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A method to measure the dimensions of objects below the optical diffraction limit using diffraction analysis of
out-of-focus bright-field images is presented. The method relies on the comparison of the diffraction patterns of an
object of unknown size to those of calibration objects of known size. Correlative scanning electron microscope mea-
surements are used to demonstrate the applicability of this method to measure 100 nm microbeads as well as objects
with a geometry different from the calibration objects. This technique is important in the context of tethered parti-
cle experiments, in which bio-filaments are bound between a substrate and a microbead. This procedure is applied
to obtain the diameters of axonal extensions or neurites that are mechanically created in samples of rat hippocampal
neurons. The dependence of neurite geometry on mechanical pull speed is investigated, and the diameter is found
to be rate independent. © 2020 Optical Society of America

https://doi.org/10.1364/AO.388265

1. INTRODUCTION

There is a class of biological force measurement techniques
that relies on the manipulation of a microbead to induce the
formation of a tether from a cell. Examples include optical
tweezers experiments to extract and measure tension in teth-
ers containing lipids and/or cytoskeleton elements [1–5] as
well as experiments where a bead is aspirated and maneuvered
with a micropipette to create a long, tubular structure [6,7].
In all of these examples, the tubes created have radii below the
lateral diffraction limit of the optical microscope, ∼ 250 nm
[8]. Electron microscopy (EM) is a powerful tool to get higher-
resolution measurements and was exploited to measure fiber
radii in Refs. [4,5]. However, the sample preparation process
for EM involves fixation, which eliminates observation of cell
dynamics and can cause morphological changes [9,10].

Bright-field microscopy has the advantage of being able
to observe unstained samples continuously for long periods
(several days). However, a feature of conventional bright-field
microscopy is limited contrast when observing near-transparent
samples such as cells [11]. These can be effectively invisible
in focus but become visible when the microscope is slightly
defocused [see Fig. 1(a)] [11–13]. In the defocused state,
small objects (∼ 10 µm) create diffraction fringes in an image;
even with a broad-band light source, the objects are within a

coherence area [13]. In this work, a method for measuring the
dimension of individual structures below the diffraction limit
that requires only an optical microscope/camera and calibra-
tion objects of known dimensions is presented. We image the
diffraction patterns created by an object of unknown size and a
calibration object of known size in the same out-of-focus image.
By comparing these patterns to those in a so-called “calibration
series” of out-of-focus images of objects of known dimension,
the diameter of the unknown object can be determined to
∼ 15% uncertainty, for diameters as small as ∼ 100 nm. This
method is ideally suited for the class of experiments described
above that features an object of known size (the microbead)
together with a tether of unknown size. This method is validated
by comparing diameters measured in this way to those obtained
from scanning electron microscope (SEM) images of the same
objects.

The scientific value of this method is demonstrated by
applying it to determine the diameter of neurites created by
mechanical pulling in samples of rat hippocampal neurons
(see Fig. 1). Previous work [14] has shown that when a poly-
styrene bead coated with the polymer poly-D-lysine (PDL)
contacts axons or dendrites, presynaptic structures form, which
adhere to the bead. If the bead is pulled (in our case with a
microneedle), the growth of an auxiliary structure, the neurite, is
induced [7,15,16]. These neurites are cylindrical structures with
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Fig. 1. (a) Nearly focused image of a (top) neurite compared to (bottom) a more defocused image. (b) Optical image of a neurite that is mechani-
cally induced with a PDL-coated bead. (c) Isolated image of the neurite that has been rotated so its longitudinal axis is horizontal. (d) Both the neurite
and the bead create diffraction patterns that can be used to extract the neurite diameter.

diameters near the diffraction limit [7]. In the following, this
technique is used to investigate whether the diameter of neurites
is affected by how fast they are pulled. This result has important
implications for questions of what limits neuronal growth and
regeneration [17–19] as well as for experiments that seek to
re-wire neuronal networks with existing neurons [15,16,20].

In Section 1.1, the theoretical underpinnings of the experi-
mental results are briefly outlined. In Section 2, a description
of the method and correlative measurements are presented.
Then in Section 3, the method is applied to biological filaments.
Conclusions are presented in Section 4.

