L'utilisation du scaling pour la modelisation et prévision du changement climatique anthropique et naturelle

Ouranos 8, Octobre, 2014 S. Lovejoy, McGill, Montreal

From the age of the earth to the viscous dissipation scale: 4.5x10⁹ years - 1 ms:

20 orders of magnitude in time

In space: the size of the planet to viscous dissipation scales:

10 orders of magnitude

The NOAA NCDC Paleoclimate data site graph (inspired by Mitchell)

How to understand the variability?

• Scaling, scale invariance: $\left\langle \Delta T \left(\Delta t \right) \right\rangle = \left\langle \varphi \right\rangle \Delta t^{H}$

Difference, Anomaly, Haar fluctuations

Differences: The difference in temperature between t and t+ Δ t

Anomaly: The average of the temperature (with overall mean removed) between t and t+ Δt

Haar: The difference between the average of the temperature from t and t+ Δ t/2 and from t+ Δ t/2 and t+ Δ t

Relations: When 1 > H > 0: Haar \approx difference When 0 > H > -1: Haar \approx tendency

Standing Mitchell on his head

Mitchell

Narrow scale range processes are the most important, the continuum background is unimportant

Mitchell standing on his head

Wide scale range "continuum" processes are the most important, the other processes are perturbations

The attribution problem and anthropogenic warming

Proving the truth of Anthropogenic Global Warming

Diminishing returns

- In its AR5 report last September, the IPCC upgraded the AR4's (2007) qualification *"likely*" to conclude that it is *"extremely likely* that human influence has been the dominant cause of the observed warming since the mid-20th century".

"extremely likely" = 95-100% confidence

- Climate sensitivity: 1.5 – 4.5 °C

Unchanged since 1979

- Disproving natural global warming

Relatively easy due to an asymmetry

-No theory can ever be proven beyond "reasonable doubt" but a single decisive experiment can effectively *disprove* one.

Requires no numerical models, needs Nonlinear Geophysics

"A mephiticly ectoplasmic emanation from the forces of darkness" — Viscount Christopher Monckton of Brenchley describing the Climate Dynamics paper Natural variability as a perturbation to anthropogenic change

Anthropogenic Measurement error: ≈±0.03K $T_{globe}(t) = \lambda_{2xCO2,eff} \log_2(\rho_{CO_2}(t) / \rho_{CO_2,pre}) + T_{natural}(t) + \varepsilon(t)$ Effective climate Small fluctuations due sensitivity to natural variability Proportional to CO₂ $(K/(W/m^2))$ (stochastic). radiative forcing (W/m²) Includes responses to solar, Linear Surrogate for all volcanic and other natural anthropogenic forcings forcings. (determinstic)

CO₂ forcing as surrogate for all anthropogenic effects

Roughly: you double the global economy, you double the emissions, land use and other changes, you double the effects

Unconditional return times

How well are the natural and anthropogenic variabilities separated?

Accuracy of Hindcasts (RMS global T variability)

Comparison of standard deviations with Smith et al 2007 and Laepple 2007, Newman 2013

		1 year	5 year anomalies	9 year anomalies	
Historical hindcasts with data assimilation	Without	0.132	0.106	0.090	
	assimililation				
	(Smith) 1983 -2004				
	With DePresSys	0.105	0.066	0.046	
	(Smith) 1983 -2004				
	GFDL CM2.1	0.11			
	(initialized yearly)				
CMIP5 →	CMIP5 multimodel		0.06		
	ensemble (Doblas-		(0.095 when not		
	Reyes et al 2013)		initialized)		
CMIP3+bias→ corrections Pre- →	Laepple 1983	0.106	0.059	0.044	
	-2004				
	Pre-industrial	0.112	0.105	0.098	
industrial	Multiproxies				
variability	(1500-1900)				
	Residues	0.109	0.077	0.070	
Industrial epoch	(1880-2013)				
estimated					
natural	a) The residues are the same as hindcast errors				

(one parameter)

b) The same as the pre-industrial multproxies

Converge of GCM's to their climate, to our climate

Predictability and Stochastic Forecasting (conditional expectations) Linear Inverse Modelling (LIM) paradigm versus scaling paradigm for macroweather

The most accurate global, annual forecast of temperatures: not from GCM's but from stochastic models!

At low frequencies, d/dt≈0 $T(t) \approx \tau \gamma(t)$

T is white noise (zero memory)

Orenstein-Uhlenbeck processes spectral exponents $\beta_l = 0$ (low), $\beta_h = 2$ (high)

 $E(\omega) \approx \omega^{-\beta}$

A stochastic scaling model

Scaling Linear Inverse Model (SLIM)

$$\frac{d^{H+1/2}}{dt^{H+1/2}} \left(\tau^{-1} + \frac{d}{dt} \right) T = \gamma(t)$$

Extra fractional order
differentiation

Hence: $\frac{d^{H+1/2}}{dt^{H+1/2}}T(t) = \gamma_{\tau}(t)$

$$E_{T}(\omega) \approx \omega^{-(2H_{l}+1)} E_{\gamma_{\tau}}(\omega) = \omega^{-(2H_{l}+1)} \frac{\sigma_{\gamma}^{2} \tau^{2}}{1 + (\tau \omega)^{2}}$$

 $\gamma_{\tau}(t) = \left(\tau^{-1} + \frac{d}{dt}\right)^{-1} \gamma(t)$ $= \int_{-\infty}^{t} e^{-(t-t')/\tau} \gamma(t') dt'$ $\gamma_{\tau} = \gamma \text{ smoothed over scales}$

smaller than τ

smoothing operator

Low frequency limit

with exponents $\beta_l = 2H_l + 1$, $\beta_h = 2H_l + 3$.

