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Dihadron Correlations Breaking down of the kt factorization in di-jet production

Kt Factorization "expectation"

Consider the inclusive production of two high-transverse-momentum back-to-back particles in
hadron-hadron collisions, i.e., in the process:

H1 + H2 → H3 + H4 + X.

p1 p2

Jet 1

Jet 2

k2

k1

k3

k4

The standard kt factorization "expectation" is:

E3E4
dσ

d3p3d3p4
=
∑∫

dσ̂i+j→k+l+X fi/1fj/2d3/kd4/l+ · · ·

Convolution of dσ̂ with f (x, k⊥) and d(z).
Factorization⇔ Factorization formula + Universality
Only Drell-Yan process is proved for factorization in hadron-hadron
collisions. [Bodwin; 85, 86], [Collins, Soper, Sterman; 85, 88].
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Dihadron Correlations Breaking down of the kt factorization in di-jet production

Breaking down of the kt factorization in di-hadron production

[Bacchetta, Bomhof, Mulders and Pijlman; 04-06] Wilson lines approach
Studies of Wilson-line operators show that the TMD parton distributions are not generally
process-independent due to the complicated combinantion of initial and final state interactions. TMD
PDFs admit process dependent Wilson lines.

[Collins, Qiu; 07], [Collins; 07], [Vogelsang, Yuan; 07] and [Rogers, Mulders; 10]
Scalar QED models and its generalization to QCD (Counterexample to Factorization)

O(g2) calculation shows non-vanishing anomalous terms with respect to standard factorization.

Remarks: kt factorization is violated in di-jet production; TMD parton distributions are non-universal.

Things get worse: For pp and AA collisions, no factorization formula at all for dijet production.
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Dihadron Correlations Breaking down of the kt factorization in di-jet production

Why is the di-jet production process special?

Initial state interactions and/or final state interactions

In Drell-Yan process, there are only initial state interactions.∫ +∞

−∞
dk+

g
i

−k+
g − iε

A+(kg) =

∫ −∞
0

dζ−A+(ζ−)

Eikonal approximation =⇒ gauge links.
In DIS, there are only final state interactions.∫ +∞

−∞
dk+

g
i

−k+
g + iε

A+(kg) =

∫ +∞

0
dζ−A+(ζ−)

Eikonal approximation =⇒ gauge links.
However, there are both initial state interactions and final state interactions in
the di-jet process.
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Dihadron Correlations Probing two fundamental gluon distributions

McLerran-Venugopalan Model

In QCD, the McLerran-Venugopalan Model describes high density gluon distribution in a
relativistic large nucleus (A� 1) by solving the classical Yang-Mills equation:

[Dµ,Fµν ] = gJν with Jν = δν+ρa(x−, x⊥)Ta, COV gauge⇒ −52
⊥ A+ = gρ.

To solve the above equation, we define the Green’s function

52
z⊥G(x⊥ − z⊥) = δ(2)(x⊥ − z⊥) ⇒ G(x⊥ − z⊥) = −

∫
d2k⊥
(2π)2

eik⊥·(x⊥−z⊥)

k2
⊥

MV model assumes that the density of color charges follows a Gaussian distribution

W[ρ] = exp
[
−
∫

dz−d2z⊥
ρa(z−, z⊥)ρa(z−, z⊥)

2µ2(z−)

]
.

With such a weight, average of two color sources is

〈ρaρb〉 =

∫
D[ρ]W[ρ]ρa(x−, x⊥)ρb(y−, y⊥) = µ2(x−)δabδ(x− − y−)δ(x⊥ − y⊥).
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Dihadron Correlations Probing two fundamental gluon distributions

Dipole amplitude in MV model

The Wilson line [F. Gelis, A. Peshier, 01]

U(x⊥) = P exp
[
−ig2

∫
dz−d2z⊥G (x⊥ − z⊥) ρ

(
z−, z⊥

)]

· · ·U(x⊥) ≡ · · ·

x⊥
y⊥

x⊥
S(x⊥, y⊥) ≡ 1

Nc
TrU(x⊥)U †(y⊥)

Use gaussian approximation to pair color charges:

z -1 z -2 z -1 z -2 z -3 z -4 z -5 z -6

⇒ S(x⊥, y⊥) ' exp
{
−µ

2
s

4

∫
d2z⊥ [G (x⊥ − z⊥)− G (y⊥ − z⊥)]

2
}

' exp
[
− 1

4
Q2

s (x⊥ − y⊥)
2
]
⇐ GBW model

Quadrupoles 1
Nc

TrU1U†2 U3U†4 and Sextupoles 1
Nc

TrU1U†2 U3U†4 U5U†6 ...
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Dihadron Correlations Probing two fundamental gluon distributions

Forward observables at pA collisions

Why pA collisions?
For pA (dilute-dense system) collisions, there is an effective kt factorization.

dσpA→qfX

d2P⊥d2q⊥dy1dy2
=xpq(xp, µ

2)xAf (xA, q2
⊥)

1
π

dσ̂
d̂t
.