A. Diffraction Theory Concepts

The physical limitations of the optical microscope are due to a
phenomenon called diffraction [21,22]. The intensity distribu-
tion of an optical wave that travels a given distance in free space
after either being transmitted through an aperture in an opaque
screen or encountering an object is known as the diffraction pat-
tern [21–23]. Light will bend slightly at the edges of an object or
an aperture. When light emitted from a point in the specimen
is diffracted by the objective aperture of the microscope, it gen-
erates a blur in the image plane that is broader than the source.
The light distribution from a point source is the point spread
function (PSF). Mathematically, if the source is on axis, the
PSF of an idealized system can be described by an Airy function
[21,22]. In a single plane, this pattern consists of a central disk
surrounded by rings. The diameter of this disk, known as the
Airy disk, which depends on the wavelength of the illuminating

light λ and the numerical aperture (NA) of the objective, is
ρd = 1.22λ/NA, which is ∼ 250 nm for most microscopes.
The Airy disk determines how close two equal point sources can
be in the field of view and still be resolved as separate objects. In
bright-field microscopy, the sample is illuminated with white
light from above (or below) and observed from below (or above).

In classic fluorescence microscopy, the image intensity, Iem(x)
at a postion x, can be expressed as the convolution of the prod-
uct of the illumination source, Iex(x), a constant, and the sample
distribution s (x)with the PSF [11]:

Iem(x)= (Iex(x)s (x))~ PSF(x). (1)

If the PSF of the microscope is known, the intensity distribu-
tion of the object can be obtained precisely through deconvolu-
tion.

For bright-field microscopy, the deconvolution process is
more complicated because the PSF is not unique. Reference [24]
showed that the image formation process is described by two dif-
ferent PSFs: one that captures the phase structure of the object
PSFP and one that captures the absorption structure PSFA. The
3D intensity distribution of the object Iem is given in terms
of the real part P and the imaginary part A of the scattering
potential [11,24]:

Iem = P ~ PSFP + A ~ PSFA + B, (2)

where B is background light that does not interact with the sam-
ple. In most biological applications of bright-field microscopy,
samples are near-transparent, and it suffices to treat them as
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pure phase objects and consider only the contributions of PSFP

[11,13,24]. The phase PSF is phenomenologically modeled
in Ref. [11]. It is shown to depend on a constant phase caused
by the difference in refractive index between the sample and
the medium δ = (4πw/3λ)(nsample − nmedium), where w is
the thickness of the sample. In Section 2.C.1, it will be shown
that in the setup used here, the method does not depend on the
refractive index or on the material of the unknown objects. It
will be shown experimentally that the shift δ is negligible. This is
important for biological applications, since cells will likely have
refractive indices different from the calibration objects.

It will also be shown experimentally (in Section 2.C.2) that
the method yields correct results when used to measure an object
with geometry different from the spherical calibration objects.
Theoretically, this can be attributed to the relation between
the PSF and the line spread function (the distribution of light
created by a line in the image). The line spread function can be
calculated from the PSF, but for most imaging systems, these
two quantities are indistinguishable [25]. It is common practice
to model the PSF of a sphere using a Gaussian [11,26,27], which
has a Gaussian line spread function with the same width [25].
Again, this is important for biological applications in which we
want to measure cylindrical objects such as neurites.

While this method relies on the collection of the 3D PSF
(which is a stack of images), it does not rely on detailed modeling
of the PSF. The imaging conditions here are also more general
than those in many previous studies of biological systems with
diffraction patterns that rely on knowledge of sample position in
either the near-field or the far-field regime [28–30].

2. MATERIALS AND METHODS

A. Experimental Setup

1. Optical Images

All optical images were acquired in bright-field with an inverted
optical microscope (Olympus 71-X, equipped with a 100× oil-
immersion objective, NA= 1.44) and a CCD camera (Cascade
II, Photometrics). The camera captures 512× 512 pixel images
with 16× 16 µm2 pixel size. At the sampling plane, the spatial
sampling width is 16 µm/100= 160 nm. Samples were illumi-
nated by a 12 V halogen bulb. Experiments were performed with
a common microscope setup; no special lenses or detectors were
needed.

