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Zooming	through	scales	by	the	
	billion		

	1mm	-	10,000	km	

A	voyage	through	scales	



A	voyage	through	scales:	Space,	0.1mm	–	10,000km	
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Zooming	through	scales	by	the	
	billion	billion		

milliseconds	to	half	a	billion	years	

A	voyage	through	scales	
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Montreal	Temperatures	at	increasing	resoluJon	
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How	to	understand	this	mind-boggling	
variability?		(1)	

	DeterminisJc	or	random?	



Which	Chaos?	

…sorry	Einstein!	

How	does	God	play	dice??	
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Which	Chaos?	
StochasJc	or	DeterminisJc?	

t	

Wierstrasse	funcJon…proposed	by	Richardson	
1926:	“Does	the	wind	have	a	velocity?”	

Highly	intermiaent,	mulJfractal	cascade	
model	proposed	in	1987	



Cosmos	versus	Chaos	through	the	ages			
Chaos-Cosmos	(ancient	Greeks):	first	there	was	chaos…	then	cosmos…	
	
ScienJfic	ideas	about	determinism	and	randomness:	
	
Determinism:	God	supplies	the	iniJal	condiJons	(e.g.	planets	in	orbits,	Newton,	1670’s)	

	“…if	a	sufficiently	vast	intelligence	exists…”	Laplace	(1749-1827).	
	
Chance:		Ignorance,	subjecJve	
	 	“Chance	is	nothing”	Voltaire:	(1694-1778).	

Chance:	Irrelevance	of	the	details	
	StaJsJcal	Mechanics	e.g.	the	bell	curve	distribuJon	of	molecular	velociJes	in	a	gas		
	(Maxwell,	Gibbs,	Boltzman,	1870-1900).	

Chance:	ObjecJve	chance,	StochasJc	Chaos	in	systems	with	many	degrees	of	freedom		
	Quantum	Mechanics:	Born	interpretaJon	of	the	wave	funcJon	(1926)	
	MathemaJcs:	Kolmogorov	axiomaJzed	probability	theory	(1933).	

Determinism:	Random-like	DeterminisJc	Chaos	in	systems	with	few	degrees	of	freedom	
	(Lorenz	1963).	



ν L( ) = KL4/3

EffecJve	viscosity	
	constant	

Kolmogorov’s	contribuJon	was	
ν = LΔvsince	

Richardson,	
turbulence,	scaling	

1926	Janus-faced  
(two strands) 

(Redrawn	by	Monin	1972)	

K = ε1/3

Grandfather of turbulent cascades 

Determined	the	pressure	tendency	
at	grid	point	M	

Richardson	and	
NWP	

It	took	six	weeks	of	calculaJon…	and	he	was	wrong	
by	a	factor	of	100!	

1922	

Vindicated	in	2013	

Vindicated	in	the	1970’s	

Father of numerical weather prediction	



The	Nonlinear	RevoluJon	
1970	-	1990	-	present	

	
	
The	Stochas(c	Chaos	alterna(ve:	scale	symmetries,	fractals,	mul(fractals	
-ObjecJve	randomness…	
	

The	Determinis(c	Chaos	Revolu(on:	The	Bu=erfly	Effect	
-Tiny	perturbaJons	could	be	amplified	
-Random	looking	phenomena	might	not	be	random	aner	all…	
-Backlash:	an	aaempt	to	resurrect	Newtonian	determinism	



Two	revoluJons:	unity	lost	
Up	unJl	1970’s	weather	and	climate	science	were	a	pragmaJc	
combinaJon	of	both	determinisJc	and	staJsJcal	approaches.	

The	Numerical	revoluJon:	NWPs,	GCMs	

Milestones:	
IniJalizaJon	
Ensemble	forecasJng	
4D	var	(data	assimilaJon)	
Extension	to	climate	
Earth	System	Models	

Today:	GCMs	increasingly	answer	all	quesJons	
-SimulaJon	replaces	understanding	
-Science	reduced	to	engineering	
-Theory/data	connecJon	broken	

The	Nonlinear	revoluJon	

Milestones:	
Irrelevance	of	details,	StochasJc	chaos	
ObjecJve	randomness	
Scaling	symmetries	
Fractals,	mulJfractals	
Anisotropic	scaling	
Empirical	vindicaJon	of	Richardson	
Understanding	

2010’s:	Unity	refound?	
GCMs	respect	scaling	laws…	and	control	runs	can	be	stochasJcally	forecast,	and	scaling	
yields	beaer	climate	projecJons	