For dijet processes in pp, AA collisions, there is no kt factorization[Collins, Qiu,
08],[Rogers, Mulders; 10].

Why forward?
At forward rapidity y, xp ∝ ey is large, while xA ∝ e−y is small.
Ideal place to find gluon saturation in the target nucleus.
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Dihadron Correlations Probing two fundamental gluon distributions

A Tale of Two Gluon Distributions

In small-x physics, two gluon distributions are widely used:[Kharzeev, Kovchegov, Tuchin; 03]
I. Weizsäcker Williams gluon distribution ([KM, 98’] and MV model):

xG(1) =
S⊥
π2αs

N2
c − 1
Nc

⇐

×
∫

d2r⊥
(2π)2

e−ik⊥·r⊥

r2
⊥

(
1− e−

r2
⊥Q2

sg
2

)
II. Color Dipole gluon distributions:

xG(2) =
S⊥Nc

2π2αs
k2
⊥ ⇐

×
∫

d2r⊥
(2π)2 e−ik⊥·r⊥e−

r2
⊥Q2

sq
4

rT

Remarks:

The WW gluon distribution simply counts the number of gluons.

The Color Dipole gluon distribution often appears in calculations.

Does this mean that gluon distributions are non-universal? Answer: Yes and No!
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Dihadron Correlations Probing two fundamental gluon distributions

A Tale of Two Gluon Distributions

[F. Dominguez, C. Marquet, BX and F. Yuan, 11]
I. Weizsäcker Williams gluon distribution

xG(1) =
S⊥
π2αs

N2
c − 1
Nc

⇐

×
∫

d2r⊥
(2π)2

e−ik⊥·r⊥

r2
⊥

(
1− e−

r2
⊥Q2

s
2

)
II. Color Dipole gluon distributions:

xG(2) =
S⊥Nc

2π2αs
k2
⊥ ⇐

×
∫

d2r⊥
(2π)2 e−ik⊥·r⊥e−

r2
⊥Q2

sq
4
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0.00
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A tale of two gluon distributions
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Dihadron Correlations Probing two fundamental gluon distributions

A Tale of Two Gluon Distributions

In terms of operators (known from TMD factorization), we find these two gluon distributions
can be defined as follows: [F. Dominguez, C. Marquet, BX and F. Yuan, 11]
I. Weizsäcker Williams gluon distribution:

xG(1) = 2
∫

dξ−dξ⊥
(2π)3P+

eixP+ξ−−ik⊥·ξ⊥Tr〈P|F+i(ξ−, ξ⊥)U [+]†F+i(0)U [+]|P〉.

II. Color Dipole gluon distributions:

xG(2) = 2
∫

dξ−dξ⊥
(2π)3P+

eixP+ξ−−ik⊥·ξ⊥Tr〈P|F+i(ξ−, ξ⊥)U [−]†F+i(0)U [+]|P〉.

ξ
−

ξT

ξ
−

ξT

U [−] U [+]

Remarks:
The WW gluon distribution is the conventional gluon distributions. In light-cone gauge, it
is the gluon density. (Only final state interactions.)
The dipole gluon distribution has no such interpretation. (Initial and final state
interactions.)
Both definitions are gauge invariant.
Same after integrating over q⊥.
Same perturbative tail.
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Dihadron Correlations Probing two fundamental gluon distributions

A Tale of Two Gluon Distributions

In terms of operators, we find these two gluon distributions can be defined as follows: [F.
Dominguez, C. Marquet, BX and F. Yuan, 11]
I. Weizsäcker Williams gluon distribution:

xG(1) = 2
∫

dξ−dξ⊥
(2π)3P+

eixP+ξ−−ik⊥·ξ⊥Tr〈P|F+i(ξ−, ξ⊥)U [+]†F+i(0)U [+]|P〉.

II. Color Dipole gluon distributions:

xG(2) = 2
∫

dξ−dξ⊥
(2π)3P+

eixP+ξ−−ik⊥·ξ⊥Tr〈P|F+i(ξ−, ξ⊥)U [−]†F+i(0)U [+]|P〉.

