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Collinear Factorization and DGLAP equation

Deep inelastic scattering and Drell-Yan process
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Collinear Factorization and DGLAP equation

Light Cone coordinates and gauge

For a relativistic hadron moving in the +z direction

Motivation

Dipole picture for DIS

Non–linear evolution: BK
!Bremsstrahlung
!BFKL Evolution
! Light Cone
!Dipole splitting
!Dipole evolution
!Balitsky equation
!BK equation

SCHOOL ON QCD, LOW X PHYSICS, SATURATION AND DIFFRACTION: Copanello (Calabria, Italy), July 1 - 14 2007 Non–linear evolution & Gluon saturation in QCD at high energy (I) – p. 25

Light Cone notations & Kinematics
" The hadron moves in the positive z direction, with v � c = 1

" Longitudinal momentum P � M =⇒ Pµ = (E ≈ P, 0, 0, P )

P+ ≡ 1√
2
(E + P ) �

√
2P , P− ≡ 1√

2
(E − P ) � 0

" Even for the quantum system, the wavefunction is strongly
localized near x− = 0 (“pancake”)

∆x− ∼ 1

P+
∼ 1

γM
� 1

M

In this frame, the momenta are defined

P
+ =

1
√

2
(P0 + P

3) and P
− =

1
√

2
(P0

− P
3) → 0

P
2 = 2P

+
P
−
− P

2
⊥

Light cone gauge for a gluon with momentum k
µ = (k+, k

−, k⊥), the polarization vector
reads

k
µ�µ = 0 ⇒ � = (�+ = 0, �− =

�⊥ · k⊥

k+
, �±⊥) with �±⊥ =

1
√

2
(1,±i)
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Collinear Factorization and DGLAP equation

Deep inelastic scattering

Summary of DIS:
dσ

dE�dΩ
=

αem2

Q4
E
�

E
LµνW

µν

with Lµν the leptonic tensor and W
µν defined as

W
µν =

�
−g

µν +
qµqν

q2

�
W1

+
1

m2
p

�
P
µ
−

P · q

q2 q
µ

��
P
ν
−

P · q

q2 q
ν

�
W2

Introduce the dimensionless structure function:

F1 ≡ W1 and F2 ≡
Q

2

2mpx
W2

⇒
dσ

dxdy
=

α2
em4πs

Q4

�
(1 − y)F2 + xy

2
F1

�
with y =

P · q

P · k
.

Quark Parton Model: Callan-Gross relation

F2(x) = 2xF1(x) =
�

q

e
2
qx [fq(x) + fq̄(x)] .
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Collinear Factorization and DGLAP equation

Callan-Gross relation

The relation (FL = F2 − 2xF1) follows from the fact that a spin- 1
2 quark cannot absorb a

longitudinally polarized vector boson.
In contrast, spin-0 quark cannot absorb transverse bosons and so would give F1 = 0.
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Collinear Factorization and DGLAP equation

Parton Density

The probabilistic interpretation of the parton density.

⇒ fq(x) =

�
dζ−

4π
e

ixP
+ζ−

�P
��ψ̄(0)γ+ψ(0, ζ−)

��P�

Comments:
Gauge link L is necessary to make the parton density gauge invariant.

L(0, ζ−) = P exp

�� ζ−

0
dsµA

µ

�

Choose light cone gauge A
+ = 0 and right path, one can eliminate the gauge link.

Now we can interpret fq(x) as parton density in the light cone frame.
Evolution of parton density: Change of resolution

13J.Pawlowski / U. Uwer

Advanced Particle Physics: VII. Quantum Chromodynamics

QCD explains observed scaling violation

Large x: valence quarks Small x: Gluons, sea quarks

Q2 F2 for fixed x Q2 F2 for fixed x

Scaling violation is one of the clearest manifestation of 
radiative effect predicted by QCD.

Quantitative description of scaling violation 

)()()()( 2
1

0

2
2 xqexdxqexxF i

i
i

i
ii

P

Quark Parton Model

QCD

P

x
/xz

)log()(P
2

~

)(P
2

~

2
0

2

qq

2

2

qq

2

2
0

Q
z

k
dkz

s

Q

T

Ts

Tkk,

2
0

21

0

22
2 log)(P

2
)1()(),(

Qxx
q

d
exQxF qq

s

i
ii

Pqq probability of a quark 
to emit gluon and 
becoming a quark with 
momentum reduced by 
fraction z.

0 cutoff parameter 

M
Qx

2

2

)(
1

)( x
a

ax

x

x x

At low-x, dominant channels are different.
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Collinear Factorization and DGLAP equation

Drell-Yan process

For lepton pair productions in hadron-hadron collisions:

the cross section is
dσ

dM2dY
=

�

q

x1fq(x1)x2fq̄(x2)
1
3

e
2
q

4πα2

3M4 with Y =
1
2

ln
x1

x2
.

Collinear factorization proof shows that fq(x) involved in DIS and Drell-Yan process are
the same.
At low-x and high energy, the dominant channel is qg → qγ∗(l+l

−).

g

q
γ∗

l̄

l
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Collinear Factorization and DGLAP equation

Splitting function

P
0
qq(ξ) =

1 + ξ2

(1 − ξ)+
+

3
2
δ(1 − ξ),

P
0
gq(ξ) =

1
ξ

�
1 + (1 − ξ)2

�
,

P
0
qg(ξ) =

�
(1 − ξ)2 + ξ2

�
,

P
0
gg(ξ) = 2

�
ξ

(1 − ξ)+
+

1 − ξ
ξ

+ ξ(1 − ξ)

�
+

�
11
6

−
2Nf TR

3Nc

�
δ(1 − ξ).

