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Overview of the Lectures

Lecture 1 - Introduction to QCD and Jet
QCD basics
Sterman-Weinberg Jet in e+e− annihilation
Collinear Factorization and DGLAP equation
Basic ideas of kt factorization

Lecture 2 - kt factorization and Dijet Processes in pA collisions
kt Factorization and BFKL equation
Non-linear small-x evolution equations.
Dijet processes in pA collisions (RHIC and LHC related physics)

Lecture 3 - kt factorization and Higher Order Calculations in pA collisions

No much specific exercise. 1. filling gaps of derivation; 2. Reading materials.
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Outline

1 Introduction to QCD and Jet
QCD Basics
Sterman-Weinberg Jets
Collinear Factorization and DGLAP equation
Transverse Momentum Dependent (TMD or kt) Factorization

3 / 38



References:
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Introduction to QCD and Jet QCD Basics

QCD

QCD Lagrangian

with Fa
µν = ∂µAa

ν − ∂νAa
µ − gfabcAb

µAc
ν .

Non-Abelian gauge field theory. Lagrangian is invariant under SU(3) gauge
transformation.
Basic elements:

Quark Ψi with 3 colors, 6 flavors and spin 1/2.
Gluon Aaµ with 8 colors and spin 1.
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Introduction to QCD and Jet QCD Basics

QCD Feynman Rules
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Introduction to QCD and Jet QCD Basics

Color Structure

Fundamental representation: Ta
ij and Adjoint representation: ta

bc = −ifabc

The effective color charge:[
Ta, Tb] = if abcTc

Tr
(
TaTb) = TFδ

ab

TaTa = CF × 1

f abcf abd = CAδ
cd
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Introduction to QCD and Jet QCD Basics

Fierz identity and Large Nc limit

Fierz identity: Ta
ijT

a
kl = 1

2δilδjk − 1
2Nc
δijδkl

= 1
2

− 1
2Nc

Large Nc limit: 3� 1

(a)

(b)

(c)
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Introduction to QCD and Jet QCD Basics

Evidence for colors

The ratio between the e+e− → hadrons total cross section
and the e+e− → µ+µ− cross section.

R =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

= Nc

∑
u,d,s,...

e2
i

[
1 +

αs(Q2)

π

]

Nc
∑

u,d,s e2
i = 2

Nc
∑

u,d,s,c e2
i = 10

3
Nc
∑

u,d,s,c,b e2
i = 11

3 .

Triangle anomaly: The decay rate is given by the quark triangle loop:

Γ
(
π0 → γγ

)
= N2

c

(
e2

u − e2
d

)2 α2m3
π

64π3f 2
π

= 7.7eV

fπ = 92.4MeV is π− → µ−ν decay constant.
The data give Γ

(
π0 → γγ

)
= 7.7± 0.6eV.

Nonrenormalization of the anomaly.
[Adler, Bardeen, 69]
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Introduction to QCD and Jet QCD Basics

QCD beta function and running coupling

[Gross, Wilczek and Politzer, 73]

The QCD running coupling

αs(Q) =
2π( 11

6 Nc − 2
3 TFnf

)
ln Q2/Λ2

QED has only fermion loop contributions, thus its
coupling runs in opposite direction.

QED like contribution gluon contribution
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Introduction to QCD and Jet QCD Basics

QCD beta function and running coupling

The QCD running coupling

αs(Q) =
2π( 11

6 Nc − 2
3 TFnf

)
ln Q2/Λ2

Testing QCD
!QCD reminder
!Confinement
!How to test QCD?
!Factorization

Parton model

Gluon saturation

Phenomenology of saturation

CERN

François Gelis – 2007 Lecture I / III – School on QCD, low-x physics, saturation and diffraction, Copanello, July 2007 - p. 7/40

Asymptotic freedom
" Running coupling : αs = g2/4π

αs(r) =
2πNc

(11Nc − 2Nf ) log(1/rΛQCD)

" The effective charge seen at large distance is screened by
fermionic fluctuations (as in QED)