ξ
−

ξT

ξ
−

ξT

U [−] U [+]

Questions:
Can we distinguish these two gluon distributions? Yes, We Can.
How to measure xG(1) directly? DIS dijet.
How to measure xG(2) directly? Direct γ+Jet in pA collisions.
For single-inclusive particle production in pA up to all order.
What happens in gluon+jet production in pA collisions? It’s complicated!
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Dihadron Correlations Probing two fundamental gluon distributions

DIS dijet

[F. Dominguez, C. Marquet, BX and F. Yuan, 11]

(a) (b) (c)

q2 q2

k1

k2 k2

k1

dσγ
∗
T A→qq̄+X

dP.S. ∝ Ncαeme2
q

∫
d2x

(2π)2

d2x′

(2π)2

d2b
(2π)2

d2b′

(2π)2 e−ik1⊥·(x−x′)

×e−ik2⊥·(b−b′)
∑

ψ∗T (x− b)ψT(x′ − b′)[
1 + S(4)

xg (x, b; b′, x′)− S(2)
xg (x, b)− S(2)

xg (b′, x′)
]

︸ ︷︷ ︸
−uiu′j

1
Nc
〈Tr[∂iU(v)]U†(v′)[∂jU(v′)]U†(v)〉xg⇒Operator Def

,

Eikonal approximation⇒Wilson Line approach [Kovner, Wiedemann, 01].
In the dijet correlation limit, where u = x− b� v = zx + (1− z)b

S(4)
xg (x, b; b′, x′) = 1

Nc

〈
TrU(x)U†(x′)U(b′)U†(b)

〉
xg
6= S(2)

xg (x, b)S(2)
xg (b′, x′)

Quadrupoles are generically different objects and only appear in dijet processes.
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Dihadron Correlations Probing two fundamental gluon distributions

DIS dijet

The dijet production in DIS.

(a) (b) (c)

q2 q2

k1

k2 k2

k1

TMD factorization approach:

dσγ
∗
T A→qq̄+X

dP.S. = δ(xγ∗ − 1)xgG(1)(xg, q⊥)Hγ∗T g→qq̄,

Remarks:

Dijet in DIS is the only physical process which can measure Weizsäcker Williams gluon
distributions.

Golden measurement for the Weizsäcker Williams gluon distributions of nuclei at small-x.
The cross section is directly related to the WW gluon distribution.

EIC and LHeC will provide us a perfect machine to study the strong
gluon fields in nuclei. Important part in EIC and LHeC physics.
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Dihadron Correlations Probing two fundamental gluon distributions

γ+Jet in pA collisions

The direct photon + jet production in pA collisions. (Drell-Yan follows the same factorization.)
TMD factorization approach:

dσ(pA→γq+X)

dP.S. =
∑

f

x1q(x1, µ
2)xgG(2)(xg, q⊥)Hqg→γq.

Remarks:

Independent CGC calculation gives the identical result in the correlation limit.

Direct measurement of the Color Dipole gluon distribution.
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Dihadron Correlations Probing two fundamental gluon distributions

DY correlations in pA collisions

[Stasto, BX, Zaslavsky, 12]
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M = 0.5, 4GeV, Y = 2.5 at RHIC dAu. M = 4, 8GeV, Y = 4 at LHC pPb.
Partonic cross section vanishes at π⇒ Dip at π.
Prompt photon calculation [J. Jalilian-Marian, A. Rezaeian, 12]
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Dihadron Correlations Gluon+Jet in pA

STAR measurement on di-hadron correlation in dA collisions

There is no sign of suppression in the p + p and d + Au peripheral data.

The suppression and broadening of the away side jet in d + Au central collisions is due to
the multiple interactions between partons and dense nuclear matter (CGC).

Probably the best evidence for saturation.
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Dihadron Correlations Gluon+Jet in pA

First calculations on dijet production

Quark+Gluon channel [Marquet, 07] and [Albacete, Marquet, 10]

p q

k

p q

k

                                       φΔ
0 1 2 3 4 5 6

)  
 

φ
Δ

C
P(

0

0.005

0.01

0.015

0.02 STAR PRELIMINARY>2 GeV/c
T,L

p

T,L
<p

T,S
1 GeV/c < p p+p (−0.0045)

d+Au central (−0.0145)

Prediction of saturation physics.

All the framework is correct, but over-simplified 4-point function.
Improvement [F. Dominguez, C. Marquet, BX and F. Yuan, 11.]