ξ = z = x

y
.

� 1
0

dξf (ξ)
(1−ξ)+

=
� 1

0
dξ[f (ξ)−f (1)]

1−ξ ⇒
� 1

0
dξ

(1−ξ)+
= 0
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Collinear Factorization and DGLAP equation

Derivation of P0
qq
(ξ)

The real contribution:

1

2

3

k1 = (P+, 0, 0⊥) ; k2 = (ξP
+,

k
2
⊥

ξP+
, k⊥)

k3 = ((1 − ξ)P+,
k

2
⊥

(1 − ξ)P+
,−k⊥) �3 = (0,−

2k⊥ · �(3)
⊥

(1 − ξ)P+
, �(3)

⊥ )

|Vq→qg|2 =
1
2

Tr (/k2γµ/k1γν)
�

�∗µ3 �ν3 =
2k

2
⊥

ξ(1 − ξ)

1 + ξ2

1 − ξ

⇒ Pqq(ξ) =
1 + ξ2

1 − ξ
(ξ < 1)

Including the virtual graph , use
� 1

a

dξg(ξ)
(1−ξ)+

=
� 1

a

dξg(ξ)
1−ξ − g(1)

� 1
0

dξ
1−ξ

αsCF

2π

�� 1

x

dξ
ξ

q(x/ξ)
1 + ξ2

1 − ξ
− q(x)

� 1

0
dξ

1 + ξ2

1 − ξ

�

=
αsCF

2π

�� 1

x

dξ
ξ

q(x/ξ)
1 + ξ2

(1 − ξ)+
− q(x)

� 1

0
dξ

1 + ξ2

(1 − ξ)+

�

� �� �
=− 3

2

.
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Collinear Factorization and DGLAP equation

Derivation of P0
qq
(ξ)

The real contribution:

1

2

3

k1 = (P+, 0, 0⊥) ; k2 = (ξP
+,

k
2
⊥

ξP+
, k⊥)

k3 = ((1 − ξ)P+,
k

2
⊥

(1 − ξ)P+
,−k⊥) �3 = (0,−

2k⊥ · �(3)
⊥

(1 − ξ)P+
, �(3)

⊥ )

|Vq→qg|
2 =

1
2

Tr (/k2γµ/k1γν)
�

�∗µ3 �ν3 =
2k

2
⊥

ξ(1 − ξ)
1 + ξ2

1 − ξ

⇒ Pqq(ξ) =
1 + ξ2

1 − ξ
(ξ < 1)

Regularize 1
1−ξ to 1

(1−ξ)+
by including the divergence from the virtual graph.

Probability conservation:

Pqq + dPqq = δ(1 − ξ) +
αsCF

2π
P

0
qq(ξ)dt and

� 1

0
dξPqq(ξ) = 0,

⇒ Pqq(ξ) =
1 + ξ2

(1 − ξ)+
+

3
2
δ(1 − ξ) =

�
1 + ξ2

1 − ξ

�

+

.
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Collinear Factorization and DGLAP equation

Derivation of P0
gg
(ξ)

1

2

3

k1 = (P+, 0, 0⊥) �1 = (0, 0, �(1)
⊥ ) with �±⊥ =

1√
2
(1,±i)

k2 = (ξP
+,

k
2
⊥

ξP+
, k⊥) �2 = (0,

2k⊥ · �(2)
⊥

ξP+
, �(2)

⊥ )

k3 = ((1 − ξ)P+,
k

2
⊥

(1 − ξ)P+
,−k⊥) �3 = (0,−

2k⊥ · �(3)
⊥

(1 − ξ)P+
, �(3)

⊥ )

Vg→gg = (k1 + k3) · �2�1 · �3 + (k2 − k3) · �1�2 · �3 − (k1 + k2) · �3�1 · �2

⇒ |Vg→gg|
2 = |V+++|

2 + |V+−+|
2 + |V++−|

2 = 4k
2
⊥
[1 − ξ(1 − ξ)]2

ξ2(1 − ξ)2

⇒ Pgg(ξ) = 2
�

1 − ξ
ξ

+
ξ

1 − ξ
+ ξ(1 − ξ)

�
(ξ < 1)

Regularize 1
1−ξ to 1

(1−ξ)+
Momentum conservation:

� 1

0
dξ ξ [Pqq(ξ) + Pgq(ξ)] = 0

� 1

0
dξ ξ [2Pqg(ξ) + Pgg(ξ)] = 0,

⇒ the terms which is proportional to δ(1 − ξ).
HW: derive other splitting functions. 12 / 56



Collinear Factorization and DGLAP equation

DGLAP equation

In the leading logarithmic approximation with t = lnµ2, the parton distribution and
fragmentation functions follow the DGLAP[Dokshitzer, Gribov, Lipatov, Altarelli, Parisi,
1972-1977] evolution equation as follows:

d
dt

�
q (x, µ)
g (x, µ)

�
=

α (µ)
2π

� 1

x

dξ
ξ

�
CFPqq (ξ) TRPqg (ξ)
CFPgq (ξ) NcPgg (ξ)

� �
q (x/ξ, µ)
g (x/ξ, µ)

�
,

and

d
dt

�
Dh/q (z, µ)
Dh/g (z, µ)

�
=

α (µ)
2π

� 1

z

dξ
ξ

�
CFPqq (ξ) CFPgq (ξ)
TRPqg (ξ) NcPgg (ξ)

� �
Dh/q (z/ξ, µ)
Dh/g (z/ξ, µ)

