Phase Transitions and Superconductivity

RQEMP 2005 (Hilke@physics.mcgill.ca)

- Temperature driven Phase transitions (normal-to-superconductor transitions)
- Phase transitions of vortices
- Quantum Phase Transitions:
 - Disorder induced transitions
 - Interaction induces transitions

<image/>	The Materials Science of Chocolate Peter Fryer and Kerstin Pinschower				
	Table II: Overview of Cocoa-Butter Polymorphs.				
	Polymorph Form I	Conditions under which Polymorph Arises Rapid cooling of melt. (Successive polymorphs are then obtained securentially by beating at 0.5°C min ⁻¹)	Melting Point (°C) 17.3	Comments	
	Form II	Cooling of melt at 2°C min. Rapid cooling of melt followed by storing from several min up to 1 h at 0°C. The form is stable at 0°C for up to 5 h.	23.3		
	Form III	Solidification of melt at 5–10°C. Transformation of Form II by storing at 5–10°C.	25.5		
	Form IV	Solidification of melt at 16–21°C. Transformation of Form III by storing at 16–21°C.	27.3		
	Form V	Solidification of melt, Transformation of Form IV. Solvent crystallization.	33.8	Forms after tempering, has good gloss and texture; most desirable form.	
	Form VI	Transformation of Form V (4 months at room temperature).	36.3	"Bloomed" chocolate.	

For B=0, the GL free energy is:

$$F[\Psi] = \int d^{3}x \left[\frac{\hbar^{2}}{2m^{*}} \vec{\nabla} \Psi * \vec{\nabla} \Psi + \alpha (T - T_{c}) \Psi * \Psi + \frac{\beta}{2} (\Psi * \Psi)^{2} \right]$$

$$m^{*} = 2 m_{e}$$
For B≠0:
Invariance under local gauge transformations:

$$\begin{cases} \Psi(x) \rightarrow e^{i\chi(x)} \Psi(x) \\ \vec{A}(x) \rightarrow \vec{A}(x) + \frac{\hbar c}{e^{*}} \vec{\nabla} \chi(x) \end{cases} e^{*} = 2e$$

To ensure local gauge invariance one makes the "minimal substitution", namely replaces any derivative by a covariant derivative:

$$\vec{D}\Psi(x) = \left(\vec{\nabla} - i\frac{e^*}{\hbar c}\vec{A}\right)\Psi(x)$$

The local gauge invariance of the gradient term:

$$\vec{D}\Psi(x) \rightarrow \left[\vec{\nabla} - \frac{ie^*}{\hbar c} \left(\vec{A} + \frac{c\hbar}{e^*} \vec{\nabla} \chi(x)\right)\right] \Psi(x) e^{i\chi(x)}$$

$$= \left[\vec{\nabla}\Psi + \Psi \cdot i\vec{\nabla} \chi - \frac{ie^*}{\hbar c} \vec{A} \cdot \Psi - i\vec{\nabla} \chi \cdot \Psi\right] e^{i\chi(x)}$$

$$= \vec{D}\Psi \cdot e^{i\chi(x)}$$

$$|\vec{D}\Psi(x)|^2 \rightarrow |\vec{D}\Psi(x)|^2$$

Ginzburg – Landau equations:
Minimizing the free energy with covariant derivatives
one arrives at the set of GL equations: the nonlinear
Schrödinger equation (variation with respect to
$$\Psi$$
)

$$-\frac{\hbar^2}{2m^*} \left(\vec{\nabla} - i\frac{e^*}{\hbar c}\vec{A}\right)^2 \Psi + \alpha(T - T_c)\Psi + \beta\Psi |\Psi|^2 = 0$$
and the supercurrent equation (variation of A):

$$\frac{c}{4\pi}\vec{\nabla}\times\vec{B} = \vec{J}_s = -\frac{ie^*\hbar}{2m^*}(\Psi^*\vec{\nabla}\Psi - \Psi\vec{\nabla}\Psi^*) - \frac{e^{*2}}{m^*c}|\Psi|^2\vec{A}$$

Two characteristic length scales

Coherence length ξ

characterizes variations of $\Psi(x)$, while the penetration depth λ characterizes variations of B(x)

$$\xi(T) = \frac{\hbar}{\sqrt{2m^*\alpha(T_c - T)}},$$

$$\lambda(T) = \frac{c}{e^*} \sqrt{\frac{m^*\beta}{4\pi\alpha \left(T_c - T\right)}}$$

Both diverge at T=Tc.