Testing QCD
!QCD reminder
!Confinement
!How to test QCD?
!Factorization

Parton model

Gluon saturation

Phenomenology of saturation

CERN

François Gelis – 2007 Lecture I / III – School on QCD, low-x physics, saturation and diffraction, Copanello, July 2007 - p. 7/40

Asymptotic freedom
" Running coupling : αs = g2/4π

αs(r) =
2πNc

(11Nc − 2Nf ) log(1/rΛQCD)

" The effective charge seen at large distance is screened by
fermionic fluctuations (as in QED)

" But gluonic vacuum fluctuations produce an anti-screening
(because of the non-abelian nature of their interactions)

" As long as Nf <11Nc/2 = 16.5, the gluons win...

Screening Anti-Screening

Quark loop QED like contribution Non-Abelian gluon contribution
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Introduction to QCD and Jet QCD Basics

Brief History of QCD beta function

1954 Yang and Mills introduced the non-Abelian gauge thoery.

1965 Vanyashin and Terentyev calculated the beta function for a massive charged vector
field theory.

1971 ’t Hooft computed the one-loop beta function for SU(3) gauge theory, but his advisor
(Veltman) told him it wasn’t interesting.

1972 Gell-Mann proposed that strong interaction is described by SU(3) gauge theory,
namely QCD.

1973 Gross and Wilczek, and independently Politzer, computed the 1-loop beta-function
for QCD.

1999 ’t Hooft and Veltman received the 1999 Nobel Prize for proving the renormalizability
of QCD.

2004 Gross, Wilczek and Politzer received the Nobel Prize.
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Introduction to QCD and Jet QCD Basics

Confinement

Non-perturbative QCD
Linear potential⇒ constant force.
Intuitively, confinement is due to the force-carrying gluons having color charge,
as compared to photon which does not carry electric charge.
Color singlet hadrons : no free quarks and gluons in nature
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Introduction to QCD and Jet QCD Basics

How to test QCD ?

Non-perturbative part:

Hadron mass (Lattice QCD)
Parton distributions (No free partons in the initial state)
Fragmentation function (No free quarks and gluons in the final state)

Perturbative QCD: needs to have Factorization to separate the short distances
(perturbative) physics from the long distance (non perturbative) physics.

e+e− annihilation.
Deep inelastic scattering.
Hadron-hadron collisions, such as Drell-Yan processes.

Kinematics of Lepton-Nucleon Scattering

k

k′

θ

q

P W

Drell-Yan Process

P
1

xP
1

q
2
 > 0

P
2

x
_
P

2

µ
+

µ
−

Q

Q
−

Collinear factorization demonstrates that collinear parton distribution and fragmentation
function are universal.

kt factorization is more complicated.
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Introduction to QCD and Jet Sterman-Weinberg Jets

e+e− annihilation

p1

p2

p3

q̄

q

g
γ∗ γ∗

p2

q̄

p3

p1

q

Born diagram
( )

gives σ0 = 4π
3
α2

em
q2 Nc

∑
q e2

q

NLO: real contribution (3 body final state)

dσ3

dx1dx2
= CF

αs

2π
σ0

x2
1 + x2

2

(1− x1)(1− x2)

with
1

(1− x1)(1− x2)
=

1
x3

[
1

(1− x1)
+

1
(1− x2)

]
Energy conservation⇒ x1 + x2 + x3 = 2.
(p1 + p3)2 = 2p1 · p3 = (Q− p2)2 = Q2(1− x2)
x2 → 1⇒~p3 ||~p1⇒ Collinear Divergence (Similarly x1 → 1)
x3 → 0⇒ Soft Divergence.
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Introduction to QCD and Jet Sterman-Weinberg Jets

Dimensional Regularization

To generate a finite contribution to the total cross section, use the standard procedure
dimensional regularization:

Analytically continue in the number of dimensions from d = 4 to d = 4− 2ε.

Convert the soft and collinear divergence into poles in ε.

To keep gs dimensionless, substitue gs → gsµ
ε with renormalization scale µ.