2. Neuronal Cultures

All procedures were approved by McGill University’s Animal
Care Committee and conformed to the guidelines of the
Canadian Council of Animal Care. Neuron samples containing
PDL-coated beads were prepared following procedures outlined
in Refs. [7,15,20]. Samples were imaged in cell media.

3. SEM Images

Samples were imaged with a FEI Quanta 450 Environmental
Scanning Electron Microscope (FE-ESEM) located at the
Facility for Electron Microscopy Research at McGill University.
To avoid charging effects, samples were coated with 4 nm

platinum with a Leica EM ACE 600 High Vacuum Sputter
Coater.

B. Diameter Estimation

A procedure for finding the diameter of an object by comparing
its diffraction pattern to those of a set of beads in a series of
out-of-focus images is described in this section. Throughout
the description, we refer to Fig. 2 for a schematic of the pro-
cedure. This method requires a so-called “test image,” a single
image that contains two objects [see Fig. 2(a)]. One object is
of unknown dimension (“unknown object”); its width will be
determined with the method, and the other object is a bead
of known dimension (“known bead”). The method further
requires a “calibration series” of images [again see Fig. 2(a)]. This
is an image stack of a set of beads of various known dimensions
as a function of defocus. Each image in the stack is acquired at a
different objective-focal plane separation z (i.e., different axial
positions). One of the beads in this calibration series must be of
the same dimension as the known bead in the test image. Using
this calibration series and the known bead, one can match the
axial position of the microscope when the unknown object is
imaged to an axial position in the calibration series, as described
in Ref. [31]. Since the calibration series contains beads of differ-
ent and known diameters, this allows the determination of the
unknown bead diameter. Surprisingly, as will be shown below,
the method is effective down to ∼ 100 nm with an accuracy
∼ 15%, with potential of improvement if a more sophisticated
camera and single wavelength illumination are used. In the
following, the process is described step by step [again see Fig. 2].

First the 2D images of all the beads in the test image and the
calibration series are converted to 1D arrays called radius vectors
[31]. Each 2D image of a bead, which is an intensity function
of the position on the image in pixels, has an associated radius
vector. Each element of a radius vector I is the average intensity
about an annulus concentric with the bead, and the position of
the element in the vector is the radius of the annulus as measured
from the bead center. See Fig. 2(b) for an example of a 2D image
and its associated radius vector. To convert a bead image to a
radius vector, we first isolate the individual bead from the initial
field of view to a smaller region and identify its center (in pixels)
with a custom-made centroid tracking algorithm, as described
in Refs. [31–33]. We then assign cartesian coordinates to the
circular bead image (with the origin at the bead center) and
convert that to a rectangle in the space defined by polar coordi-
nates. The rectangle is collapsed to a vector by averaging along
lines of constant θ—this is the radius vector, and it contains the
same information as the 2D image. To minimize the effects of
variations in background intensity, the radius vectors were nor-
malized by dividing each element in the vector by the element
with maximum intensity.

For each bead labeled D in the calibration series, a matrix MD

is constructed by taking the radius vector [I1zk I2zk . . . Inzk ]
T of

the bead at each axial position zk and inserting it into columns
of a matrix. The collection of MD matrices is shown in curly
brackets {} in Fig. 2, and an example of a radius vector is high-
lighted in a dashed red square. The results presented in this
work are obtained with a calibration series of images at 16 dif-
ferent axial positions of four differently sized beads, so we have
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(a) (b)

(c)

Fig. 2. Schematic of procedure to extract bead diameter from out-of-focus images. (a) Sketch of a test image containing beads of known and
unknown dimensions and a calibration series, which is an axial stack of images, labeled by z, of beads of known dimensions. (b) Image of a bead and
its corresponding radius vector. Curly brackets: for each bead in the calibration series, a matrix MD is constructed by concatenating the radius vectors
from each image zk of the calibration series. The rows of the MD matrices are spline fit to create C D (also shown in curly brackets). An example of
a C D matrix is plotted in (c). The axial position of the test image z∗ is found by matching the radius vector of the known bead to the column of the
appropriate matrix C D by minimizing J (z) (gold boxes). Using z∗, N is constructed and spline fit to obtain P . The radius vector of the unknown
object is compared to each column of P via J2(x ) (blue boxes). The value of x that minimizes J2 is the diameter of the unknown object.