�
,

Comments:
In the double asymptotic limit, Q

2
→ ∞ and x → 0, the gluon distribution can be solved

analytically and cast into

xg(x, µ2) � exp

�
2

�
αsNc

π
ln

1
x

ln
µ2

µ2
0

�
Fixed coupling

xg(x, µ2) � exp

�
2

�
Nc

πb
ln

1
x

ln
lnµ2/Λ2

lnµ2
0/Λ

2

�
Running coupling

The full DGLAP equation can be solved numerically.
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Collinear Factorization and DGLAP equation

Collinear Factorization at NLO

PDF PDF

FF FF

P P

h

Use MS scheme ( 1
�̂ = 1

� + ln 4π − γE) and dimensional regularization, DGLAP equation reads
�

q (x, µ)
g (x, µ)

�
=

�
q
(0) (x)

g
(0) (x)

�
−

1
�̂
α (µ)

2π

� 1

x

dξ
ξ

�
CFPqq (ξ) TRPqg (ξ)
CFPgq (ξ) NcPgg (ξ)

� �
q (x/ξ)
g (x/ξ)

�
,

and
�

Dh/q (z, µ)
Dh/g (z, µ)

�
=

�
D

(0)
h/q

(z)

D
(0)
h/g

(z)

�
−

1
�̂
α (µ)

2π

� 1

z

dξ
ξ

�
CFPqq (ξ) CFPgq (ξ)
TRPqg (ξ) NcPgg (ξ)

� �
Dh/q (z/ξ)
Dh/g (z/ξ)

�
.

Soft divergence cancels between real and virtual diagrams;
Gluon collinear to the initial state quark ⇒ parton distribution function; Gluon collinear to
the final state quark ⇒ fragmentation function. KLN theorem does not apply.
Other kinematical region of the radiated gluon contributes to
the NLO (O(αs) correction) hard factor.
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Collinear Factorization and DGLAP equation

DGLAP evolution

H1 and ZEUS

x = 0.00005, i=21
x = 0.00008, i=20

x = 0.00013, i=19
x = 0.00020, i=18

x = 0.00032, i=17
x = 0.0005, i=16

x = 0.0008, i=15
x = 0.0013, i=14

x = 0.0020, i=13
x = 0.0032, i=12

x = 0.005, i=11
x = 0.008, i=10

x = 0.013, i=9
x = 0.02, i=8

x = 0.032, i=7
x = 0.05, i=6

x = 0.08, i=5

x = 0.13, i=4

x = 0.18, i=3

x = 0.25, i=2

x = 0.40, i=1

x = 0.65, i=0

Q2/ GeV2

r,
N

C
(x

,Q
2 ) x

 2
i

+

HERA I NC e+p
Fixed Target
HERAPDF1.0

10
-3

10
-2

10
-1

1

10

10 2

10 3

10 4

10 5

10 6

10 7

1 10 10 2 10 3 10 4 10 5
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Collinear Factorization and DGLAP equation

DGLAP evolution

NLO DGLAP fit yields negative gluon distribution at low Q
2 and low x.

Does this mean there is no gluons in that region? No
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Collinear Factorization and DGLAP equation

Phase diagram in QCD

Low Q
2 and low x region ⇒ saturation region.

Use BFKL equation and BK equation instead of DGLAP equation.
BK equation is the non-linear small-x evolution equation which describes
the saturation physics.
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Collinear Factorization and DGLAP equation

Collinear Factorization vs k⊥ Factorization

Collinear Factorization

xp+, k⊥ = 0 xp+, k⊥ = 0

k⊥ Factorization(Spin physics and saturation physics)

The incoming partons carry no k⊥ in the Collinear Factorization.
In general, there is intrinsic k⊥. It can be negligible for partons in protons, but should be taken into
account for the case of nucleus target with large number of nucleons (A → ∞).
k⊥ Factorization: High energy evolution with k⊥ fixed.
Initial and final state interactions yield different gauge links. (Process dependent)
In collinear factorization, gauge links all disappear in the light cone gauge, and PDFs are universal.
Other approaches, such as nuclear modification and higher twist approach. (See last year’s lecture.)
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Collinear Factorization and DGLAP equation Transverse Momentum Dependent (TMD or kt ) Factorization

kt dependent parton distributions

The unintegrated quark distribution

fq(x, k⊥) =

�
dξ−d2ξ⊥
4π(2π)2 e

ixP
+ξ−+iξ⊥·k⊥�P

���ψ̄(0)L†(0)γ+
L(ξ−, ξ⊥)ψ(ξ⊥, ξ

−)
���P�

as compared to the integrated quark distribution

fq(x) =

�
dξ−

4π
e

ixP
+ξ−

�P
��ψ̄(0)γ+

L(ξ−)ψ(0, ξ−)
��P�

The dependence of ξ⊥ in the definition.
Gauge invariant definition.
Light-cone gauge together with proper boundary condition ⇒ parton density
interpretation.
The gauge links come from the resummation of multiple gluon interactions.
Gauge links may vary among different processes.
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Collinear Factorization and DGLAP equation Transverse Momentum Dependent (TMD or kt ) Factorization

TMD factorization

One-loop factorization:

For gluon with momentum k

k is collinear to initial quark ⇒ parton distribution function;
k is collinear to the final state quark ⇒ fragmentation function.
k is soft divergence (sometimes called rapidity divergence) ⇒ Wilson lines (Soft factor) or
small-x evolution for gluon distribution.
Other kinematical region of the radiated gluon contributes to
the NLO (O(αs) correction) hard factor.
See new development in Collins’ book.
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Introduction to Small-x Physics BFKL evolution and Balitsky-Kovchegov evolution equations

Deep into low-x region of Protons

Gluon splitting functions (P0
qq(ξ) and P

0
gg(ξ)) have 1/(1 − ξ) singularities.