S(4)
xg (x1, x2; x′2, x

′
1) ' e−

CF
2 [Γ(x1−x2)+Γ(x′2−x′1)]

−F(x1, x2; x′2, x
′
1)

F(x1, x′2; x2, x′1)

(
e−

CF
2 [Γ(x1−x2)+Γ(x′2−x′1)] − e−

CF
2 [Γ(x1−x′1)+Γ(x′2−x2)]

)
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Dihadron Correlations Gluon+Jet in pA

Dijet processes in the large Nc limit

The Fierz identity:

= 1
2

− 1
2Nc and

= 1
2

−1
2

Graphical representation of dijet processes

g→ qq̄:

x2

x1

x�’2

x�’1v=zx1+(1 z)x2 v�’=zx�’1+(1 z)x�’2

⇒
= 1

2
− 1

2Nc

q→ qg
b

x

b�’

x�’

v=zx+(1 z)b v�’=zx�’+(1 z)b�’

⇒

2
= = 1

2
− 1

2Nc

g→ gg

x1 x�’1v=zx1+(1 z)x2 v�’=zx�’1+(1 z)x�’2

x2 x�’2

⇒

= −

= −

The Octupole and the Sextupole are suppressed.
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Dihadron Correlations Gluon+Jet in pA

Gluon+quark jets correlation

Including all the qg→ qg, gg→ gg and gg→ qq̄ channels, a lengthy calculation gives

dσ(pA→Dijet+X)

dP.S. =
∑

q

x1q(x1, µ
2)
α2

s

ŝ2

[
F(1)

qg H(1)
qg + F(2)

qg H(2)
qg

]
+x1g(x1, µ

2)
α2

s

ŝ2

[
F(1)

gg

(
H(1)

gg→qq̄ +
1
2

H(1)
gg→gg

)
+F(2)

gg

(
H(2)

gg→qq̄ +
1
2

H(2)
gg→gg

)
+ F(3)

gg
1
2

H(3)
gg→gg

]
,

with the various gluon distributions defined as

F(1)
qg = xG(2)(x, q⊥), F(2)

qg =

∫
xG(1) ⊗ F ,

F(1)
gg =

∫
xG(2) ⊗ F, F(2)

gg = −
∫

q1⊥ · q2⊥
q2

1⊥
xG(2) ⊗ F ,

F(3)
gg =

∫
xG(1)(q1)⊗ F ⊗ F ,

where F =
∫ d2r⊥

(2π)2 e−iq⊥·r⊥ 1
Nc

〈
TrU(r⊥)U†(0)

〉
xg

.
Remarks:

Only the term in NavyBlue color was known before.

This describes the dihadron correlation data measured at RHIC in forward dAu collisions.
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Dihadron Correlations Gluon+Jet in pA

Illustration of gluon distributions

The various gluon distributions:

xG(1)
WW(x, q⊥), F (1)

qg = xG(2)(x, q⊥),

F (1)
gg =

∫
xG(2) ⊗ F, F (2)

gg = −
∫

q1⊥ · q2⊥

q2
1⊥

xG(2) ⊗ F ,

F (3)
gg =

∫
xG(1)(q1)⊗ F ⊗ F , F (2)

qg =

∫
xG(1) ⊗ F
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6 different gluon distributions
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Dihadron Correlations Gluon+Jet in pA

Comparing to STAR and PHENIX data

Physics predicted by C. Marquet. Further calculated in[A. Stasto, BX, F. Yuan, 11]

Forward di-hadron correlations in 

d+Au collisions at RHIC

!"=0

(near side)
!"=#

(away side)

(rad)

! “Coincidence probability” at measured by STAR Coll. at forward rapidities:

CP (∆φ) =
1

Ntrig

dNpair

d∆φ
∆φ

trigger

! Absence of away particle in d+Au coll.

                          “monojets”
! Away peak is present in p+p coll.

d+Au central

p+p

trigger

associated

(k1, y1)
(k2, y2) xA =

|k1| e−y1 + |k2| e−y2

√
s

20

For away side peak in both peripheral and central dAu collisions

C(∆φ) =

∫
|p1⊥|,|p2⊥|

dσpA→h1h2

dy1dy2d2p1⊥d2p2⊥∫
|p1⊥|

dσpA→h1

dy1d2p1⊥

JdA =
1
〈Ncoll〉

σpair
dA /σdA

σpair
pp /σpp
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0.006

0.008
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0.014

0.016
 

 

Peripheral dAu CorrelationC( )

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.012

0.014

0.016
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Central dAu Correlation
C( )

3
10 210

110

1

peripheral

central

frag
Aux

dAuJ

Using: Q2
sA = c(b)A1/3Q2

s (x).
Physical picture: Dense gluonic matter suppresses the away side peak.
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Dihadron Correlations Gluon+Jet in pA

Conclusion and Outlook

Conclusion:

DIS dijet provides direct information of the WW gluon distributions. Perfect for testing
CGC, and ideal measurement for EIC and LHeC.