Overview of properties of vortices and systems of vortices (vortex matter)

(Adapted from Zeldov)

Inter-vortex repulsion and the Abrikosov flux line lattice

Line energy

To create a vortex, one has to provide energy per unit length (line tension)

$$\varepsilon \approx \left(\frac{\Phi_0}{4\pi\lambda}\right)^2 \log\left(\frac{\lambda}{\xi}\right)$$

Therefore vortices enter an infinite sample only when field exceeds certain value

Temperature driven

(Variations of Melting transition, like chocolate)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		exponent	definition	conditions
order parameter β $m \propto (-t)^{\beta}$ $t \rightarrow 0$ from below, $B = 0$ susceptibility γ $\chi \propto t ^{-\gamma}$ $t \rightarrow 0, B = 0$ critical isotherm δ $B \propto m ^{\delta} \operatorname{sign}(m)$ $B \rightarrow 0, t = 0$ correlation length ν $\xi \propto t ^{-\nu}$ $t \rightarrow 0, B = 0$ correlation function η $G(r) \propto r ^{-d+2-\eta}$ $t = 0, B = 0$ dynamical z $\tau_c \propto \xi^2$ $t \rightarrow 0, B = 0$ VojtaVojtaduantumClassicald space, 1 time dimensions $d+1$ space dimensionsCoupling constant KTemperature TInverse temperature β Finite size L_r in "time" directionCorrelation length ξ Correlation length ξ inverse characteristic energy $\hbar/\Delta, \hbar/k_BT_c$ Correlation length in the "time" direction ξ_{τ}	specific heat	α	$c \propto t ^{-lpha}$	t ightarrow 0,B=0
$\begin{array}{c c} \text{susceptibility} & \gamma & \chi \propto t ^{-\gamma} & t \rightarrow 0, B = 0\\ \hline \text{critical isotherm} & \delta & B \propto m ^{\delta} \text{sign}(m) & B \rightarrow 0, t = 0\\ \hline \text{correlation length} & \nu & \xi \propto t ^{-\nu} & t \rightarrow 0, B = 0\\ \hline \text{correlation function} & \eta & G(r) \propto r ^{-d+2-\eta} & t = 0, B = 0\\ \hline \text{dynamical} & z & \tau_c \propto \xi^z & t \rightarrow 0, B = 0\\ \hline \end{array} \\ \hline \begin{array}{c} \text{Vojta} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \text{Quantum} & \text{Classical} \\ \hline \text{d space, 1 time dimensions} & d+1 \text{ space dimensions} \\ \text{Coupling constant } K & \text{Temperature } T\\ \text{Inverse temperature } \beta & \text{Finite size } L_r \text{ in "time" direction} \\ \text{Correlation length } \xi & \text{Correlation length } \xi \\ \hline \text{nverse characteristic energy } \hbar/\Delta, \hbar/k_BT_c & \text{Correlation length in the "time" direction } \xi_{\tau} \\ \hline \end{array} \\ \hline \end{array}$	order parameter	β	$m \propto (-t)^{eta}$	$t \rightarrow 0$ from below, $B=0$
$\begin{tabular}{ c c c c c c } \hline critical isotherm & \delta & B \propto m ^{\delta} sign(m) & B \rightarrow 0, t = 0 \\ \hline correlation length & \nu & \xi \propto t ^{-\nu} & t \rightarrow 0, B = 0 \\ \hline correlation function & \eta & G(r) \propto r ^{-d+2-\eta} & t = 0, B = 0 \\ \hline dynamical & z & \tau_c \propto \xi^z & t \rightarrow 0, B = 0 \\ \hline \hline & Vojta & $	susceptibility	γ	$\chi \propto t ^{-\gamma}$	t ightarrow 0,B=0