At the end of the day, one finds

σr = σ0
αs(µ)

2π
CF

(
Q2

4πµ2

)−ε
Γ[1− ε]
Γ[1− 2ε]

[
2
ε2 +

3
ε

+
19
2
− 2π2

3

]
σv = σ0

αs(µ)

2π
CF

(
Q2

4πµ2

)−ε
Γ[1− ε]
Γ[1− 2ε]

[
− 2
ε2 −

3
ε
− 8 +

2π2

3

]
and the sum σ = σ0

(
1 + αs(µ)

π

)
.

Cancellation between real and virtual for total cross section. Bloch-Nordsieck theorem

For more exclusive observables, the cancellation is not always complete. One needs to do
subtractions of 1

ε
+ ln 4π − γE (MS scheme).

Sterman-Weinberg Jets.
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Introduction to QCD and Jet Sterman-Weinberg Jets

Sterman-Weinberg Jets

Definition: We define, an event contributes if we can find two cones of opening angle δ that
contain all of the energy of the event, excluding at most a fraction ε of the total, as the
production of a pair of Sterman Weinberg jets.

Fig. 11: Sterman–Weinberg jets.

All the Born cross section contributes to the Sterman–Weinberg cross section, irrespective of the
value of and (fig. 12a).

All the virtual cross section contributes to the Sterman–Weinberg cross section, irrespective of the
value of and (fig. 12b).

The real cross section, with one gluon emission, when the energy of the emitted gluon is limited
by (fig. 12c), contributes to the Sterman–Weinberg cross section.

The real cross section, when , when the emission angle with respect to the quark (or
antiquark) is less than (fig. 12d), contributes to the Sterman–Weinberg cross section.

The various divergent contributions are given formally by

Born (74)

Virtual (75)

Real (c) (76)

Real (d) (77)

Observe that the expression of the virtual term is fixed by the fact that it has to cancel the total of the real
contribution. Since we are looking only at divergent terms, and since the virtual term is independent of
and , the expression (75) is fully adequate for our purposes. Summing all terms we get

Born Virtual Real (a) Real (b)

(78)

which is finite, as long as and are finite. Furthermore, as long as and are not too small, we find
that the fraction of events with two Sterman-Weinberg jets is 1, up to a correction of order .

20

Jets in experiments are defined as a collimated distribution of hadrons with total energy E
within the jet cone size R ≡

√
δφ2 + δη2.

Jets in QCD theory are defined as a collimated distribution of partons. Need to assume the
parton-hadron duality.
Jet finding algorithm: (kt, cone and anti-kt)See other lecture.
[M. Cacciari, G. P. Salam and G. Soyez, 08]
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Introduction to QCD and Jet Sterman-Weinberg Jets

e+e− → γ∗ → jets

Fig. 12: Contributions to the Sterman–Weinberg cross–section. Born: (a), virtual: (b), real emission: (c) and (d).

Now we are ready to perform a qualitative step: we interpret the Sterman-Weinberg cross section,
computed using the language of quarks and gluons, as a cross section for producing hadrons. Thanks to
this qualitative step, we make the following prediction: at high energy, most events have a large fraction
of the energy contained in opposite cones, that is to say most events are two jet events. As the energy
becomes larger becomes smaller. Therefore we can use smaller values of and to define our jets.
Thus, at higher energies jets become thinner.

It should be clear now to the reader that, by the same reasoning followed so far, the angular
distribution of the jets will be very close, at high energy, to the angular distribution one computes using
the Born cross section, that is to say, the typical distribution. These predictions have been
verified experimentally since a long time.