Partons in the low-x region is dominated by gluons.
Resummation of the αs ln 1

x
.
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Introduction to Small-x Physics BFKL evolution and Balitsky-Kovchegov evolution equations

Dual Descriptions of Deep Inelastic Scattering

[A. Mueller, 01; Parton Saturation-An Overview]

Bjorken frame Dipole frame

...

Bjorken frame
F2(x,Q

2) =
�

q

e
2
qx

�
fq(x,Q

2) + fq̄(x,Q
2)
�
.

Dipole frame

F2(x,Q
2) =

�

f

e
2
f

Q
2

4π2αem

� 1

0
dz

�
d2

x⊥d2
y⊥

�
|ψT (z, r⊥,Q)|2 + |ψL (z, r⊥,Q)|2

�

× [1 − S (r⊥)] , with r⊥ = x⊥ − y⊥.

Bjorken: the partonic picture of a hadron is manifest. Saturation shows up
as a limit on the occupation number of quarks and gluons.
Dipole: the partonic picture is no longer manifest. Saturation appears as the unitarity limit
for scattering. Convenient to resum the multiple gluon interactions.
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Introduction to Small-x Physics BFKL evolution and Balitsky-Kovchegov evolution equations

BFKL evolution

[Balitsky, Fadin, Kuraev, Lipatov;74] The infrared sensitivity of Bremsstrahlung favors the
emission of small-x gluons:

p

x << 1

kz = xp

kz1 = x1p

kz = xp

x << x1

p p

x << xn

xn << xn−1

x2 << x1

x1 << 1

Probability of emission:

dp ∼ αsNc

dkz

kz

= αsNc

dx

x

In small-x limit and Leading log approximation:

p ∼
∞�

n=0

αn

s
N

n

c

� 1

x

dxn

xn

· · ·
� 1

x2

dx1

x1
∼ exp

�
αsNc ln

1
x

�

Exponential growth of the amplitude as function of rapidity;

As compared to DGLAP which resums αsNc ln 1
x

ln µ2

µ2
0

.
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Introduction to Small-x Physics BFKL evolution and Balitsky-Kovchegov evolution equations

Derivation of BFKL evolution

Dipole model. [Mueller, 94]
Consider a Bremsstrahlung emission of soft gluon zg � 1,

P+ (1− ξ)P+,−k⊥

ξP+, k⊥

T a
ij

and use LC gauge � = (�+ = 0, �− = �⊥·k⊥
k+

, �±⊥)

M(k⊥) = −2igT
a �⊥ · k⊥

k
2
⊥

q → qg vertex and Energy denominator.
Take the limit k

+
g → 0.

Similar to the derivation of Pqq(ξ).
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Introduction to Small-x Physics BFKL evolution and Balitsky-Kovchegov evolution equations

The dipole splitting kernal

The Bremsstrahlung amplitude in the coordinate space

x⊥

z⊥

M(x⊥ − z⊥) =

�
d2

k⊥e
ik⊥·(x⊥−z⊥)

M(k⊥)

Use
�

d2
k⊥

�⊥ · k⊥

k
2
⊥

e
ik⊥·b⊥ = 2πi

�⊥ · b⊥

b
2
⊥

,

⇒ M(x⊥ − z⊥) = 4πgT
a �⊥ · (x⊥ − z⊥)

(x⊥ − z⊥)2
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Introduction to Small-x Physics BFKL evolution and Balitsky-Kovchegov evolution equations

The dipole splitting kernal

Consider soft gluon emission from a color dipole in the coordinate space (x⊥, y⊥)

x⊥

z⊥

taij ji

i

y⊥

x⊥

z⊥

y⊥

M(x⊥, z⊥, y⊥) = 4πgT
a

�
�⊥ · (x⊥ − z⊥)
(x⊥ − z⊥)2 −

�⊥ · (y⊥ − z⊥)
(y⊥ − z⊥)2

�
⇒

x⊥
z⊥
y⊥

= αsNc
2π2

(x⊥−y⊥)
2

(x⊥−z⊥)
2(y⊥−z⊥)

2=

The probability of dipole splitting at large Nc limit

dPsplitting =
αsNc

2π2
(x⊥ − y⊥)

2

(x⊥ − z⊥)2(x⊥ − z⊥)2 d2
z⊥dY with dY =

dk
+
g

k
+
g

Gluon splitting ⇔ Dipole splitting.
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Introduction to Small-x Physics BFKL evolution and Balitsky-Kovchegov evolution equations

BFKL evolution in Mueller’s dipole model

[Mueller; 94] In large Nc limit, BFKL evolution can be viewed as dipole branching in a fast
moving qq̄ dipole in coordinate space:

Y0 Y1 YY2<<<< <<

n(r, Y) dipoles of size r. BFKL Pomeron
The T matrix (T ≡ 1 − S with S being the scattering matrix) basically just counts the number of
dipoles of a given size,

T(r, Y) ∼ α2
s n(r, Y)

The probability of emission is ᾱs

(x−y)2

(x−z)2(z−y)2 ;

Assume independent emissions with large separation in rapidity.
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Introduction to Small-x Physics BFKL evolution and Balitsky-Kovchegov evolution equations

BFKL equation

Consider a slight change in rapidity and the Bremsstrahlung emission of soft gluon (dipole
splitting)