4×MD matrices each with 16 columns indexed by zk , where
k = 1, . . . , 16. The rows of each of these matrices are spline fit
using cubic interpolation to create a new series of matrices C D,
also shown in curly brackets {} in Fig. 2. An example of a C D

matrix is displayed as a mesh plot in Fig. 2(c). Note that the suc-
cess of this method does not rely on acquisition of the different
calibration images at a fixed interval in z; one does not need a
precision motorized focus control for this method to work.
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The axial position z∗ of the test image is found relative to
the calibration series following the method described in Ref.
[31]. The range of possible axial positions for the test image
is ∼ 10 µm above or below the point where the known object
is in focus. The radius vector [m1m2 . . .mn]

T of the known
bead in the test image is compared to each of the columns of the
C D=4 matrix that corresponds to the size of the unknown bead
(D= 4, where 4 labels the bead in the calibration series that
matches the bead of known dimension in the test image). This
comparison is made via

J (z)=
n∑

i=1

[ρi (z)−mi ]
2, (3)

where we have adopted the notation in Ref. [31], and
[ρ1(z)ρ2(z) . . . ρn(z)]T are the columns of C 4. Gold, dashed
arrows and boxes represent this matching procedure in Fig. 2.
The known vector and the relevant column in C 4 are in gold,
dashed boxes and are connected to J , also in a gold box, by gold
arrows. The axial position z∗ is found by minimizing J (z).

Next a new matrix, N, is constructed by extracting and
concatenating the columns with index z∗ from each of the C D

matrices. The columns of this new matrix are thus each asso-
ciated with a different bead diameter. For the results presented
here, we had four differently sized beads (diameters of 0.2 to
10 µm) in the calibration series generating four C D matrices.
Each matrix contributes a column to N, so here N will have
four columns. The rows of N are again spline fit using cubic
interpolation to construct a diameter-calibration matrix P with
columns [ζ1(x )ζ2(x ) . . . ζn(x )]T indexed by diameter x . Note
that we use a built-in extrapolation algorithm in MATLAB to
evaluate radii outside the range of the calibration beads.

As before, the radius vector of the unknown bead in the
test image, [d1d2 . . . dn]

T (in a blue, dashed box in Fig. 2), is
matched to a column of the diameter-calibration matrix P (also
in a blue, dashed box) by minimizing

J2(x )=
n∑

i=1

[ζi (x )− di ]
2. (4)

The value of x that minimizes J2(x ) is the diameter of the
unknown bead. The matched quantities are shown in blue in
Fig. 2.

C. Validation of Method

The method is validated by applying it to find the diameters of
objects of different dimensions and comparing the results to
correlative SEM measurements; the results are shown in Fig. 3.
Each histogram in Fig. 3 is from applying the method to beads of
different nominal sizes from the manufacturer. An “unknown”
bead was imaged multiple times at multiple different z values,
and its diameter was determined using the method detailed
above. The histogram in Fig. 3 is the combination of such mea-
surements of several beads (4-5) of the same nominal diameter
(e.g., the histogram for nominal diameter of 200 nm is from five
different beads, each imaged at∼ 20 different z values).

Figure 3 shows the capability of this method to measure
diameters down to 100 nm, the smallest size of object tested.

Fig. 3. Histograms of bead diameters as measured by the diffraction
method. Each histogram corresponds to measurements of a set of beads
(4-5) with the same nominal diameter (labeled “ND” in legend). The
means and standard deviations of each histogram are also given in the
legend, labeled “MD=mean± SD”, where “MD” is for “measured
diameter.” Several beads of each size are also measured by SEM; the
means and standard deviations of these measurements are shown for
comparison (black dots). We also plot normal distributions (black
lines) of width and average identical to measured diameters.

The spread of each distribution is due to the combination of
noise from the camera pixels and from sampling below the
Nyquist limit. In Ref. [31], it is shown that the variance of pixel
noise in the axial position estimation decays exponentially with
the number of pixels in the radius vector, and so will the variance
of pixel noise in the diameter estimation. Furthermore, this
quantity is dependant on the objective-sample plane separation
or z. It increases with increasing z and is at a minimum when the
bead is in focus. Since larger beads can be imaged across a greater
range of z values, their histograms include data from greater
values of z, which increases their spread. However, we note that
the relative standard deviation of each histogram ultimately
decreases with increasing bead size. Noise from sampling in this
case should not depend on bead radius and will be discussed in a
later section.

