Hypothesis

What is the probability of a ≈1°C global temperature increase over ≈ 125 years?

 \approx 5 standard deviations: one in 3 million chance

one in 3 thousand chance

Macroweather (monthly, seasonal, annual, decadal) forecasting

Limitations of General Circulation Models and stochastic alternatives

Loss of *deterministic* predictability after 10 days = "butterfly effect"

But by harnessing the butterfly effect we obtain some *stochastic* predictability....

GCMs for forecasts longer than \approx 10 days

b) Ability to use empirical data to force convergence to the real climate

ScaLIng Macroweather Model (SLIMM)

1. Macoweather \approx 30 years industrial, 100 years pre-industrial

$$\left< \Delta T \right> \approx \Delta t^{H}$$
 -1/2

2. Simple model: fractional Gaussian noise:

- 3. Vast memory due to power laws
- 4. Memory can be used for forecasting, the latter is a solved problem mathematically

Using SLIMM to Hindcast the "Pause", "slowdown", "hiatus" since 1998

(The conditional probability of the pause)

Regional monthly, seasonal, annual forecasting using SLIMM

Comparing seasonal (3 month) SLIMM and CanSIPS (GCM)

Skill for CanSIPS, 3 months horizon

Blue= negative skill Jan. 1982 – Dec. 2008 Difference of Skill SLIMM - CanSIPS

Conclusions:

The (unfinished) geo-revolutions of our time

-Geodata and informatics:

Data sets spanning three or more orders of magnitude in space and in time are now increasingly available (remote sensing, in situ networks, reanalyses)

-Computing and in numerical modelling:

Ex.: General Circulation Models now span three or more orders of magnitude in scale, in time from minutes to Millenia.

-Nonlinear understanding:

Systems with dynamics spanning wide ranges of space-time scales: fractals, multifractals, generalized scale invariance, extremes (+deterministic chaos + self-organized criticality + networks+ nonlinear waves+...)