∂Y =

x

y

z

∂Y T(x, y; Y) =
ᾱs

2π

�
d

2
z

(x − y)2

(x − z)2(z − y)2 [T(x, z; Y) + T(z, y; Y)− T(x, y; Y)]
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Introduction to Small-x Physics BFKL evolution and Balitsky-Kovchegov evolution equations

Kovchegov equation

[Kovchegov; 99] [Mueller; 01] Including non-linear effects: (T ≡ 1 − S)

∂S
∂Y =

x

y

z

x

z

y

∂Y S(x − y; Y) =
αNc

2π2

�
d

2
z

(x − y)2

(x − z)2(z − y)2 [S(x − z; Y)S(z − y; Y)− S(x − y; Y)]

∂Y T(x − y; Y) =
αNc

2π2

�
d

2
z

(x − y)2

(x − z)2(z − y)2

×



T(x − z; Y) + T(z − y; Y)− T(x − y; Y)− T(x − z; Y)T(z − y; Y)
� �� �

saturation





Linear BFKL evolution results in fast energy evolution.

Non-linear term ⇒ fixed point (T = 1) and unitarization, and thus saturation.
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Introduction to Small-x Physics BFKL evolution and Balitsky-Kovchegov evolution equations

Phase diagram in QCD

Low Q
2 and low x region ⇒ saturation region.

Balitsky-Kovchegov equation is the non-linear small-x evolution equation
which describes the saturation physics.
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Introduction to Small-x Physics BFKL evolution and Balitsky-Kovchegov evolution equations

Balitsky-Kovchegov equation vs F-KPP equation

[Munier, Peschanski, 03] Consider the case with fixed impact parameter, namely, Txy is only
function of r = x − y. Then, transforming the B-K equation into momentum space:

BK equation: ∂Y T = ᾱχBFKL(−∂ρ)T − ᾱT
2 with ᾱ =

αNc

π
Diffusion approximation ⇒

F-KPP equation: ∂tu(x, t) = ∂2
x u(x, t) + u(x, t)− u

2(x, t)

u ⇒ T , ᾱY ⇒ t, � = log(k2/k
2
0) ⇒ x, with k0 being the reference scale;

B-K equation lies in the same universality class as the F-KPP
[Fisher-Kolmogrov-Petrovsky-Piscounov; 1937] equation.
F-KPP equation admits traveling wave solution u = u (x − vt) with minimum velocity;
the non-linear term saturates the solution in the infrared.
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Balitsky-Kovchegov equation vs F-KPP equation

BK equation: ∂Y T = ᾱχBFKL(−∂�)T − ᾱT
2

The linear part of its solution Tlin(k, Y) is a
superposition of waves:

Tlin(k, Y) =

�
c+i∞

c−i∞

dγ
2iπ

exp [−γ (�− ᾱv(γ)Y)] T0(γ)
γc

γ

χ
(γ
)/
γ

10.80.60.40.20

8

7

6

5

4

3

2

1

0

T0(γ): the initial condition,

Each wave has a different speed v(γ) given by v(γ) = χ(γ)
γ with

χ(γ) = ψ(1)− 1
2ψ(γ)−

1
2ψ(1 − γ) and ψ(γ) = d

dγ log[Γ(γ)] being the digamma
function.
[Mueller, Triantafyllopoulos; 02]Using saddle point approximation, and requiring
exponent vanishes at the saddle point. one gets γc = 0.63. This corresponds to an
anomalous dimension 0.37.
The wave speed v(γ) is minimized at γc = 0.63. γc is selected by exponential growth and
saturation.
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Geometrical scaling

Geometrical scaling in DIS:

T (r, Y) = T

�
r

2
Q

2
s (Y)

�

=
�
r

2
Q

2
s (Y)

�γc

exp

�
−

log2 �
r

2
Q

2
s (Y)

�

2χ�� (γc) ᾱY

�

� �� �
Scaling window

All data of σγ∗
p

tot when x ≤ 0.01 and 1
r2 = Q

2
≤ 450GeV

2 plotting as function of
τ = Q

2/Q
2
s falls on a curve, where Q

2
s =

�
x0
x

�0.29
GeV

2 with x0 = 3 × 10−4;
scaling window: | log

�
r

2
Q

2
s (Y)

�
| �

�
2χ�� (γc) ᾱY .

γ∗γ∗

p,Ap,A

[Golec-Biernat, Stasto, Kwiecinski; 01]
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Introduction to Small-x Physics McLerran-Venugopalan Model

McLerran-Venugopalan Model

In QCD, the McLerran-Venugopalan Model describes high density gluon distribution in a
relativistic large nucleus (A � 1) by solving the classical Yang-Mills equation:

[Dµ,F
µν ] = gJ

ν with J
ν = δν+ρa(x

−, x⊥)T
a, COV gauge ⇒ −�

2
⊥ A

+ = gρ.

To solve the above equation, we define the Green’s function

�
2
z⊥G(x⊥ − z⊥) = δ(2)(x⊥ − z⊥) ⇒ G(x⊥ − z⊥) = −

�
d2

k⊥

(2π)2
e

ik⊥·(x⊥−z⊥)

k
2
⊥

MV model assumes that the density of color charges follows a Gaussian distribution

W[ρ] = exp
�
−

�
dz

−d2
z⊥

ρa(z
−, z⊥)ρa(z

−, z⊥)
2µ2(z−)

�
.