Separate	nonlinear	processes	divisions	
EGU	(1989),	AGU	(!997)	



Richardson	
1881	-	1953	

Kolmogorov	
1903	–	1987	

Corrsin	
1920	–	1986	

Ralph	Bolgiano,	Jr.		
1922	—		2002	

Obukhov	
1918	–	1989	

The	neglected	strand	of	atmospheric	science:	

Pioneers	of	turbulence	

Jule	Charney	
1917	—		1981	

Mandelbrot	
1924-2010	



Laws of Atmospheric 
Turbulence 

Fluctuations ≈ (turbulent flux) x (scale)H 

Fourier domain: 
Varianceobservables
wavenumber

⎛
⎝⎜

⎞
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=

Varianceflux
wavenumber

⎛
⎝⎜

⎞
⎠⎟
wavenumber( )−2H

= wavenumber( )−β

  E(k) ≈ k-β 

E(ω) ≈ ω-β 

Space:   

Time: 

Differences	 homogeneous	 Isotropic	

Pioneers	

Anisotropic  
Space-time  
Scale function 

Wavelets Cascading, Multifractal  
Turbulent flux  

1983-present	



How	to	understand	this	mind-boggling	
variability?	(2)	

High	level	or	low	level	laws?	



Mechanics	of	a	
few	parJcles	

StaJsJcal	
Mechanics:		

many	parJcles	

Irrelevance	of	most	of	
the	details,	collecJve	
behaviour	of	many,	
many	components	

Emergent	laws:	Which	level?	
	

CollecJve	
behaviour	of		

Thermodynamics,	
conJnuum	

mechanics,	GCMs		



CollecJve	behaviour	of	many	
vorJces:	Turbulent	laws	

ConJnuum	
mechanics	

of	a	single	vortex	

ConJnuum	mechanics	
Of	several	vorJces	

Irrelevance	of	most	of	
the	details,	collecJve	
behaviour	of	many,	
many	components	

The	hierarchy	
conJnues	

“spaghet”	
picture	



How	to	understand	this	mind-boggling	
variability?	(3)	

	 	 	What	about	the	“details”?	
	
	
	

Do	we	(determinisJcally,	mechanisJcally,	numerically)	
account	for	as	many	details	as	possible?	

Or	
Are	most	details	irrelevant	and	we	just	need	their	staJsJcs	?	

Scalebound	or	scaling?	
Supercomputers…	or	laptops?	



	From	Van	Leeuwenhoek	to	
Mandelbrot	

Scalebound	thinking	and	the	missing	quadrillion	



The	Scalebound	view	

Van	Leeuwenhoek	discovering	a	“new	
world”	in	a	drop	of	water	(circa	1690)	



Scalebound	“Powers	of	ten”	view	

Official	NaJonal	Oceanographic	and	Atmospheric	AdministraJon	(NOAA)	website	2015	
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Atmospheric	dynamics	
1	hour-	109	yrs:	Mitchell	1976	(grey,	boaom)	

10-10	

1	

10-5	

105	
Lo
g 1

0E
(ω
)	

K2
yr
	

The	missing	quadrillion:	1976 versus 2014 
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The	Scaling	view	

Mandelbrot	(1924-2010)	
zooming	into	the	
Mandelbrot	set	



Classifying	atmospheric	variability	
using	Scale	Invariance		

• What	is	the	weather?	

• What	is	the	Climate?	
Macroweather?		
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New	simple	technique	(re)discovered	in	2012:	FluctuaJon	analysis		

Scaling	
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Scaling,	scale	invariance:	

How	does	scaling	help?	

Typical	FluctuaJon	≈		(scale)H	

H>0:	FluctuaJons	grow	with	scale,	unstable	
H<0:	FluctuaJons	decrease	with	scale,	stable	

“The	climate	is	what	you	expect,	the	weather	is	what	you	get”		

Expect	Macroweather!	
Weather:	H>0,	macroweather,	H<0,	climate,	H>0	



How	is	it	that	in	2018	there	is	no	consensus	on	the	large	scale	staJsJcal	
properJes	of	the	atmosphere?	