Modified Universality for Gluon Distributions:

Inclusive Single Inc DIS dijet γ +jet g+jet
xG(1) × ×

√
×

√

xG(2), F
√ √

×
√ √

×⇒ Do Not Appear.
√
⇒ Apppear.

Two fundamental gluon distributions. Other gluon distributions are just different
combinations and convolutions of these two.

The small-x evolution of the WW gluon distribution, a different equation from
Balitsky-Kovchegov equation;[Dominguez, Mueller, Munier, Xiao, 11]

Dihadron correlation calculation agrees with the RHIC STAR and PHENIX data.
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Dihadron Correlations Gluon+Jet in pA

Outlook

[Dominguez, Marquet, Stasto, BX, in preparation] Use Fierz identity:

= 1
2

− 1
2Nc

The three-jet (same rapidity) production processes in the large Nc limit:

qq̄g-jet

2

= = 1
2

− 1
2Nc

In the large Nc limit at small-x, the dipole and quadrupole amplitudes are the only two
fundamental objects in the cross section of multiple-jet production processes at any order
in terms αs.

Other higher point functions, such as sextupoles, octupoles, decapoles and duodecapoles,
etc. are suppressed by factors of 1

N2
c

.
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NLO Forward Hadron Production in pA Collisions LO Forward Hadron production in pA collisions

Forward hadron production in pA collisions

Consider the inclusive production of inclusive forward hadrons in pA collisions, i.e., in the
process: [Dumitru, Jalilian-Marian, 02]

p + A→ H + X.

The leading order result for producing a hadron with transverse momentum p⊥ at rapidity yh

dσpA→hX
LO

d2p⊥dyh
=

∫ 1

τ

dz
z2

∑
f

xpqf (xp)F(k⊥)Dh/q(z) + xpg(xp)F̃(k⊥)Dh/g(z)

 .

· · ·
⇒ U(x⊥) = P exp

{
igS

∫ +∞

−∞
dx+ TcA−c (x+, x⊥)

}
,

F(k⊥) =

∫
d2x⊥d2y⊥

(2π)2 e−ik⊥·(x⊥−y⊥)S(2)
Y (x⊥, y⊥).

p⊥ = zk⊥, xp = p⊥
z
√

s eyh (large), τ = zxp and xg = p⊥
z
√

s e−yh (small).

S(2)
Y (x⊥, y⊥) = 1

Nc

〈
TrU(x⊥)U†(y⊥)

〉
Y

with Y ∼ ln 1/xg.

The gluon channel with F̃(k⊥) defined in the adjoint representation.
Classical p⊥ broadening calculation, no divergences, no evolution.
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NLO Forward Hadron Production in pA Collisions LO Forward Hadron production in pA collisions

Issues with the leading order calculation

The comparison between the leading order calculation and the RHIC data:

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

0.5 1.0 1.5 2.0 2.5 3.0 3.5
10-5

0.001

0.1

10

pt

dN
�
dΗ

d2
p t

Minimum Bias ´20, Η=2.2

q
an

d
q+

g

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

0.5 1.0 1.5 2.0 2.5 3.0 3.5
10-6

10-5

10-4

0.001

0.01

0.1

1

pt

dN
�
dΗ

d2
p t

Minimum Bias, Η=3.2

q
an

d
q+

g

æ

æ

æ

æ

æ

æ

1.0 1.2 1.4 1.6 1.8

10-4

0.001

0.01

0.1

1

pt

dN
�
dΗ

d2
p t

STAR Minimum Bias Π
0, Η=4, K=0.3

q
an

d
q+

g

Comments: Why do we need NLO calculations?

LO calculation is order of magnitude estimate. Normally, we need to introduce the
artificial K factor to fix the normalization. Fails to describe large p⊥ data.

There are large theoretical uncertainties due to renormalization/factorization scale
dependence in xf (x) and D(z). Choice of the scale at LO requires information at NLO.

In general, higher order in the perturbative series in αs helps to increase the reliability of
QCD predictions.

NLO results reduce the scale dependence and may distort the shape of the cross section.
K = σLO+σNLO

σLO
is not a good approximation.