With such a weight, average of two color sources is

�ρaρb� =

�
D[ρ]W[ρ]ρa(x

−, x⊥)ρb(y
−, y⊥) = µ2(x−)δabδ(x

−
− y

−)δ(x⊥ − y⊥).
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Introduction to Small-x Physics McLerran-Venugopalan Model

Dipole amplitude in MV model

The Wilson line [F. Gelis, A. Peshier, 01]

U(x⊥) = P exp
�
−ig

2
�

dz
−d2

z⊥G (x⊥ − z⊥) ρ
�
z
−, z⊥

��

· · ·U(x⊥) ≡ · · ·

x⊥
y⊥

x⊥
S(x⊥, y⊥) ≡ 1

Nc
TrU(x⊥)U †(y⊥)

Use gaussian approximation to pair color charges:

z -1 z -2 z -1 z -2 z -3 z -4 z -5 z -6

⇒ S(x⊥, y⊥) � exp
�
−µ2

s

4

�
d2

z⊥ [G (x⊥ − z⊥)− G (y⊥ − z⊥)]2
�

� exp
�
− 1

4
Q

2
s
(x⊥ − y⊥)2

�
⇐ GBW model

Quadrupoles 1
Nc

TrU1U
†
2 U3U

†
4 and Sextupoles 1

Nc
TrU1U

†
2 U3U

†
4 U5U

†
6 ...
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Introduction to Small-x Physics McLerran-Venugopalan Model

Golec-Biernat Wusthoff model and Geometrical Scaling

[Golec-Biernat, Wusthoff,; 98], [Golec-Biernat, Stasto, Kwiecinski; 01]
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x<0.01

all Q2

to
t

*p
  [
µ

b]

The dipole amplitude in the GBW model

Sqq̄(r⊥) = exp[−
Q

2
s r

2
⊥

4
]

with Q
2
s (x) = Q

2
s0(x0/x)λ where Qs0 = 1GeV, x = 3.04 × 10−3 and λ = 0.288.
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Dihadron Correlations Breaking down of the kt factorization in di-jet production

Kt Factorization "expectation"

Consider the inclusive production of two high-transverse-momentum back-to-back particles in
hadron-hadron collisions, i.e., in the process:

H1 + H2 → H3 + H4 + X.

p1 p2

Jet 1

Jet 2

k2

k1

k3

k4

The standard kt factorization "expectation" is:

E3E4
dσ

d3
p3d3

p4
=

��
dσ̂i+j→k+l+Xfi/1fj/2d3/kd4/l+ · · ·

Convolution of dσ̂ with f (x, k⊥) and d(z).
Factorization ⇔ Factorization formula + Universality
Only Drell-Yan process is proved for factorization in hadron-hadron
collisions. [Bodwin; 85, 86], [Collins, Soper, Sterman; 85, 88].
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Dihadron Correlations Breaking down of the kt factorization in di-jet production

Breaking down of the kt factorization in di-hadron production

[Bacchetta, Bomhof, Mulders and Pijlman; 04-06] Wilson lines approach
Studies of Wilson-line operators show that the TMD parton distributions are not generally
process-independent due to the complicated combinantion of initial and final state interactions. TMD
PDFs admit process dependent Wilson lines.

[Collins, Qiu; 07], [Collins; 07], [Vogelsang, Yuan; 07] and [Rogers, Mulders; 10]
Scalar QED models and its generalization to QCD (Counterexample to Factorization)

O(g2) calculation shows non-vanishing anomalous terms with respect to standard factorization.

Remarks: kt factorization is violated in di-jet production; TMD parton distributions are non-universal.

Things get worse: For pp and AA collisions, no factorization formula at all for dijet production.
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Dihadron Correlations Breaking down of the kt factorization in di-jet production

Why is the di-jet production process special?

Initial state interactions and/or final state interactions

In Drell-Yan process, there are only initial state interactions.
� +∞

−∞
dk

+
g

i

−k
+
g − i�

A
+(kg) =

� −∞

0
dζ−A

+(ζ−)

Eikonal approximation =⇒ gauge links.
In DIS, there are only final state interactions.

� +∞

−∞
dk

+
g

i

−k
+
g + i�

A
+(kg) =

� +∞

0
dζ−A

+(ζ−)

Eikonal approximation =⇒ gauge links.
However, there are both initial state interactions and final state interactions in
the di-jet process.
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Dihadron Correlations Probing two fundamental gluon distributions

Forward observables at pA collisions

Why pA collisions?
For pA (dilute-dense system) collisions, there is an effective kt factorization.

dσpA→qfX

d2P⊥d2q⊥dy1dy2
=xpq(xp, µ

2)xAf (xA, q
2
⊥)

1
π

dσ̂
d̂t

.

For dijet processes in pp, AA collisions, there is no kt factorization[Collins, Qiu,
08],[Rogers, Mulders; 10].

Why forward?
At forward rapidity y, xp ∝ e

y is large, while xA ∝ e
−y is small.