SLIM: Extension of Fractional Brownian Motion (fBm) to -1/2<H<0

$$\frac{d^{H+1/2}}{dt^{H+1/2}}T(t) = \gamma_{\tau}(t)$$

Scalar SLIM model

Solution

Fractional integral of order H+1/2:

$$T = I_{H+1/2} \gamma_{\tau}$$

$$T(t) = \Theta(t) t^{-(1/2-H)} * \gamma_{\tau}$$
Heaviside singularity Smoothed noise
$$T_{H+1/2} = \frac{d^{-(H+1/2)}}{dt^{-(H+1/2)}}$$

$$T(t) = \int_{-\infty}^{t} (t-t')^{-(1/2-H)} \gamma_{\tau}(t') dt'; \quad -1/2 < H < 0$$

$$\tau = \text{the resolution of smoothing}$$

Some properties of SLIM

-1/2<H<0

Autocorrelation

The spectrum

$$E(\omega) = \left\langle \left| \widetilde{T(\omega)} \right|^2 \right\rangle \approx \omega^{-\beta}; \quad \beta = 1 + 2H$$

Power law spectra, autocorrelations

Forecasts and limits to predictability

Conditional Expectation forecast

$$T_{p,cond}(t) = \int_{-\infty}^{0} (t - t')^{-(1/2 - H)} \gamma_{\tau}(t') dt'; \quad -1/2 < H < 0$$

$$\sigma_{ET}^{2}(t) = \left\langle E_{T}(t)^{2} \right\rangle = \sigma_{T}^{2} \left(1 - \left(\frac{t}{\tau}\right)^{2H} \right); \quad -1/2 < H < 0$$

Limits to predictability= power law

Forecast Skill

Definition

 S_k = Skill= Fraction of variance explained by the forecast:

Process averaged at resolution $\boldsymbol{\tau}$

Temperature forecasts (t>τ):

t = forecast horizon τ = resolution

$$S_{K}(t,\tau) \approx \frac{(1/2+H)^{2}(1+H)2^{2H+2}}{U} \left(\frac{t}{\tau}\right)^{2H}; \quad t \gg \tau; \quad -1/2 < H < 0$$

$$S_k(t, \tau) = 1 - \frac{(-H)2^{2H+1}}{U}; \quad -1/2 < H < 0 \qquad U = -\frac{2H\Gamma(-H)\Gamma(\frac{3}{2}+H)}{\sqrt{\pi}}$$

U≈1; -1/2

Forecast Skill (theory- empirical comparison)

- a) One parameter λ_{eff} to remove anthropogenic effects.
- b) One parameter (H) to make forecasts.

Forecast Skill Summary

Summary

- a) Predictability limits: Temperature forecast skill decays algebraically not exponentially
- b) Skill depends only on the ratio of the forecast horizon to resolution. Consequence: anomaly forecasts with resolution= forecast horizon have constant skill
- c) There is a theoretical maximum skill (here about 35%)
- d) There is a theoretical maximum correlation (forecast with observations, here max $\rho \approx 0.6$)

Accuracy of Hindcasts

Comparison of standard deviations with Smith et al 2007 and Laepple 2007, Newman 2013

		1 year	5 year anomalies	9 year anomalies
→ Effect of stochastic memory	No assimililation (Smith) 1983 -2004	0.132	0.106	0.090
	With DePresSys (Smith) 1983 -2004	0.105	0.066	0.046
	GFDL CM2.1 (initialized yearly)	0.11		
	CMIP5 multimodel ensemble (Doblas- Reyes et al 2013)		0.06 (0.095 when not initialized)	
	Laepple 1983 -2004	0.106	0.059	0.044
	Pre-industrial Multiproxies (1500-1900)	0.112	0.105	0.098
	Residues (1880-2013)	0.109	0.077	0.070
	LIM (Stochastic, 20 eigenmodes, >100 parameters Newman 2013)	0.085	0.128 (temps)	0.155 (temps) (c.f. residue of linear trend: 0.163)
	SLIM (one parameter, Stochastic 1880-2013)	0.092	0.071 (anomaly) 0.102 (temperature)	0.067 (anomaly) 0.105(temperatu re)

Regional climate forecasting: Space-time: LIM versus SLIM

Skill= Fraction of variance explained from time series only

Forecast Horizon =1 forecast skill

(e.g. 1 yr forecast for data 1 year resolution)

0.1	0.3	0.5	0.7	0.9

With some teleconnections

Only

used

temporal correlations

Conclusions (1)

- 1. Using scaling fluctuation analysis to characterizing the climate by its type of variability: expect macroweather not climate
- 2. The need for GCM-free approaches:
- a) their climate not ours,
- b) disarming climate skeptics
- c) Using statistical hypothesis testing to rule out natural variability

3. Anthropogenic warming dominates macroweather at about 10 years rather than about 100 years (preindustrial).

- The total anthropogenic warming is about 0.85°C, for CO₂ doubling, 3.08±0.58°C, GCM's: 1.5-4.5°C (1979-2013).
- 5. The probability that the warming since 1880 is natural is <1% (most likely <0.1%).
- 6. The "pause" has a return period of 20-50 years, the post war cooling ≈ 125 years: not surprising.

Conclusions (2)

-Simple one parameter ($\lambda_{CO2x2,eff} \approx 2.33$ K/doubling) gives accurate "unconditional" hindcasts.

-Simplest scaling model (one parameter, $H = -0.20\pm0.03$) gives 1 year global hindcasts better than GCM's (±0.092 K), nearly as good as LIM model with > 100 parameters.

-Algebraic predictability limits of natural variability: Lyanpunov $\longrightarrow \infty$

-Hindcast skill for temperature anomalies is nearly the highest theoretically possible.

-Extensions to Regional climate forecasting: Stochastic Linear Inverse Modelling (SLIM)