NLO is vital in terms of establishing the QCD factorization in saturation physics. Fun !
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The overall picture

· · ·

H

Cp Cf

R

A X

PhP

The QCD factorization formalism for this process reads as,

d3σp+A→h+X

dyd2p⊥
=

∑
a

∫
dz
z2

dx
x
ξxfa(x, µ)Dh/c(z, µ)

∫
[dx⊥]SY

a,c([x⊥])Ha→c(αs, ξ, [x⊥]µ) .

For UGD, the rapidity divergence cannot be canceled between real and virtual
gluon emission due to different restrictions on k⊥.
Subtractions of the divergences via renormalization⇒ Finite results for hard factors.
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The real contributions in the coordinate space

Computing the real diagrams with a quark (b⊥) and a gluon (x⊥) in the final state in the dipole
model in the coordinate space: [G. Chirilli, BX and F. Yuan, 11;12]

(a) (b)

(d)(c)

dσqA→qgX

d3k1d3k2
= αSCFδ(p+ − k+

1 − k+
2 )

∫
d2x⊥
(2π)2

d2x′⊥
(2π)2

d2b⊥
(2π)2

d2b′⊥
(2π)2

×e−ik1⊥·(x⊥−x′⊥)e−ik2⊥·(b⊥−b′⊥)
∑
λαβ

ψλ∗αβ(u′⊥)ψλαβ(u⊥)

×
[
S(6)

Y (b⊥, x⊥, b
′
⊥, x
′
⊥) + S(2)

Y (v⊥, v
′
⊥)

−S(3)
Y (b⊥, x⊥, v

′
⊥)− S(3)

Y (v⊥, x
′
⊥, b

′
⊥)
]
,

with u⊥ = x⊥ − b⊥ and v⊥ = (1− ξ)x⊥ + ξb⊥.
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The real contributions in the coordinate space

Computing the real diagrams with a quark (b⊥) and a gluon (x⊥) in the final state in the dipole
model in the coordinate space: [G. Chirilli, BX and F. Yuan, 11;12]

(a) (b)

(d)(c)

S(6)
Y (b⊥, x⊥, b

′
⊥, x
′
⊥) =

1
CFNc

〈
Tr
(

U(b⊥)U†(b′⊥)TdTc
) [

W(x⊥)W†(x′⊥)
]cd
〉

Y

,

S(3)
Y (b⊥, x⊥, v

′
⊥) =

1
CFNc

〈
Tr
(

U(b⊥)TdU†(v′⊥)Tc
)

Wcd(x⊥)
〉

Y
.

By integrating over the gluon momentum, we identify x⊥ to x′⊥ which simplifies
S(6)

Y (b⊥, x⊥, b′⊥, x
′
⊥) to S(2)(b⊥, b′⊥).

S(3)
Y (b⊥, x⊥, v′⊥) = Nc

2CF

[
S(4)

Y (b⊥, x⊥, v′⊥)− 1
N2

c
S(2)

Y (b⊥, v′⊥)
]
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The real contributions in the momentum space

By integrating over the gluon (k+
1 , k1⊥), we can cast the real contribution into

αs

2π2

∫
dz
z2 Dh/q(z)

∫ 1

τ/z
dξ

1 + ξ2

1− ξ xq(x)

{
CF

∫
d2kg⊥I(k⊥, kg⊥)

+
Nc

2

∫
d2kg⊥d2kg1⊥J (k⊥, kg⊥, kg1⊥)

}
,

where x = τ/zξ and I and J are defined as

I(k⊥, kg⊥) = F(kg⊥)

[
k⊥ − kg⊥

(k⊥ − kg⊥)2 −
k⊥ − ξkg⊥

(k⊥ − ξkg⊥)2

]2

,

J (k⊥, kg⊥, kg1⊥) =
[
F(kg⊥)δ(2) (kg1⊥ − kg⊥)− G(kg⊥, kg1⊥)

] 2(k⊥ − ξkg⊥) · (k⊥ − kg1⊥)

(k⊥ − ξkg⊥)2(k⊥ − kg1⊥)2 ,

with G(k⊥, l⊥) =

∫
d2x⊥d2y⊥d2b⊥

(2π)4 e−ik⊥·(x⊥−b⊥)−il⊥·(b⊥−y⊥)S(4)
Y (x⊥, b⊥, y⊥).