Ideal place to find gluon saturation in the target nucleus.
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Dihadron Correlations Probing two fundamental gluon distributions

A Tale of Two Gluon Distributions

In small-x physics, two gluon distributions are widely used:[Kharzeev, Kovchegov, Tuchin; 03]
I. Weizsäcker Williams gluon distribution ([KM, 98’] and MV model):

xG
(1) =

S⊥

π2αs

N
2
c − 1
Nc

⇐

×

�
d

2
r⊥

(2π)2
e
−ik⊥·r⊥

r
2
⊥

�
1 − e

−
r
2
⊥Q

2
sg

2

�

II. Color Dipole gluon distributions:

xG
(2) =

S⊥Nc

2π2αs

k
2
⊥ ⇐

×

�
d

2
r⊥

(2π)2 e
−ik⊥·r⊥e

−
r
2
⊥Q

2
sq

4

rT

Remarks:
The WW gluon distribution simply counts the number of gluons.
The Color Dipole gluon distribution often appears in calculations.
Does this mean that gluon distributions are non-universal? Answer: Yes and No!
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Dihadron Correlations Probing two fundamental gluon distributions

A Tale of Two Gluon Distributions

[F. Dominguez, C. Marquet, BX and F. Yuan, 11]
I. Weizsäcker Williams gluon distribution

xG
(1) =

S⊥

π2αs

N
2
c − 1
Nc

⇐

×

�
d

2
r⊥

(2π)2
e
−ik⊥·r⊥

r
2
⊥

�
1 − e

−
r
2
⊥Q

2
s

2

�

II. Color Dipole gluon distributions:

xG
(2) =

S⊥Nc

2π2αs

⇐

×

�
d

2
r⊥

(2π)2 e
−ik⊥·r⊥∇

2
r⊥N(r⊥)
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q�2
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2
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A tale of two gluon distributions
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A Tale of Two Gluon Distributions

In terms of operators (known from TMD factorization), we find these two gluon distributions
can be defined as follows: [F. Dominguez, C. Marquet, BX and F. Yuan, 11]
I. Weizsäcker Williams gluon distribution:

xG
(1) = 2

�
dξ−dξ⊥
(2π)3P+

e
ixP

+ξ−−ik⊥·ξ⊥Tr�P|F+i(ξ−, ξ⊥)U
[+]†

F
+i(0)U [+]

|P�.

II. Color Dipole gluon distributions:

xG
(2) = 2

�
dξ−dξ⊥
(2π)3P+

e
ixP

+ξ−−ik⊥·ξ⊥Tr�P|F+i(ξ−, ξ⊥)U
[−]†

F
+i(0)U [+]

|P�.

T T

U
[−]

U
[+]

Remarks:
The WW gluon distribution is the conventional gluon distributions. In light-cone gauge, it
is the gluon density. (Only final state interactions.)
The dipole gluon distribution has no such interpretation. (Initial and final state
interactions.)
Both definitions are gauge invariant.
Same after integrating over q⊥.
Same perturbative tail.
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A Tale of Two Gluon Distributions

In terms of operators, we find these two gluon distributions can be defined as follows: [F.
Dominguez, C. Marquet, BX and F. Yuan, 11]
I. Weizsäcker Williams gluon distribution:

xG
(1) = 2

�
dξ−dξ⊥
(2π)3P+

e
ixP

+ξ−−ik⊥·ξ⊥Tr�P|F+i(ξ−, ξ⊥)U
[+]†

F
+i(0)U [+]

|P�.

II. Color Dipole gluon distributions:

xG
(2) = 2

�
dξ−dξ⊥
(2π)3P+

e
ixP

+ξ−−ik⊥·ξ⊥Tr�P|F+i(ξ−, ξ⊥)U
[−]†

F
+i(0)U [+]

|P�.

T T

U
[−]

U
[+]

Questions:
Can we distinguish these two gluon distributions? Yes, We Can.
How to measure xG

(1) directly? DIS dijet.
How to measure xG

(2) directly? Direct γ+Jet in pA collisions.
For single-inclusive particle production in pA up to all order.
What happens in gluon+jet production in pA collisions? It’s complicated!
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DIS dijet

[F. Dominguez, C. Marquet, BX and F. Yuan, 11]

(a) (b) (c)

q2 q2

k1

k2 k2

k1

dσγ∗
T

A→qq̄+X

dP.S.
∝ Ncαeme

2
q

�
d2

x

(2π)2
d2

x
�

(2π)2
d2

b

(2π)2
d2

b
�

(2π)2 e
−ik1⊥·(x−x

�)

×e
−ik2⊥·(b−b

�)
�

ψ∗
T (x − b)ψT(x

�
− b

�)
�
1 + S

(4)
xg

(x, b; b
�, x

�)− S
(2)
xg

(x, b)− S
(2)
xg

(b�, x
�)
�

� �� �
−uiu

�
j

1
Nc

�Tr[∂iU(v)]U†(v�)[∂jU(v�)]U†(v)�xg
⇒Operator Def

,

Eikonal approximation ⇒ Wilson Line approach [Kovner, Wiedemann, 01].
In the dijet correlation limit, where u = x − b � v = zx + (1 − z)b

S
(4)
xg

(x, b; b
�, x

�) = 1
Nc

�
TrU(x)U†(x�)U(b�)U†(b)

�
xg

�= S
(2)
xg

(x, b)S(2)
xg

(b�, x
�)

Quadrupoles are generically different objects and only appear in dijet processes.
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DIS dijet

The dijet production in DIS.

(a) (b) (c)

q2 q2

k1

k2 k2

k1

TMD factorization approach:

dσγ∗
T

A→qq̄+X

dP.S.
= δ(xγ∗ − 1)xgG

(1)(xg, q⊥)Hγ∗
T

g→qq̄,

Remarks:
Dijet in DIS is the only physical process which can measure Weizsäcker Williams gluon
distributions.
Golden measurement for the Weizsäcker Williams gluon distributions of nuclei at small-x.
The cross section is directly related to the WW gluon distribution.
EIC and LHeC will provide us a perfect machine to study the strong
gluon fields in nuclei. Important part in EIC and LHeC physics.
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γ+Jet in pA collisions

The direct photon + jet production in pA collisions. (Drell-Yan follows the same factorization.)
TMD factorization approach:

dσ(pA→γq+X)

dP.S.
=

�

f

x1q(x1, µ
2)xgG

(2)(xg, q⊥)Hqg→γq.