$\begin{array}{c} \text{correlation length} \nu \qquad \xi \propto t ^{-\nu} \qquad t \rightarrow 0, B = 0 \\ \text{correlation function} \qquad \eta \qquad G(r) \propto r ^{-d+2-\eta} \qquad t = 0, B = 0 \\ \hline \text{dynamical} \qquad z \qquad \tau_c \propto \xi^z \qquad t \rightarrow 0, B = 0 \\ \hline \text{Vojta} \\ \hline \text{Vojta} \\ \hline \\ $	critical isotherm	δ	$B \propto m ^{\delta} { m sign}(m)$	B ightarrow 0,t=0
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \operatorname{correlation} & \eta & G(r) \propto r ^{-d+2-\eta} & t=0, B=0 \\ \hline \\ \hline \\ \begin{array}{c} \begin{array}{c} dynamical & z & \tau_c \propto \xi^z & t \rightarrow 0, B=0 \end{array} \end{array} \end{array} \end{array} \\ \hline \\ \hline$	correlation length	ν	$\xi \propto t ^{- u}$	t ightarrow 0,B=0
$\frac{\text{dynamical} z \qquad \tau_c \propto \xi^z \qquad t \rightarrow 0, B = 0}{\text{Vojta}}$	correlation function	η	$G(r) \propto r ^{-d+2-\eta}$	t = 0, B = 0
Quantum Classical d space, 1 time dimensions $d+1$ space dimensions Coupling constant K Temperature T Inverse temperature β Finite size L_r in "time" direction Correlation length ξ Correlation length ξ Inverse characteristic energy $\hbar/\Delta, \hbar/k_BT_c$ Correlation length in the "time" direction ξ_T Sondhi Sondhi	dynamical	z	$ au_c \propto \xi^z$	t ightarrow 0,B=0
$\begin{tabular}{ c c c c c }\hline Quantum & Classical \\ \hline d space, 1 time dimensions & $d+1$ space dimensions \\ Coupling constant K & Temperature T \\ Inverse temperature β & Finite size L_r in "time" direction \\ Correlation length ξ & Correlation length ξ \\ nverse characteristic energy $\hbar/\Delta, \hbar/k_BT_c & Correlation length in the "time" direction ξ_{τ} \\ \hline $Sondhi"$				
$\begin{array}{ccc} d \text{ space, 1 time dimensions} & d+1 \text{ space dimensions} \\ Coupling constant K & Temperature T \\ Inverse temperature \beta & Finite size L, in "time" direction \\ Correlation length \xi Correlation length f Correlation length in the "time" direction \xi_{\tau} Sondhi$	Quantum			Classical
$ \begin{array}{c} \text{Coupling constant } K & \text{Temperature } T \\ \text{Inverse temperature } \beta & \text{Finite size } L_z \text{ in "time" direction} \\ \text{Correlation length } \xi & \text{Correlation length } \xi \\ \text{Inverse characteristic energy } \hbar/\Delta, \hbar/k_BT_c & \text{Correlation length in the "time" direction } \xi_T \\ \end{array} $	d space 1 time dir	nensions	<i>d</i> -	+1 space dimensions
Inverse temperature β Finite size L , in "time" direction Correlation length ξ Correlation length ξ Inverse characteristic energy $\hbar/\Delta, \hbar/k_BT_c$ Correlation length in the "time" direction ξ_T Sondhi	a space, i une un			To see a sector of T
$\frac{\text{Correlation length } \varepsilon}{\text{nverse characteristic energy } \hbar/\Delta, \hbar/k_BT_c} \qquad \qquad \text{Correlation length in the "time" direction } \frac{\varepsilon}{\xi_T}$	Coupling consta	nnt K		Temperature 1
Sondhi	Coupling consta Inverse tempera	ture β	Finite s	ize L_{τ} in "time" direction
	Coupling consta Inverse tempera Correlation len	the formula to the second sec	Finite si C Correlation le	Temperature T ize L_{τ} in "time" direction Correlation length ξ ength in the "time" direction ξ_{τ}