4.2 A comparison with QED
The alert reader will have probably realized that the discussion given in this section could have been
given as well with respect to electrodynamics. In fact, the Feynman diagrams we have considered are
present also in electrodynamic processes, like , and they differ from the QCD graphs
only by the color factor. Thus, from the previous discussion, we would infer that Sterman-Weinberg
jets in electrodynamic processes at high energy do not depend upon long distance features of the theory.
For example, they become independent from the mass when . Also in electrodynamics, the
cross section for producing a pair plus a photon is divergent, as is divergent the cross section for
producing the pair without any photon. In many books on quantum electrodynamics these divergences
are discussed, and it is shown that a resolution parameter for the minimum energy of a photon is needed
in order to have finite cross section order by order in perturbation theory. In electrodynamics, we can
go even farther, and prove that by resumming the whole tower of divergent graphs, the infinite negative
virtual correction to the production of a pair with no photons exponentiates, and gives a zero cross
section. In other words, as it is well known, it is impossible to produce charged pairs without producing

21

a. The Born contribution: σ0

b. The virtual contribution: −σ0CF
αs
2π

∫ E
0

dl
l

∫ π
0

4d cos θ
(1−cos θ)(1+cos θ)

c. The soft real contribution: σ0CF
αs
2π

∫ εE
0

dl
l

∫ π
0

4d cos θ
(1−cos θ)(1+cos θ)

d. The hard real contribution: σ0CF
αs
2π

∫ E
εE

dl
l

[∫ δ
0 +

∫ π
π−δ

]
4d cos θ

(1−cos θ)(1+cos θ)

sum = σ0

[
1− CF

αs
2π

∫ E
εE

dl
l

∫ π−δ
δ

4d cos θ
1−cos2 θ

]
= σ0

[
1− 4CFαs

π
ln ε ln δ

]
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Introduction to QCD and Jet Sterman-Weinberg Jets

Infrared Safety

We have encountered two kinds of divergences: collinear divergence and soft divergence.
Both of them are of the Infrared divergence type.That is to say, they both involve long
distance.

According to uncertainty principle, soft↔ long distance;
Also one needs an infinite time in order to specify accurately the particle momenta, and
therefore their directions.

For a suitable defined inclusive observable (e.g., σe+e−→hadrons), there is a cancellation
between the soft and collinear singularities occurring in the real and virtual contributions.
Kinoshita-Lee-Nauenberg theorem

Any new observables must have a definition which does not distinguish between

parton↔ parton + soft gluon
parton↔ two collinear partons

Observables that respect the above constraint are called infrared safe observables. Infrared
safety is a requirement that the observable is calculable in pQCD.

Other infrared safe observables, for example, Thrust: T = max
∑

i |pi·n|∑
i |pi|

...
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Introduction to QCD and Jet Sterman-Weinberg Jets

Fragmentation function

Factorization of single inclusive hadron production:

1
σ0

dσ(e+e− → h + X)

dx
=
∑

i

∫ 1

x
Ci

(
z, αs(µ

2), s/µ2
)

Dh/i(x/z, µ2) +O(1/s)

Dh/i(x/z, µ2) encodes the probability that the parton i fragments into a hadron h carrying a
fraction z of the parton’s momentum.

Energy conservation⇒

2 17. Fragmentation functions in e+e−, ep and pp collisions
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Figure 17.1: LEP1 measurements of total transverse (FT ), longitudinal (FL),
and asymmetric (FA) fragmentation functions [6–8]. Data points with relative errors
greater than 100% are omitted.

probability that the parton i fragments into a hadron h carrying a fraction z of the
parton’s momentum. Beyond the leading order (LO) of perturbative QCD these universal
functions are factorization-scheme dependent, with ‘reasonable’ scheme choices retaining
certain quark-parton-model (QPM) constraints such as the momentum sum rule

∑

h

∫ 1

0
dz z Dh

i (z, µ2) = 1 . (17.3)

The dependence of the functions Dh
i on the factorization (or fragmentation) scale µ2 (in

Eq. (17.2) and below identified with the renormalization scale) is discussed in Section
17.2.