In Figs. 4 and 5, the diffraction method is validated by com-
paring the results to SEM measurements. In Fig. 4, we image
the exact same sets of beads with the optical microscope and the
SEM. This is done for beads with nominal diameters of 100 and
200 nm. The method is found to be accurate; in the case of the
100 nm bead, the percent difference between the two methods
ranged from : 2%–21%, and in the 200 nm case, the percent
differences were∼ 4%.

1. Verification ofDifferentMaterials

In Fig. 5(a), the effects of the object material and the medium
on the measured diameters are investigated. We apply the
diffraction method to unknown beads of different materials—
polystyrene, silica glass, and silver—and find that the measured
diameters match those obtained by SEM to within error. The
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(a)

(b)

Fig. 4. Validation of the method with SEM measurements. The same beads are imaged with an optical microscope and a SEM. Histograms are
diameters of beads 1, 2, 3, 4 (white arrows) in (a) and beads 1, 2 (white arrows) in (b) measured with the diffraction method. The counts in the his-
tograms are from taking measurements from images at different objective-sample plane separations. The means and standard deviations of the his-
tograms are in the legends. The SEM results are plotted with the histograms for comparison; the solid lines represent the measured values, and dashed
lines are the uncertainties from the pixel size. (a) We confirm the capability of the method to measure beads with nominal diameters of 100 nm. The
percent differences in the diameters as measured by the diffraction method and SEM range from∼ 2% (bead 1) to∼ 21% (bead 3). (b) We apply the
method to beads with a nominal diameter of 200 nm and report percent differences of∼ 4% between the two measurement methods.

diffraction method is also applied to polystyrene beads in water,
and the diameters found are consistent with SEM results. This
demonstrates that the method is robust in terms of the refractive
index of the material to be measured and the environment in
which it is imaged.

2. Verification ofDifferentGeometries

It was also checked that the diffraction method can be applied to
an unknown object with a geometry different from the calibra-
tion beads, since neurites are cylindrical rather than spherical.
The diffraction method is applied to a borosilicate fiber, and a
diameter of 636± 64 nm is found, which is consistent with the
diameter of 656 nm measured by SEM imaging [see Fig. 5(b)].

D. Estimation Error

In the application of the method to cellular material, we take
the standard deviation of repeated measurements to be the error
in diameter; this is at the ∼ 15% level for ∼ 200 nm objects.
This error is due to a combination of random noise from the
camera and error from spatial sampling. Pixel noise enters into
the radius vectors of the beads and affects the axial position esti-
mation variance, as described in Ref. [31], as well as the diameter
estimation variance. Our measurements are also subject to error

due to spatial sampling at frequencies below the Nyquist limit.
This occurs in two places. First, in the determination of the axial
position, each image in the calibration series provides columns
to separate MD matrices (each image provides one column
for each different bead size). We assume that we are sampling
discrete z values of some continuous function of z. In our setup,
the step size between images is controlled by manually turning
the focus knob, and so we are unable to sample steps below the
Nyquist critical sampling distance in the axial direction. Precise
control of the step size, e.g., with a piezo stage, could lead to
improved measurement error. Second, the construction of the
N matrix introduces sampling noise. Here the step size between
different columns of N is determined by the sizes of the calibra-
tion beads. To eliminate this noise, we would require many more
different bead sizes.

We experimentally investigate the effects of pixel noise,
inaccurate bead centers, and bead position in the field of view.
We find that the variance caused by each of these factors is less
than or equal to the variance observed in measurements (data
not shown). We considered the effect of spatial sampling by
measuring the diameter with (separately) modified MD and
N matrices. We excluded up to half the columns of MD and
found that the variance in the diameter was stable. This could
indicate we are near the maximum amount of noise from spatial
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Fig. 5. Verification of the method with SEM measurements. (a) Left: SEM images of (top) polysytrene beads and (bottom) silica glass beads.
Histograms of diameters of beads of different materials measured by SEM and by diffraction method (DM). DM data are from images at different
objective-focal plane separations of five different beads for each material. The two methods agree to within one standard deviation. (b) Optical and
SEM images of a borosilicate fiber and the corresponding DM measurements. This confirms that the DM can be applied to unknown objects that
have geometries different from the calibration objects.

sampling in the axial direction. Ultimately, improving sam-
pling width in both MD and N dimensions could improve the
measurement error.