Remarks:
Independent CGC calculation gives the identical result in the correlation limit.
Direct measurement of the Color Dipole gluon distribution.
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DY correlations in pA collisions

[Stasto, BX, Zaslavsky, 12]
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M = 0.5, 4GeV, Y = 2.5 at RHIC dAu. M = 4, 8GeV, Y = 4 at LHC pPb.
Partonic cross section vanishes at π ⇒ Dip at π.
Prompt photon calculation [J. Jalilian-Marian, A. Rezaeian, 12]
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Dihadron Correlations Gluon+Jet in pA

STAR measurement on di-hadron correlation in dA collisions

There is no sign of suppression in the p + p and d + Au peripheral data.
The suppression and broadening of the away side jet in d + Au central collisions is due to
the multiple interactions between partons and dense nuclear matter (CGC).
Probably the best evidence for saturation.
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First calculations on dijet production

Quark+Gluon channel [Marquet, 07] and [Albacete, Marquet, 10]

p q
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Prediction of saturation physics.
All the framework is correct, but over-simplified 4-point function.
Improvement [F. Dominguez, C. Marquet, BX and F. Yuan, 11.]
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Dijet processes in the large Nc limit

The Fierz identity:

= 1
2

− 1
2Nc and

= 1
2

−1
2

Graphical representation of dijet processes
g → qq̄:

!"

!#

!$"

!$#%&'!#()# '*!" %$&'!$#()# '*!$"

⇒

= 1
2

− 1
2Nc

q → qg

!

"

!#

"#

$%&"'() &*! $#%&"#'() &*!#

⇒

2
= = 1

2
− 1

2Nc

g → gg

!" !#"$%&!"'(" &)!* $#%&!#"'(" &)!#*

!* !#*

⇒

= −

= −

The Octupole and the Sextupole are suppressed.
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Gluon+quark jets correlation

Including all the qg → qg, gg → gg and gg → qq̄ channels, a lengthy calculation gives

dσ(pA→Dijet+X)

dP.S.
=

�

q

x1q(x1, µ
2)

α2
s

ŝ2

�
F(1)

qg H
(1)
qg + F(2)

qg H
(2)
qg

�

+x1g(x1, µ
2)

α2
s

ŝ2

�
F(1)

gg

�
H

(1)
gg→qq̄

+
1
2

H
(1)
gg→gg

�

+F(2)
gg

�
H

(2)
gg→qq̄

+
1
2

H
(2)
gg→gg

�
+ F(3)

gg

1
2

H
(3)
gg→gg

�
,

with the various gluon distributions defined as

F(1)
qg = xG

(2)(x, q⊥), F(2)
qg =

�
xG

(1) ⊗ F ,

F(1)
gg =

�
xG

(2) ⊗ F, F(2)
gg = −

�
q1⊥ · q2⊥

q
2
1⊥

xG
(2) ⊗ F ,

F(3)
gg =

�
xG

(1)(q1)⊗ F ⊗ F ,

where F =
�

d
2
r⊥

(2π)2 e
−iq⊥·r⊥ 1

Nc

�
TrU(r⊥)U†(0)

�
xg

.
Remarks:

Only the term in NavyBlue color was known before.

This describes the dihadron correlation data measured at RHIC in forward dAu collisions.
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Illustration of gluon distributions

The various gluon distributions:

xG
(1)
WW(x, q⊥), F
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6 different gluon distributions
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Comparing to STAR and PHENIX data

Physics predicted by C. Marquet. Further calculated in[A. Stasto, BX, F. Yuan, 11]

Forward di-hadron correlations in 

d+Au collisions at RHIC
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For away side peak in both peripheral and central dAu collisions

C(∆φ) =

�
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|p1⊥|

dσpA→h1
dy1d2p1⊥

JdA =
1

�Ncoll�

σpair
dA

/σdA

σpair
pp /σpp

-310 -210

-110

1

peripheral

central

frag
Aux

dAuJ

Using: Q
2
sA = c(b)A1/3

Q
2
s (x).

Physical picture: Dense gluonic matter suppresses the away side peak.
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Conclusion and Outlook

Conclusion:
DIS dijet provides direct information of the WW gluon distributions. Perfect for testing
CGC, and ideal measurement for EIC and LHeC.
Modified Universality for Gluon Distributions:

Inclusive Single Inc DIS dijet γ +jet g+jet
xG

(1)
× ×

√
×

√

xG
(2), F

√ √
×

√ √

× ⇒ Do Not Appear.
√

⇒ Apppear.
Two fundamental gluon distributions. Other gluon distributions are just different
combinations and convolutions of these two.
The small-x evolution of the WW gluon distribution, a different equation from
Balitsky-Kovchegov equation;[Dominguez, Mueller, Munier, Xiao, 11]
Dihadron correlation calculation agrees with the RHIC STAR and PHENIX data.
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Outlook

[Dominguez, Marquet, Stasto, BX, in preparation] Use Fierz identity:

= 1
2

− 1
2Nc

The three-jet (same rapidity) production processes in the large Nc limit:

qq̄g-jet

2

= = 1
2

− 1
2Nc

In the large Nc limit at small-x, the dipole and quadrupole amplitudes are the only two
fundamental objects in the cross section of multiple-jet production processes at any order
in terms αs.
Other higher point functions, such as sextupoles, octupoles, decapoles and duodecapoles,
etc. are suppressed by factors of 1

N2
c

.
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