The second ingredient in Eq. (17.2), and analogous expressions for the functions
FT,L,A , are the observable-dependent coefficient functions Ci. At the zeroth order in the

February 16, 2012 14:07

Heavy quark fragmentation function: .
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Introduction to QCD and Jet Collinear Factorization and DGLAP equation

Deep inelastic scattering and Drell-Yan process
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Introduction to QCD and Jet Collinear Factorization and DGLAP equation

Light Cone coordinates and gauge

For a relativistic hadron moving in the +z direction

Motivation

Dipole picture for DIS

Non–linear evolution: BK
!Bremsstrahlung
!BFKL Evolution
! Light Cone
!Dipole splitting
!Dipole evolution
!Balitsky equation
!BK equation

SCHOOL ON QCD, LOW X PHYSICS, SATURATION AND DIFFRACTION: Copanello (Calabria, Italy), July 1 - 14 2007 Non–linear evolution & Gluon saturation in QCD at high energy (I) – p. 25

Light Cone notations & Kinematics
" The hadron moves in the positive z direction, with v ! c = 1

" Longitudinal momentum P " M =⇒ P µ = (E ≈ P, 0, 0, P )

P+ ≡ 1√
2
(E + P ) !

√
2P , P − ≡ 1√

2
(E − P ) ! 0

" Even for the quantum system, the wavefunction is strongly
localized near x− = 0 (“pancake”)

∆x− ∼ 1

P+
∼ 1

γM
) 1

M

In this frame, the momenta are defined

P+ =
1√
2

(P0 + P3) and P− =
1√
2

(P0 − P3)→ 0

P2 = 2P+P− − P2
⊥

Light cone gauge for a gluon with momentum kµ = (k+, k−, k⊥), the polarization vector
reads

kµεµ = 0⇒ ε = (ε+ = 0, ε− =
ε⊥ · k⊥

k+
, ε±⊥) with ε±⊥ =

1√
2

(1,±i)
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Introduction to QCD and Jet Collinear Factorization and DGLAP equation

Deep inelastic scattering

Summary of DIS:
dσ

dE′dΩ
=
αem2

Q4

E′

E
LµνWµν

with Lµν the leptonic tensor and Wµν defined as

Wµν =

(
−gµν +

qµqν
q2

)
W1

+
1

m2
p

(
Pµ − P · q

q2 qµ
)(

Pν − P · q
q2 qν

)
W2

Introduce the dimensionless structure function:

F1 ≡ W1 and F2 ≡ Q2

2mpx
W2

⇒ dσ
dxdy

=
α4πsem2

Q4

[
(1− y)F2 + xy2F1

]
with y =

P · q
P · k .

Quark Parton Model: Callan-Gross relation

F2(x) = 2xF1(x) =
∑

q

e2
qx [fq(x) + fq̄(x)] .
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Introduction to QCD and Jet Collinear Factorization and DGLAP equation

Callan-Gross relation

The relation (FL = F2 − 2xF1) follows from the fact that a spin- 1
2 quark cannot absorb a

longitudinally polarized vector boson.
In contrast, spin-0 quark cannot absorb transverse bosons and so would give F1 = 0.
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Introduction to QCD and Jet Collinear Factorization and DGLAP equation

Parton Density

The probabilistic interpretation of the parton density.

⇒ fq(x) =

∫
dζ−

4π
eixP+ζ−〈P

∣∣ψ̄(0)γ+ψ(0, ζ−)
∣∣P〉

Comments:
Gauge link L is necessary to make the parton density gauge invariant.

L(0, ζ−) = P exp

(∫ ζ−

0
dsµAµ

)
Choose light cone gauge A+ = 0 and right path, one can eliminate the gauge link.
Now we can interpret fq(x) as parton density in the light cone frame.
Evolution of parton density: Change of resolution

13J.Pawlowski / U. Uwer

Advanced Particle Physics: VII. Quantum Chromodynamics

QCD explains observed scaling violation

Large x: valence quarks Small x: Gluons, sea quarks

Q2 F2 for fixed x Q2 F2 for fixed x

Scaling violation is one of the clearest manifestation of 
radiative effect predicted by QCD.

Quantitative description of scaling violation 

)()()()( 2
1

0

2
2 xqexdxqexxF i

i
i

i
ii

P

Quark Parton Model

QCD

P

x
/xz

)log()(P
2

~

)(P
2

~

2
0

2

qq

2

2

qq

2

2
0

Q
z

k
dkz

s

Q

T

Ts

Tkk,

2
0

21

0

22
2 log)(P

2
)1()(),(

Qxx
q

d
exQxF qq

s

i
ii

Pqq probability of a quark 
to emit gluon and 
becoming a quark with 
momentum reduced by 
fraction z.

