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Recently, there have been a number of variations of electrostatic force microscopy (EFM) that allow for the measurement of time-

varying forces arising from phenomena such as ion transport in battery materials or charge separation in photovoltaic systems.

These forces reveal information about dynamic processes happening over nanometer length scales due to the nanometer-sized probe

tips used in atomic force microscopy. Here, we review in detail several time-resolved EFM techniques based on non-contact atomic

force microscopy, elaborating on their specific limitations and challenges. We also introduce a new experimental technique that can

resolve time-varying signals well below the oscillation period of the cantilever and compare and contrast it with those previously

established.

Introduction

Since the inception of the atomic force microscope (AFM) a
variety of techniques have been developed aimed at measuring
local electronic and ionic properties on a wide range of samples.
By carefully controlling the electric field between the tip and
sample many properties can be measured with high spatial reso-
Iution including static properties such as local contact potential
difference (which can be used to extract the local work func-
tion) [1] and local piezoelectric response [2], and dynamic prop-
erties such as the charging and decay times of photoexcited
carriers [3-6], and local activation energies for ionic transport
[7,8]. These measurements play a crucial role in understanding

local charge dynamics and composition of numerous materials

with applications across many fields including energy genera-
tion and storage. Capturing time-resolved dynamic processes at
ever-decreasing time and length scales has become of increased
interest in recent years due to the importance of understanding
transport properties of real-world, often heterogeneous materi-
als relevant for energy generation and storage. A number of
AFM techniques have been developed to study relevant materi-
als including time-resolved EFM to measure photoexcited
charge accumulation and charge transfer [6,9-11], time-domain
EFM to measure ionic transport [7,12], time-resolved electro-
chemical strain microscopy (ESM) to measure ionic transport

[8,13], various time-resolved Kelvin probe force microscopy
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(KPFM) techniques that utilize either optical pump-probe or ad-
vanced signal processing to measure time-resolved surface
potentials [14-18], and other techniques that exploit non-linear
signal mixing or heterodyning to extract the time evolution of
the tip—sample interaction [19,20]. All of these techniques share
a common goal of furthering the understanding of charge gener-
ation and transport processes to develop a clear picture of the
underlying mechanisms that govern them. This requires an ex-
tensive toolbox of experimental techniques of which EFM-
based ones will most certainly play an essential role.

In this review we explore in detail several techniques that allow
for time-resolved electrostatic force measurements to probe
ionic transport. More specifically, these techniques are able to
capture time-varying changes in the tip-sample coupling due to
the movement of mobile ions within the sample in the sample
volume directly underneath the probe tip. The ionic motion is
initiated by an electric potential applied across the sample; the
movement of mobile ions leads to a change in the tip—sample
capacitance and, thus, to a change in the electrostatic force
acting on the cantilever probe tip. The electrostatic tip—sample
force is proportional to the capacitance gradient 6C/0z times the
square of the applied potential V(£)?, i.e.,

P20y 2.

In ionic transport measurements it is the time-dependence of the
capacitance C(¢) that is to be measured; however, this is not
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usually a known quantity. In order to validate a technique for
suitability in measuring this quantitatively, a known time-
varying voltage with the same functional time-dependence that
mimics the expected C(¢) can be used instead. This allows for a
quantitative assessment of the extracted parameters and is the
method used to validate each technique discussed herein.

Since there is a multitude of similar techniques, each with their
own clever implementations and analyses, we have restricted
our review to exclude all pump—probe and KPFM techniques as
these are generally unsuitable for probing ionic transport. For a
recent review of all KPFM and related techniques, we refer the
reader to [21].

We begin by describing the direct time-domain method and its
limitations, we then introduce a new technique we refer to as
voltage-pulse averaging EFM, and then continue to explain and
examine three other techniques with applications to ionic trans-
port measurements, specifically fast free time-resolved EFM
[22], phase-kick EFM [23], and intermodulation spectroscopy
[20]. Table 1 lists these techniques along with their respective
time resolutions (smallest value demonstrated), limitations, and
strengths.