An	overview	of	atmospheric	
turbulence	



Early	indicaJons	of	wide	range	scaling	

Richardon	1926,	redrawn	by	Monin	1972	

Richardson’s	
4/3	law	

Lovejoy,	1982,	Science	

Cloud	and	rain	Area-
Perimeter	relaJons	
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Satellite: TRMM visible, IR, 1000 orbits 
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Today:	Planetary	scale	Horizontal	Scaling																				E k( ) = k−β



Origin	of	scaling…		
EquaJons	of	moJon	

λH	(EquaJons	of	moJon)	

Anisotropic	(straJfied)	zoom	scale	raJo	λ

Generalized	Scale	Invariance:		
Scale	is	an	emergent	quanJty	determined	by	the	

turbulent	dynamics….	



Del=3 

Del=23/9=2.55 

empirical:		
2.57±0.02	

Del=2 

Anisotropic	Scaling	(Generalized	Scale	Invariance)	(Schertzer	and	Lovejoy	1985)	

Δv Δx( ) = ε1/3Δx1/3; Δv Δz( ) = φ1/5Δz3/5
The 23/9D model: 

Hz=(1/3)/(3/5)=5/9 Volume≈L.L.LHz≈LDel Del=2+Hz=23/9 Kolmogorov 

Bolgiano-Obukhov 
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Total:	X5000	
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Generalized	
Scale	
Invariance	

Anisotropic,	StraJfied	Scaling	StochasJc	



τH
dHT
dt H

+T = λℑ t( )
ℑ t( ) = ℑ t( ) + γ t( )

StochasJc	FracJonal	Energy	Balance	EquaJon	

AssumpJons:		
a)  linearity	of	response	(forcing≈	1%	of	long	term	mean)	
b)  Scaling	of	storage	mechanisms	

Storage	 Climate	sensiJvity	

Forcing	(stochasJc)	

FEBE	
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T	oC	

1880	

2020	

Days	since	1825	

H=0.4,	τ =	2	years	

ramp	 noise	

Annual	resoluJon	

Forcing	

StochasJc	FEBE	(simple	model)	
ℑ t( ) = ℑ t( ) + γ t( )



StochasJc	UnificaJon	of	externally	
forced	and	internal	variability	

ℑ t( ) = ℑ t( ) +ℑi t( )

T t( ) = T t( ) +Ti t( )

ℑ t( ) = F t( )
ℑi t( ) =σγ t( )

External	forcing	

Internal	forcing:	“innovaJons”	unbalanced		
	internal	heat	sources	

Temperature	response:	

The	forcing:	

Forced	response	to	
external	forcing	

Internal	variability	(Temperature	
anomalies)		

Ensemble	average	(determinisJc	e.g.	anthropogenic)	

Random	deviaJon	due	to	“innovaJons”	

Amplitude	of	the	
innovaJons			

StochasJc	innovaJons	(mean=	0)	

Ti t( ) =T t( )− T t( )T t( )Externally	forced	variability:	 Internal:	

ClarificaJon	of	internal	versus	externally	forced	variability	



Forecasts	and	projecJons	should	
be	based	on	real	world	climates	
Weather	systems	(<10	days)	generated	by	GCMs		
=	random	weather	noise	(staJsJcs)…		
but	not	fully	realisJc	

Our	climate	

Scaling	models	can	use	data	to	force	convergence	to	the	real	climate.	

Model	
climate	



Stochas(c	Seasonal	to	Interannual	Predic(on	System	

Ghigh t( )∝ t H−1
Based	on	high	frequency	FEBE	response:	

Using	scaling	for	long	range	
(macroweather)	forecasts	



hap://www.physics.mcgill.ca/StocSIPS/	

Stochas(c	Seasonal	to	Interannual	Predic(on	System	



Stochastic Seasonal and Interannual Prediction System 
(StocSIPS) 

Gaussian	noise	

( ) ( ) ( ) ( )1 2
t

HT t t t dt tγ γσ
− −

−∞

ʹʹ ʹ= −∫

Kernel	for	H = -0.1 

Weight	of	the	
distant	past	

Weight	
	of	present	

• Power	law	correlaJon.	Vast	memory	that	can	be	exploited.	

• Predictor	for	-1/2	<	H	<	0	based	on	past	data.		