0 cutoff parameter 

M
Qx

2

2

)(
1

)( x
a

ax

x

x x

At low-x, dominant channels are different.
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Introduction to QCD and Jet Collinear Factorization and DGLAP equation

Drell-Yan process

For lepton pair productions in hadron-hadron collisions:

the cross section is
dσ

dM2dY
=
∑

q

x1fq(x1)x2fq̄(x2)
1
3

e2
q

4πα2

3M4 with Y =
1
2

ln
x1

x2
.

Collinear factorization proof shows that fq(x) involved in DIS and Drell-Yan process are
the same.
At low-x and high energy, the dominant channel is qg→ qγ∗(l+l−).

g

q
γ∗

l̄

l
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Introduction to QCD and Jet Collinear Factorization and DGLAP equation

Splitting function

P0
qq(ξ) =

1 + ξ2

(1− ξ)+
+

3
2
δ(1− ξ),

P0
gq(ξ) =

1
ξ

[
1 + (1− ξ)2

]
,

P0
qg(ξ) =

[
(1− ξ)2 + ξ2

]
,

P0
gg(ξ) = 2

[
ξ

(1− ξ)+

+
1− ξ
ξ

+ ξ(1− ξ)
]

+

(
11
6
− 2Nf TR

3Nc

)
δ(1− ξ).

ξ = z = x
y .∫ 1

0
dξf (ξ)

(1−ξ)+
=
∫ 1

0
dξ[f (ξ)−f (1)]

1−ξ ⇒
∫ 1

0
dξ

(1−ξ)+
= 0
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Introduction to QCD and Jet Collinear Factorization and DGLAP equation

Derivation of P0
qq(ξ)

The real contribution:

1

2

3

k1 = (P+, 0, 0⊥) ; k2 = (ξP+,
k2
⊥

ξP+
, k⊥)

k3 = ((1− ξ)P+,
k2
⊥

(1− ξ)P+
,−k⊥) ε3 = (0,−

2k⊥ · ε
(3)
⊥

(1− ξ)P+
, ε

(3)
⊥ )

|Vq→qg|2 =
1
2

Tr (/k2γµ/k1γν)
∑

ε∗µ3 εν3 =
2k2
⊥

ξ(1− ξ)
1 + ξ2

1− ξ

⇒ Pqq(ξ) =
1 + ξ2

1− ξ
(ξ < 1)

Including the virtual graph , use
∫ 1

a
dξg(ξ)

(1−ξ)+
=
∫ 1

a
dξg(ξ)

1−ξ − g(1)
∫ 1

0
dξ

1−ξ

αsCF

2π

[∫ 1

x

dξ
ξ

q(x/ξ)
1 + ξ2

1− ξ
− q(x)

∫ 1

0
dξ

1 + ξ2

1− ξ

]
=

αsCF

2π

[∫ 1

x

dξ
ξ

q(x/ξ)
1 + ξ2

(1− ξ)+
− q(x)

∫ 1

0
dξ

1 + ξ2

(1− ξ)+

]
︸ ︷︷ ︸

=− 3
2

.
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Introduction to QCD and Jet Collinear Factorization and DGLAP equation

Derivation of P0
qq(ξ)

The real contribution:

1

2

3

k1 = (P+, 0, 0⊥) ; k2 = (ξP+,
k2
⊥

ξP+
, k⊥)

k3 = ((1− ξ)P+,
k2
⊥

(1− ξ)P+
,−k⊥) ε3 = (0,−

2k⊥ · ε
(3)
⊥

(1− ξ)P+
, ε

(3)
⊥ )

|Vq→qg|2 =
1
2

Tr (/k2γµ/k1γν)
∑

ε∗µ3 εν3 =
2k2
⊥

ξ(1− ξ)
1 + ξ2

1− ξ

⇒ Pqq(ξ) =
1 + ξ2

1− ξ (ξ < 1)

Regularize 1
1−ξ to 1

(1−ξ)+
by including the divergence from the virtual graph.