Review

Direct time-domain EFM

Background

Direct time-domain EFM measurements are the most straight-
forward methods of measuring time-varying interactions. In the

Table 1: Overview of the five techniques explored in this review. Time resolution is the smallest demonstrated value.

technique time resolution limitations strengths
direct above 2 ps — resonance frequency and detection bandwidth — simple implementation
time-domain limit time resolution
voltage-pulse ca. 200 ns — significant averaging time — simple implementation
averaging EFM
— difficulty in extracting stretched exponential — time resolution not limited by detection
bandwidth
— functional form of C(t) must be known
fast free ca. 10 ns — slowly varying relationship between 1 and — excellent spatial resolution
time-resolved extracted signal g, for sub-cycle time constants
EFM [22]
— difficulty in extracting stretched exponential for — fast imaging times with simultaneous
small time constants acquisition and analysis
phase-kick EFM  ca. 35 ns — requires precisely phase-locked excitation — strong signal-to-noise ratio due to
[23] signals averaging
— tip—sample force gradient must be approximately — time resolution not limited by detection
constant over oscillation cycle bandwidth
intermodulation ca. 30 ns —high Q-factor cantilevers result in lower — time resolution theoretically only

spectroscopy [20]

signal-to-noise ratio

— a time dependent capacitance will likely lead to a

complicated analytic representation needed to
extract the time-evolution of the system

limited by measurement time

— full time-evolution can be captured
using only a single measurement
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commonly used frequency-modulated AFM configuration, the
resonance frequency of an oscillating cantilever is measured
while the probe tip interacts with a surface [24]. The interac-
tions are purely electrostatic — in other words, the tip and sam-
ple form a capacitor. The oscillation of the cantilever can there-
fore be modulated by the electric field between the tip and sam-
ple, which may vary with time. The first use of an AFM to
measure the time evolution of sample charge carriers was re-
ported by Schonenberger and Alvarado [25]. They first applied
a voltage pulse between the tip and sample to inject charge into
the sample. They subsequently measured the (ac) electrostatic
force as a function of time using a lock-in amplifier where the
observed force decayed over several seconds.

In the case of photovoltaic samples, simply shining light on
them photoexcites charge carriers, which can result in charge
build-up in the sample at the location of the AFM tip if an
appropriate voltage is applied across the tip—sample gap.
Measuring the resonance frequency shift as a function of time
after the light is turned on/off then allows for the charging/
discharging time to be directly acquired, revealing information
about charge generation and transport in the sample. This was
first performed by Krauss et al. who observed charging of pho-
toexcited CdSe nanocrystals by direct frequency shift measure-
ments after illumination [26].

The concept outlined above can be applied to measure ionic
transport in ionic conducting materials as well. To probe ionic
transport a step potential is applied between the AFM tip and a
conducting back electrode, creating an electric field across the
tip—sample gap and through the sample, illustrated in Figure 1b.
The mobile ions inside the sample move in response to this field
over time, resulting in a change in the field (and field gradient)
at the tip as illustrated in Figure 1c. This changing electric field
as a result of screening by the mobile ions leads to a shift of the
cantilever resonance frequency as a function of time, which can

(a) (b)

Li* ions

E-Field
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be directly measured, typically by using a phase-locked loop
(PLL). This was first performed by Bennewitz et al. to measure
the mobility of F~ vacancies in a CaF, crystal [27]. Schirmeisen
et al. later improved the technique by performing the measure-
ments at various temperatures to extract the activation energy
for ionic transport in Li™ conducting glasses [7]. To further
expand the power of the technique, Mascaro et al. developed a
real-time averaging system used in conjunction with a fast
(high-bandwidth) PLL to improve the time resolution [12]. This
enabled ionic transport measurements to be performed on lithi-
um iron phosphate (LiFePOy), a relevant lithium-ion battery
cathode material. In this configuration the time resolution (and
thus the fastest ionic conductor that can be measured) is limited
by the time response of the PLL, which depends on many pa-
rameters including the free resonance frequency of the cantile-
ver as well as the various PLL settings.

Limitation: direct frequency detection

A critically damped second-order PLL (i.e., optimized settings)
has an exponentially decaying time response to abrupt changes
in the frequency being tracked (the center frequency, f;) [28].
The response time-constant of the phase detector is determined
directly by the center frequency: tpp = 1/fy. Thus, the theoreti-
cal minimum response time to achieve more than 95% tracking
is three cycles. This is difficult to realize in practice as it
neglects amplification/filtering before and after the phase
detector and other non-ideal effects such as jitter and noise. The
overall response time of the system (tprr, inversely propor-
tional to the overall bandwidth) serves as a more practical
metric as it takes all contributions into account. This can either
be measured by stepping the frequency of a known signal and
measuring the response time or in the case of some digital PLLs

by a built-in function that models the response [29].