	

predictor	 data	

kernel	

( ) ( ) ( )
0

ˆ |
p

H
j

T n k n G j T n j
=

+ = −∑

“The	‘closest	witnesses’	to	the	
unobserved	past	have	special	weight” 

Grippenberg	and	Norris	1996	

FracJonal	Gaussian	noise	=	fGn	(scaling,	smoothed	white	noise)	

Lovejoy,	Del	Rio	Amador,	Hebert,	2015	



Theory	mean	

Hindcasts	mean	

Hindcast	spread	

Theory	spread	
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0	 1	 3	 5	 7	 9	 11	
Lead	Jme	(months)	

HindcasJng:	
fGn	simulaJons	v.s.	CMIP5	control	runs	

MSSS=	Skill=	1-	(error	variance)/variance	



CanSIPS (GCM)	 StocSIPS 

CanStoc (hybrid)	 CanStoc - CanSIPS 

0-months lead Skill (hindcasts 1980-2010)	
Red:	high	skill,	blue,	low	skill	

Red:	CanStoc	higher	skill	
than	CanSIPS	



CanSIPS	 StocSIPS 

CanStoc	 CanStoc - CanSIPS 

1-month lead (hindcasts 1980-2010)	



Using	scaling	for	projecJons	

•  Key	assumpJon:	linearity	of	the	response	
•  Based	on	step	funcJon	response	
•  Scaling	of	storage		

–  	(consequence:	power	law	relaxaJon	to	thermal	
equilibrium)	

Glow t( )∝ t−H−1
Based	on	low	frequency	FEBE	response	



GCM’s:	for	CO2	doubling:	
US	NaJonal	Academy		of	Science	 	(1979):	 	1.5-	4.5oC	
	

	
IPCC1	 	 	(1992):	 	 	1.5-	4.5oC	
IPCC2	 	 	(1996):	 	 	1.5-	4.5oC	
IPCC3	 	 	(2002):	 	 	1.5-	4.5oC	
IPCC4 	 	(2007): 	 	2-	4.5oC	
IPCC5 	 	(2013):	 	 	1.5-	4.5oC	

2050-2100:	
An	uncertainty	crisis	

Diminishing	returns….	



Two	historical	methods:	
	simple	and	scaling	
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ProjecJons:	Hebert,	Lovejoy,	Tremblay,	2018	

T t( ) = λGF ∗F

High	frequency	truncaJon	τ:	
Land-ocean	coupling	Jme	(≈	2	
years)	

Response	exponent:	
HF	≈	-0.5±0.2	

Scaling	Climate	Response	
FuncJon	=	SCRF	

Forcing	

GF t( )∝ t HF−1; t >> τ

GF t( )∝δ t( )

GF t( )∝δ t − t0( )

GF t( )∝δ t( )Simple		

Scaling	(long	memory)	

GF t( )∝ t HF−1

GF	

T t( ) = λ GF t − ʹt( )F ʹt( )d ʹt
−∞

t

∫

“*”	=	convoluJon:	

t	(years)	



1900	 1950	 2000	
0	
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1.2	

1909	

T	(oC)	

2013	

0.22	oC	

2020	

Hind	ProjecJon	of	the	2013	
temperature...		in	1909!	

90%	
uncertainty	
limits	

ProjecJon	based	on	
knowledge	of	CO2	

Lovejoy	2015	

Actual	global	
temperature	

Only	informaJon	needed:		
a)  T	from	1880-1909,		
b)  	λeff,	(=	2.33	oC/CO2doubling)		
c)	FracJon	of	CO2	the	stays	in		atmosphere	(41%)	
d)	CO2	emission	scenario	
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ValidaJon:	the	historical	method	reproduces	the	past	
and	predicts	the	GCMs	

Conclusion:	GCMs	(nearly)	linearly	project	the	
past…	but	their	climates	are	unrealisJc.		Beaer	
to	project	the	observaJons	



Differences:	(GCM’s)-	(Historical	Method)	

oC	

Warmer	
than	

projected	

Cooler	than	
projected	 X’s:	significant	differences	

CO2	doubling)	Hebert	and	Lovejoy	2018	

GCMs	too	high	

GCMs	too	low	



2010’s:	Unity	refound?	

Post	2010:	
GCM	diminishing	returns:	climate	sensiJvity	1979	-	present:	1.5-4.5oC	/CO2	doubling.	
Scaling	for	macroweather	forecasJng,	including	of	GCM	control	runs.	
Scaling	improves	climate	projecJons,	reduces	uncertainty.	

Developments	≈	1980’s-2010:		
	
Empirical:	sapce	–Jme	staJsJcal	scaling	analyses	extended	from	small	to	global	scales,	
(aircran,	 	satellites).		Also	to	numerical	model	outputs…	
Theory:	MulJfractals	(intermiaency),	Generalized	Scale	Invariance,	anisotropic	scaling	
of	governing	equaJons	 	(scaling	straJficaJon).	
Numerical:	Many	numerical	problems	solved,	NWP	extended	to	climate:	GCMs.		
VerificaJon	of	scaling	of	GCM	outputs.	