Probability conservation:

Pqq + dPqq = δ(1− ξ) +
αsCF

2π
P0

qq(ξ)dt and
∫ 1

0
dξPqq(ξ) = 0,

⇒ Pqq(ξ) =
1 + ξ2

(1− ξ)+
+

3
2
δ(1− ξ) =

(
1 + ξ2

1− ξ

)
+

.
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Derivation of P0
gg(ξ)

1

2

3

k1 = (P+, 0, 0⊥) ε1 = (0, 0, ε(1)
⊥ ) with ε±⊥ =

1
√

2
(1,±i)

k2 = (ξP+,
k2
⊥

ξP+
, k⊥) ε2 = (0,

2k⊥ · ε
(2)
⊥

ξP+
, ε

(2)
⊥ )

k3 = ((1− ξ)P+,
k2
⊥

(1− ξ)P+
,−k⊥) ε3 = (0,−

2k⊥ · ε
(3)
⊥

(1− ξ)P+
, ε

(3)
⊥ )

Vg→gg = (k1 + k3) · ε2ε1 · ε3 + (k2 − k3) · ε1ε2 · ε3 − (k1 + k2) · ε3ε1 · ε2

⇒ |Vg→gg|2 = |V+++|2 + |V+−+|2 + |V++−|2 = 4k2
⊥

[1− ξ(1− ξ)]2

ξ2(1− ξ)2

⇒ Pgg(ξ) = 2
[

1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
]

(ξ < 1)

Regularize 1
1−ξ to 1

(1−ξ)+
Momentum conservation:∫ 1

0
dξ ξ [Pqq(ξ) + Pgq(ξ)] = 0

∫ 1

0
dξ ξ [2Pqg(ξ) + Pgg(ξ)] = 0,

⇒ the terms which is proportional to δ(1− ξ).
HW: derive other splitting functions. 30 / 38
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DGLAP equation

In the leading logarithmic approximation with t = lnµ2, the parton distribution and
fragmentation functions follow the DGLAP[Dokshitzer, Gribov, Lipatov, Altarelli, Parisi,
1972-1977] evolution equation as follows:

d
dt

[
q (x, µ)
g (x, µ)

]
=
α (µ)

2π

∫ 1

x

dξ
ξ

[
CFPqq (ξ) TRPqg (ξ)
CFPgq (ξ) NcPgg (ξ)

] [
q (x/ξ, µ)
g (x/ξ, µ)

]
,

and

d
dt

[
Dh/q (z, µ)
Dh/g (z, µ)

]
=
α (µ)

2π

∫ 1

z

dξ
ξ

[
CFPqq (ξ) CFPgq (ξ)
TRPqg (ξ) NcPgg (ξ)

] [
Dh/q (z/ξ, µ)
Dh/g (z/ξ, µ)

]
,

Comments:
In the double asymptotic limit, Q2 →∞ and x→ 0, the gluon distribution can be solved
analytically and cast into

xg(x, µ2) ' exp

(
2

√
αsNc

π
ln

1
x

ln
µ2

µ2
0

)
Fixed coupling

xg(x, µ2) ' exp

(
2

√
Nc

πb
ln

1
x

ln
lnµ2/Λ2

lnµ2
0/Λ

2

)
Running coupling

The full DGLAP equation can be solved numerically.
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Collinear Factorization at NLO

PDF PDF

FF FF

P P

h

Use MS scheme ( 1
ε̂

= 1
ε

+ ln 4π − γE) and dimensional regularization, DGLAP equation reads[
q (x, µ)
g (x, µ)

]
=

[
q(0) (x)

g(0) (x)

]
− 1
ε̂

α (µ)

2π

∫ 1

x

dξ
ξ

[
CFPqq (ξ) TRPqg (ξ)
CFPgq (ξ) NcPgg (ξ)

] [
q (x/ξ)
g (x/ξ)

]
,

and[
Dh/q (z, µ)
Dh/g (z, µ)

]
=

[
D(0)

h/q (z)

D(0)
h/g (z)

]
−1
ε̂

α (µ)

2π

∫ 1

z

dξ
ξ

[
CFPqq (ξ) CFPgq (ξ)
TRPqg (ξ) NcPgg (ξ)

] [
Dh/q (z/ξ)
Dh/g (z/ξ)

]
.