In general, ionic transport in solid ionic conductors follows a
stretched-exponential time response to applied electric fields:

Time

Figure 1: lllustration of ionic transport measurements in the time domain. (a) A conducting AFM tip is brought close (typically 1-20 nm) to the surface
of a sample containing mobile ions (Li* in this case). (b) A step potential (Vyc) is applied between the tip and back electrode, creating an electric field
that extends through the sample. (c) The mobile ions move towards the tip (in the case of a negative tip bias and grounded back electrode), shielding

the internal electric field.
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o(2) =g exp[—(t/r*)ﬁ]; 0<B<l, (@)

where ¢ represents the internal electric field, ¢ is the initial
field strength, B is the stretching factor, and t* is the collective
(or overall) time constant for the response [30]. Note that this
stretched exponential behaviour is due to the correlated nature
of ion transport, which depends on the atomic and electronic
structure of the material, and not necessarily due to a distribu-
tion of relaxation times [31]. Nonetheless, this complicates
time-domain measurements of ionic transport as the functional
form of the relaxation must be fully captured in order to reli-
ably extract the relevant parameters, namely t* and B. With
slow ionic relaxation times (longer than milliseconds)
and typical operating (scanning) parameters (bandwidth of
ca. 100 Hz) the PLL response will not affect the extracted
values obtained from directly fitting the data. However, as the
relaxation time approaches the response time of the PLL, the
output signal will become a convolution of the PLL response
function and the ionic relaxation. This makes any quantifica-

tion of the transport properties challenging.

To investigate the effect of Tpy [, on the ability to extract param-
eters from measured signals, a digitially synthesized voltage
waveform varying in time as a stretched exponential
(Equation 1, B = 0.7) was applied between a Pt-coated AFM tip
and a gold substrate (separated by about 20 nm) under high
vacuum (ca. 107% mbar, Jeol JSPM-5200) to simulate ionic
transport in the sample with a known decay time constant. Note
that a separation >1 nm is necessary in general to ensure that no
charge is injected into the sample. In this case, the electric field
follows the applied voltage instantaneously on the relevant time
scales. For each programmed time constant (from 0.1 to 10 ms),
the voltage was varied from 0 V initially to 5 V; the measured
response is shown in Figure 2a where the blue curve is the
result of the smoothly varying stretched-exponential applied
voltage. The orange curve is the result of applying an initial in-
stantaneous jump from 0 to 2.5 V followed by a stretched-expo-
nential increase to 5 V. This is intended to mimic experimental
conditions as the step voltage applied causes an initial jump in
the resonance frequency (due to the stepped electric field be-
tween the tip and sample before the ions respond) followed by
the slow sample relaxation (as the ions move to shield the initial
electric field). Since the actual time constant is given by the
synthesized voltage waveform, the percent error can be directly
calculated from the fit results. Note that since the frequency
shift is quadratic in voltage and it is the voltage being changed
here, we must first take the square root of the data before fitting.
The results are shown in Figure 2b where the shaded area is the
region for which t* < tpp | = 600 ps. To replicate measurement

conditions, 100 waveforms were applied as a pulse train (50%
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duty cycle) and the response signals were averaged together
using our realtime averaging system to reduce noise (described
in [12]). In both cases (with and without the initial jump) we are
able to accurately extract the relaxation time constant; the initial
jump only leads to a higher statistical uncertainty, which is due
to the slow initial response of the PLL relative to the fast jump
from 0 to 2.5 V. This becomes especially apparent for
t* = 1pp 1. The stretching factor displays exactly the same be-
haviour (not shown).
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Figure 2: (a) AFM frequency shift response to stretched-exponential
voltage pulses (from 0 to 5 V) with and without an intial 2.5 V jump.
(b) Percent error of fitted relaxation time constant (1*) as a function of
relaxation time constant of applied voltage pulse for fixed PLL
response time (Tp. ). Shaded region shows where 7 < 1p| | .

Clearly the practical limitation for high-fidelity measurements is
determined by tpp 1 as the percent error increases drastically for
* < 1pr . Simply increasing the PLL bandwidth will decrease
tprL although this will result in higher noise due to the less
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aggressive filtering. By taking a larger number of averages, the
same signal-to-noise ratio can be achieved, however the cantile-
ver resonance frequency will ultimately determine the minimum
tpLL. Empirically we have found that the minimum PLL
response time achievable is Tppmin = 10 % 1/fy. The highest
resonance frequency cantilevers currently commercially avail-
able have frequencies of fy= 5 MHz, thus the realistic minimum

measurable relaxation time of this technique is ca. 2 ps.