Three types of divergences:
ξ → 1⇒ Rapidity divergence.
kg⊥ → k⊥⇒ Collinear divergence associated with parton distributions.
kg⊥ → k⊥/ξ⇒ Collinear divergence associated with fragmentation functions.
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The virtual contributions in the momentum space

Now consider the virtual contribution

(a) (b)

−2αsCF

∫
d2v⊥
(2π)2

d2v′⊥
(2π)2

d2u⊥
(2π)2 e−ik⊥·(v⊥−v′⊥)

∑
λαβ

ψλ∗αβ(u⊥)ψλαβ(u⊥)

×
[
S(2)

Y (v⊥, v
′
⊥)− S(3)

Y (b⊥, x⊥, v
′
⊥)
]

⇒ − αs

2π2

∫
dz
z2 Dh/q(z)xpq(xp)

∫ 1

0
dξ

1 + ξ2

1− ξ

×
{

CF

∫
d2q⊥I(q⊥, k⊥) +

Nc

2

∫
d2q⊥d2kg1⊥J (q⊥, k⊥, kg1⊥)

}
.

Three types of divergences:
ξ → 1⇒ Rapidity divergence.
Collinear divergence associated with parton distributions and fragmentation functions.
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The subtraction of the rapidity divergence

We remove the rapidity divergence from the real and virtual diagrams by the following
subtraction:

F(k⊥) = F (0)(k⊥)− αsNc

2π2

∫ 1

0

dξ
1− ξ

∫
d2x⊥d2y⊥d2b⊥

(2π)2 e−ik⊥·(x⊥−y⊥)

× (x⊥ − y⊥)2

(x⊥ − b⊥)2(y⊥ − b⊥)2

[
S(2)(x⊥, y⊥)− S(4)(x⊥, b⊥, y⊥)

]
.

Comments:

This divergence removing procedure is similar to the renormalization of parton distribution
and fragmentation function in collinear factorization.

Splitting functions becomes 1+ξ2

(1−ξ)+
after the subtraction.

Rapidity divergence disappears when the k⊥ is integrated.
Unique feature of unintegrated gluon distributions.
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The subtraction of the rapidity divergence

F(k⊥) = F (0)(k⊥)− αsNc

2π2

∫ 1

0

dξ
1− ξ

∫
d2x⊥d2y⊥d2b⊥

(2π)2 e−ik⊥·(x⊥−y⊥)

× (x⊥ − y⊥)2

(x⊥ − b⊥)2(y⊥ − b⊥)2

[
S(2)(x⊥, y⊥)− S(4)(x⊥, b⊥, y⊥)

]
.

This is equivalent to the Balitsky-Kovchegov equation:

∂

∂Y
S(2)

Y (x⊥, y⊥) = −αsNc

2π2

∫
d2b⊥ (x⊥ − y⊥)2

(x⊥ − b⊥)2(y⊥ − b⊥)2

[
S(2)

Y (x⊥, y⊥)− S(4)
Y (x⊥, b⊥, y⊥)

]
.

Recall that F(k⊥) =
∫ d2x⊥d2y⊥

(2π)2 e−ik⊥·(x⊥−y⊥)S(2)(x⊥, y⊥).

Renormalize the soft gluon into the gluon distribution function of the target nucleus
through the BK evolution equation.
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The subtraction of the collinear divergence

Let us take the following integral as an example:

I1(k⊥) =

∫
d2kg⊥

(2π)2 F(kg⊥)
1

(k⊥ − kg⊥)2 ,

=
1

4π

∫
d2x⊥d2y⊥

(2π)2 e−ik⊥·r⊥S(2)
Y (x⊥, y⊥)

(
−1
ε̂

+ ln
c2

0

µ2r2
⊥

)
,

where c0 = 2e−γE , γE is the Euler constant and r⊥ = x⊥ − y⊥.

Use dimensional regularization (D = 4− 2ε) and the MS subtraction scheme
( 1
ε̂

= 1
ε
− γE + ln 4π).∫ d2kg⊥

(2π)2 ⇒ µ2ε ∫ d2−2εkg⊥
(2π)2−2ε where µ is the renormalization scale dependence coming from

the strong coupling g.

The terms proportional to the collinear divergence 1
ε̂

should be factorized either into parton
distribution functions or fragmentation functions.
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The subtraction of the collinear divergence

Remove the collinear singularities by redefining the quark distribution and the quark
fragmentation function as follows

q(x, µ) = q(0)(x)− 1
ε̂

αs(µ)

2π

∫ 1

x

dξ
ξ

CFPqq(ξ)q
(

x
ξ

)
,

Dh/q(z, µ) = D(0)
h/q(z)− 1

ε̂

αs(µ)

2π

∫ 1

z

dξ
ξ

CFPqq(ξ)Dh/q

(
z
ξ

)
,

with

Pqq(ξ) =
1 + ξ2

(1− ξ)+︸ ︷︷ ︸
Real Sub

+
3
2
δ(1− ξ)︸ ︷︷ ︸
Virtual Sub

.