3. APPLICATION TO DETERMINING THE
DIAMETER OF NEURITES

This method is applied to extract diameters of artificially gener-
ated neurites. These long cylindrical structures are created by a
procedure described in Refs. [7,15,16], with the essential details
summarized here. In brief, a PDL-coated polystyrene bead
(10 µm in our measurements) is put in contact with an axon or
a dendrite for sufficient time to form a synapse at the bead–cell
interface. When the cellular structure is moved relative to the
bead, an auxiliary structure, the neurite, is induced. In passing,
we note that these pulled neurites cannot be distinguished struc-
turally or functionally from naturally grown neurites [7,15].
Hippocampal axons are typically ∼ 1 µm in diameter, and
the diameters of the pulled neurites branching from these can
fall below the diffraction limit of our optical microscope. One

major motivation for developing this method was to answer the
question, “Can we control the diameter of the pulled neurites
by changing the pulling rate?” This could in turn clarify the
dependence of action potential propagation on neurite diameter
[34,35].

To determine the diameters, neurites and their corresponding
diffraction fringes are identified by eye and isolated from an
image (see Fig. 1). These image segments are then rotated so
that the axis of the neurite is aligned with the horizontal axis. We
then measure intensity versus pixel along lines perpendicular to
the axis of the neurite (such that each pixel along the horizontal
axis of the neurite has a corresponding line profile). Figure 1(d)
is the average of all the line profiles from Fig. 1(c). From each
line profile, two line profiles are created by splitting the original
line profile at the center of the neurite. The neurite center is
estimated by finding the midpoint between the first two extrema
in the intensity profile [see Fig. 1(d)]. Thus, for each pixel along
the neurite axis, there are two line profiles of intensity versus
pixel. These line profiles are taken to be the radius vectors of the
unknown object, [d1d2 . . . dn]

T in Section 2.B. From each line
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Fig. 6. Diameters of neurites measured with the diffraction
method for different extension rates (0.05 µm/s, 0.2 µm/s, 0.5 µm/s,
1.8 µm/s) plotted on a log scale. The distribution of the neurites is the
same for each extension rate, as determined by the Kruskal–Wallis test.
The Pearson correlation coefficient between the logarithm of extension
rate and neurite diameter is r = 0.04, which indicates that the diameter
does not change monotonically with extension rate. The linear relation
associated with the correlation coefficient is plotted in gray.

profile, we extract a diameter measurement. The average of the
diameters found from the set of line profiles above the neurite
center is compared to the average of the diameters found from
the set below the neurite center to verify they match within error.
The measured diameters are shown in Fig. 6.

To determine if the neurite has a constant diameter along the
entire box size, diameters for the mean of each line profile and
its n-neighbors for n = 1, . . . , L x , where L x is the horizontal
dimension of the box in pixels, are computed. For each moving
average size n, the variance of the corresponding diameters is
computed. As long as this relation decreases monotonically, the
neurite diameter is constant within the box.

This method of measuring the neurite radius lends naturally
to our pulling procedure. A bead resting on an axon is pulled,
and the initial axial position of the bead is held constant so the
neurite is at the base of the bead. Thus, the bead and the neurite
have the same relative positions as the known and unknown
objects in the test image. Here we consider only neurites that
are of constant diameter within the box. This is because this
method cannot distinguish between diameter differences due
to an intrinsic size change along the neurite or due to different
segments of the neurite lying in different focal planes, unless
there is another bead present in the image besides the one on the
microneedle tip that can be used as a second reference.

Figure 6 shows the diameters of neurites created by extending
the neurite at different rates. Surprisingly, we see the spread in
the measured diameters is the same over a 10-fold increase in
extension rate. This is confirmed with the Kruskal–Wallis test
(p = 0.69), which determines that the diameters, grouped by
extension rate, are all drawn from the same distribution. The
Pearson correlation coefficient between the logarithm of the
extension rate and neurite diameter is r = 0.04, which confirms
that the diameter does not change monotonically with exten-
sion rate. Therefore, extension rate in the range tested is not an

important predictor of a cross-sectional area of mechanically
created neurites.