Soft divergence cancels between real and virtual diagrams;
Gluon collinear to the initial state quark⇒ parton distribution function; Gluon collinear to
the final state quark⇒ fragmentation function. KLN theorem does not apply.
Other kinematical region of the radiated gluon contributes to
the NLO (O(αs) correction) hard factor.
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DGLAP evolution

H1 and ZEUS

x = 0.00005, i=21
x = 0.00008, i=20

x = 0.00013, i=19
x = 0.00020, i=18

x = 0.00032, i=17
x = 0.0005, i=16

x = 0.0008, i=15
x = 0.0013, i=14

x = 0.0020, i=13
x = 0.0032, i=12

x = 0.005, i=11
x = 0.008, i=10

x = 0.013, i=9
x = 0.02, i=8

x = 0.032, i=7
x = 0.05, i=6

x = 0.08, i=5
x = 0.13, i=4

x = 0.18, i=3

x = 0.25, i=2

x = 0.40, i=1

x = 0.65, i=0

Q2/ GeV2

r,
N

C
(x

,Q
2 ) x

 2
i

+

HERA I NC e+p
Fixed Target
HERAPDF1.0

10
-3

10
-2

10
-1

1

10

10 2

10 3

10 4

10 5

10 6

10 7

1 10 10 2 10 3 10 4 10 5
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DGLAP evolution

NLO DGLAP fit yields negative gluon distribution at low Q2 and low x.

Does this mean there is no gluons in that region? No
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Phase diagram in QCD

Low Q2 and low x region⇒ saturation region.

Use BFKL equation and BK equation instead of DGLAP equation.

BK equation is the non-linear small-x evolution equation which describes
the saturation physics.
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Collinear Factorization vs k⊥ Factorization

Collinear Factorization

xp+, k⊥ = 0 xp+, k⊥ = 0

k⊥ Factorization(Spin physics and saturation physics)

The incoming partons carry no k⊥ in the Collinear Factorization.
In general, there is intrinsic k⊥. It can be negligible for partons in protons, but should be taken into
account for the case of nucleus target with large number of nucleons (A→∞).
k⊥ Factorization: High energy evolution with k⊥ fixed.
Initial and final state interactions yield different gauge links. (Process dependent)
In collinear factorization, gauge links all disappear in the light cone gauge, and PDFs are universal.
Other approaches, such as nuclear modification and higher twist approach. (See last year’s lecture.)
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kt dependent parton distributions

The unintegrated quark distribution

fq(x, k⊥) =

∫
dξ−d2ξ⊥
4π(2π)2 eixP+ξ−+iξ⊥·k⊥〈P

∣∣∣ψ̄(0)L†(0)γ+L(ξ−, ξ⊥)ψ(ξ⊥, ξ
−)
∣∣∣P〉

as compared to the integrated quark distribution

fq(x) =

∫
dξ−

4π
eixP+ξ−〈P

∣∣ψ̄(0)γ+L(ξ−)ψ(0, ξ−)
∣∣P〉

The dependence of ξ⊥ in the definition.
Gauge invariant definition.
Light-cone gauge together with proper boundary condition⇒ parton density
interpretation.
The gauge links come from the resummation of multiple gluon interactions.
Gauge links may vary among different processes.
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TMD factorization

One-loop factorization:

For gluon with momentum k

k is collinear to initial quark⇒ parton distribution function;

k is collinear to the final state quark⇒ fragmentation function.

k is soft divergence (sometimes called rapidity divergence)⇒Wilson lines (Soft factor) or
small-x evolution for gluon distribution.

Other kinematical region of the radiated gluon contributes to
the NLO (O(αs) correction) hard factor.

See new development in Collins’ book.
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