Comments:
Reproducing the DGLAP equation for the quark channel. Other channels will complete the
full equation.
The emitted gluon is collinear to the initial state quark⇒
Renormalization of the parton distribution.
The emitted gluon is collinear to the final state quark⇒
Renormalization of the fragmentation function.
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Hard Factors

For the q→ q channel, the factorization formula can be written as

d3σp+A→h+X

dyd2p⊥
=

∫
dz
z2

dx
x
ξxq(x, µ)Dh/q(z, µ)

∫
d2x⊥d2y⊥
(2π)2

{
S(2)

Y (x⊥, y⊥)
[
H(0)

2qq +
αs

2π
H(1)

2qq

]
+

∫
d2b⊥
(2π)2

S(4)
Y (x⊥, b⊥, y⊥)

αs

2π
H(1)

4qq

}
withH(0)

2qq = e−ik⊥·r⊥δ(1− ξ) and

H(1)
2qq = CFPqq(ξ) ln

c2
0

r2
⊥µ

2

(
e−ik⊥·r⊥ +

1
ξ2

e−i
k⊥
ξ
·r⊥
)
− 3CFδ(1− ξ)e−ik⊥·r⊥ ln

c2
0

r2
⊥k2
⊥

− (2CF − Nc) e−ik⊥·r⊥

 1 + ξ2

(1− ξ)+
Ĩ21 −

((
1 + ξ2

)
ln (1− ξ)2

1− ξ

)
+


H(1)

4qq = −4πNce−ik⊥·r⊥

{
e−i 1−ξ

ξ
k⊥·(x⊥−b⊥) 1 + ξ2

(1− ξ)+
1
ξ

x⊥ − b⊥
(x⊥ − b⊥)

2 ·
y⊥ − b⊥

(y⊥ − b⊥)
2

−δ(1− ξ)
∫ 1

0
dξ′

1 + ξ′2

(1− ξ′)+

[
e−i(1−ξ′)k⊥·(y⊥−b⊥)

(b⊥ − y⊥)2
− δ(2)(b⊥ − y⊥)

∫
d2r′⊥

eik⊥·r′⊥

r′2⊥

]}
,

where Ĩ21 =

∫
d2b⊥
π

{
e−i(1−ξ)k⊥·b⊥

[
b⊥ · (ξb⊥ − r⊥)

b2
⊥ (ξb⊥ − r⊥)

2 −
1

b2
⊥

]
+ e−ik⊥·b⊥ 1

b2
⊥

}
.
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What have we learnt so far?

Achieve a systematic factorization for the p + A→ H + X process by systematically
remove all the divergences!

Gluons in different kinematical region give different divergences. 1.soft, collinear to the
target nucleus; 2. collinear to the initial quark; 3. collinear to the final quark.

k+ ≃ 0

P+

A
≃ 0

P−
p ≃ 0

Rapidity Divergence Collinear Divergence (F)Collinear Divergence (P)

Large Nc limit simplifies the calculation quite a lot.

Consistent check: take the dilute limit, k2
⊥ � Q2

s , the result is consistent with the leading
order collinear factorization formula. Good large p⊥ behavior!

The NLO prediction and test of saturation physics now is
not only conceivable but also practicable!

The other three channels follows accordingly.
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Conclusion

Conclusion

We calculate inclusive hadron productions in pA collisions in the small-x saturation
formalism at one-loop order.

The rapidity divergence with small-x dipole gluon distribution of the nucleus is factorized
into the BK evolution of the dipole gluon distribution function.

The collinear divergences associated with the incoming parton distribution of the nucleon
and the outgoing fragmentation function of the final state hadron are factorized into the
well-known DGLAP equation.

The hard coefficient function, which is finite and free of divergence of any kind, is
evaluated at one-loop order.

Now we have a systematic NLO description of inclusive forward hadron productions in pA
collisions which is ready for making reliable predictions and conducting precision test.
Phenomenological applications are promising for both RHIC and LHC (upcoming pA run)
experiments.
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Conclusion

AA Collisions and Energy Loss

Productions in Collisions. Factorization?

Energy loss. Higher order?

p⊥ broadening. Higher order?
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