Climate	Concepts:	high	versus	low	level	laws	(1)	

GCMs	 StaJsJcal	Laws	
What	is	Climate?	 Control	runs,	strange	aaractors	 Regime	with	fluctuaJons	

increasing	with	scale,	beyond	
macroweather	

Climate	change?	 Pullback-aaractors	 Change	of	climate	states	

Time	scales	 1	month	(convenience),	
	30	years	(fiat)	

ObjecJve	transiJon	scales	τw,	τc	

Climate	states	 Average	over	30	years	 Average	over		τc	

Macroweather	states	 Monthly	anomalies	 Average	of	anomalies	over		
weather	scales	(τw	)	w.r.t.	the	
current	climate	state	(scale	τc).	

Equilibrium	Climate	SensiJvity	 AsymptoJc	response	to	a	step-
funcJon	increase	in	forcing	

Linear	relaJon	between	forcing	
and	response	(memory		can	be	
esJmated	from	internal	
variability).	



GCMs	 StaJsJcal	Laws	
Externally	Forced	variability	 The	response	to	processes	

outside	the	climate	system	that	
increase	or	decrease	energy	
fluxes	into	it.	

The	response	to	determinisJc	
forcing:	the	ensemble	average	
of	the		response.	

Internal	variability	 Variability	due	to	dynamics	
internal	to	the	climate	system.	

The	response	to	stochasJc	
innovaJons:	the	difference	
between	the	actual	state	and	
the	ensemble	averaged	state.	

Uncertainty	 -“Structural	uncertainty”(each	
model	has	different	climate),	
-IniJal	condiJon	uncertainty		

StochasJc	forcings,	part	of	
theory/model.	

Uncertainty		
(climate	projecJons)	

The	dispersions	of	GCMs	about	
MulJ-Model	Ensemble.	

The	dispersion	in	the	
reconstrucJons	of	historic	
forcings	and	historic	responses.	

Predictability	limits	 DeterminisJc	limits	 StochasJc	limits	

A	consequence	of	relying	of	GCMs:	theory	is	not	empirically	informed.		
Ex.:	The	missing	quadrillion.		

Climate	Concepts:	high	versus	low	level	laws	(2)	



The	future	of	climate	science	

-StochasJc	scaling	models	are	already	the	most	realisJc	for	macroweather	
and	climate	temperature	forecasts	and	projecJons	…	they	could	be	
possibly	merged	with	GCM	approaches	for	even	greater	accuracy.	

-  GCMs	are	research	tools,	each	with	its	own	climate.		Not	always	the	best	
tools	 	for	forecasJng	or	projecJng.	

-  Relying	on	a	unique	tool	(e.g.	for	projecJng	to	2050)	is	weak:	grounds	for	
skepJcism	

-	Beyond	determinisJc	predictability	limit,	GCM’s	are	stochasJc.	
All	they	require	are	realis<c	grid	scale	sta<s<cs.		This	could	be	done	at	much	
lower	resolu<ons,	and	with	today’s	computers.		
DeterminisJc,	mechanisJc	small	scale	details	are	not	needed:	irrelevant!		
Modelling	structures	at	1km	that	live	for	15	minutes	and	then	averaging	everything	over	a	factor	of	a	million	to	make	a	
decadal	projecJon	is	an	unnecessary	waste	of	resources.	

-  Beaer	empirical	grounding	of	theory.	

-  Beaer	understanding	of	reality… and	models!	



Conclusions	
1)  Atmospheric	variability	is	colossal	

2)  Which	Chaos?	

3)  Which	level?		

4)  What	about	the	details?	

5)  1970’s	revoluJons:	numerical	and	nonlinear	

	
5)  2010’s:	VindicaJon	of	Richardson:	new	unity	with	the	help	of	scaling	

6)  Climate	concepts	reinterpreted	in	terms	of	high	level	staJsJcal	laws	

7)  Numerical	models	are	just	tools	

8)  	New	quesJons	

UnderesJmated	by	quadrillion	

StochasJc	or	determinisJc?	

Scalebound	or	scaling?	

co-existence	of	high	and	low	level	laws	

Divergence	of	Richardson’s	determinisJc,	stochasJc	strands	

Climate	sensiJvity,	uncertainty	

They	are	not	a	subsJtute	for	theory	
…..Diminishing	returns	of	GCMs	

High	or	low?	

Supercomputers	or	laptops?	

What	are	space	Jme	relaJons:	in	weather?	In	macroweather?	In	climate?	