4. CONCLUSION

In this work, a method to obtain the size of objects that are
smaller than the optical diffraction limit is presented. This tool
relies on matching the diffraction patterns of test objects to
those in a series of out-of-focus optical images. In particular,
this method does not require fluorescent labeling probes. This
procedure enables us to measure objects with 100 nm diameters,
which is similar to the size of structures that can be measured
with classic structured illumination microscopy (SIM) [9,36].
While in theory it is possible to obtain a 3D profile of objects
with this method, this was not demonstrated here. We note
however the limitations of this method with respect to the
family of super-resolution techniques (see Ref. [9] for a review).
The method is unable to resolve different objects clustered
together at the 100 nm length scale; it can merely extract their
collective size. This method is thus best applied to structures
that are isolated in the field of view, a condition met in, e.g.,
optical tweezers experiments. This is a requirement similar to
the method presented in Ref. [37], a super-resolution coherent
diffractive imaging technique. In the same vein, our method
cannot discern individual components within a cell. Reference
[38] demonstrated a method to image objects through scatter-
ing media, also with a reference object, and could potentially
be combined with this method to image cellular structures.
Fluorescence microscopy could also be used in conjunction
with this technique to provide finer details of the cellular
architecture and capture rapid motions in cells [39]. While
fluorescence microscopy use is widespread, note that neurons
are photo-sensitive [40], and fluorescence microscopy relies on
exogenous labels, making it sensitive to effects of phototoxicity
and photostability from the excitation light [11,41].

The photosensitivity of neurons is also a consideration in
the application of this technique with dark-field microscopy,
which requires high intensity illumination [42]. While in theory
this method could be used with dark-field, a series of checks
such as those presented here would need to be performed to
determine how to account for the differences in the properties of
the samples and the calibration objects (index of refraction and
geometry).

This method is not an alternative to super-resolution micros-
copy, which is extremely powerful in its capabilities. Reference
[43], for example, achieved super-resolution and enhanced the
ratio of field of view to pixel size required to achieve Nyquist
sampling at the resolution of the image with a pixel super-
resolution algorithm that uses out-of-focus images, in the
context of coherent microscopy. Our method may, however, be
more convenient in certain contexts. Bright-field microscopy
is simple and allows the continuous observation of unstained
samples for long periods of time [11]. Many super-resolution
techniques require specialized equipment such as lasers, and
both single molecule localization microscopy (SMLM) and
stimulated emission depletion microscopy (STED) require spe-
cialized probes that can be sample-dependent [9,36]. Finding a
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good sample-preparation recipe to perform the desired experi-
ment can be a multi-month enterprise and can ultimately limit
which experiments can be performed [44,45].

Other works have used bright-field microscopy to achieve
sub-resolution measurements. Amazingly, Ref. [46] demon-
strated the visualization of microtubules, cylinders of ∼ 25 nm
diameter, with a conventional bright-field setup. This was
achieved through so-called computer-enhanced bright-field
imaging, which involves averaging over multiple frames,
background subtraction, spatial filtering, and smoothing
and enhancing images with spatial convolution routines. We
present a different method that can be applied to structures
suspended above the coverslip, but we note that our results could
be improved by adopting the techniques outlined in Ref. [46] as
well as tools from machine learning. Reference [13] also detailed
a method to measure cell surface fluctuations by defocusing
a bright-field microscope, but this technique does not meas-
ure sub-resolution structures. Reference [47] demonstrated a
method for enhanced optical resolution in the far-field regime
using a confocal laser scanning microscopy setup.

This method is applied to characterize the deformability of
mechanically created neurites. Within our statistics, we do not
find that the geometry of induced neurites depends on the pull
speed at which they were created. The independence of neurite
width and pull speed is significant for fundamental questions
of axonal growth. The fact that speed is not a factor in neurite
width implies that there is something else governing the size of
neurites. All neurites in these experiments were induced with
10 µm-sized beads. An avenue of future study is to repeat these
measurements with different bead sizes to see if this is a factor
determining neurite width.
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