Voltage-pulse averaging EFM

Motivation

Improving the time resolution beyond the limitations of direct
time-domain measurements is possible in several ways using
careful instrumentation and signal analysis. The basic concept is
to detect (using a slow detector) the change in average response
of the sample due to a change in the frequency (or, e.g., repeti-
tion rate or delay time) of an excitation signal. This is also the
basis for pump—probe spectroscopy, which is routinely em-
ployed to measure ultrafast dynamics of condensed matter
systems using a variety of pulsed light sources [32-35]. In some
systems the probe pulse is not even necessary as the pump both
excites the response being investigated and engages the probing
behaviour simultaneously. One example of this is in time-
resolved Kelvin probe force microscopy (KPFM) experiments
that measure the surface photovoltage of a sample as a function
of time after a light source is pulsed. This was first imple-
mented by Takihara et al. to measure the photovoltage dynam-
ics of a sample at time scales faster than the KPFM feedback
loop can track [36]. In this measurement mode, the tip—sample
coupling is in an ‘always-on’ state and the time resolution is
achieved by modulating the length of time the system is allowed
to decay (i.e., the pulse-off time). The minimum time resolu-
tion is no longer limited by the detection electronics, but instead
is theoretically limited only by the thermal noise of the cantile-
ver [18]. This principle can be easily extended to ionic systems
(such as those discussed previously) by simply replacing the
pulsed light source with a pulsed voltage. In this case, the elec-
tric field engages the tip—sample coupling and simultaneously
moves the mobile ions in the substrate, which leads to a
changing tip—sample capacitance. Since the applied voltage
controls the tip—sample coupling, turning the voltage off decou-
ples the tip from changes occurring in the sample, thus the ionic
transport is only probed during the pulse-on time, which can be
directly controlled. Finding a relationship between the average
frequency shift (f)) and the relaxation time constant of the
sample t* as a function of the pulse width T then allows for the
sample transport dynamics to be extracted beyond the time
resolution of the detection electronics. To relate the frequency
shift of a cantilever to the tip—sample forces for FM-AFM, we
turn to canonical perturbation theory using action-angle vari-
ables similar to the work done by Giessibl [37].
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Derivation using canonical perturbation theory
Starting with the Hamiltonian for a harmonic oscillator
and using a capacitive force perturbation Hamiltonian
(AH = (1/2)CV?), we transform the momentum and position
variables to action and angle variables: (p,q)—(a,p), where the
first-order perturbation solution for the angle variable f; (not to
be confused with the earlier use of B as the exponential
stretching factor) has the property:

_ aAH(OL,B,t)

By o > 2

0

where the dot denotes the time derivative and the subscript 0 in-
dicates that a and B are to be replaced with their unperturbed,
constant values (a,PBq) after differentiation [38].

Writing g in terms of the action and angle variables explicitly:

njo(jz sin (ot +B), 3)

we see that B is the time derivative of the phase change due to
the perturbing force. Taking the average therefore gives us the
steady-state frequency shift (Af) = (B), which can easily be

measured. Re-writing:

OAH (o.B,1)| _ 0AH (auB,t) og

, “
oa | 0 Oq oa 0
it can be easily shown that
% 4 )
oo 204

and o = kAg /2 f, where A is the oscillation amplitude, & is
the spring constant, and fj is the resonance frequency of the
oscillator. In the simplest experiment where a time-varying
voltage is applied between a conducting tip and sample, C has
only an explicit dependence on ¢ and ¥ only an explicit depen-
dence on t:

GAH(OL,B,t)
oo,

g% ©)

:%Bq@wﬁ}

0 0

However, C does have an implicit time-dependence because the
position ¢ is not constant. The capacitance C(gq) between a con-

ducting sphere and conducting plane is approximated by [39]:
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C ~4mneyR l+llog(l+ﬁ,j , 7
2 q

where R is the radius of the sphere and ¢’ is the sphere-plane
(tip—sample) separation, which changes as the (tip) position, g,
oscillates. In other words: ¢' = 4 + d + A4y sin(wyt + ¢), where
¢ is the initial cantilever phase, mg is the free resonance fre-
quency, A is the amplitude, and d is the closest tip—sample sep-
aration of the oscillating cantilever. Assuming this is an accept-
able approximation for an AFM tip and conducting sample, the
average frequency shift can be written as follows:

(Af>=<B>=2"‘°'0(R/Ao)2 R A40%

~dr,  (®)

with the integral taken over one cycle (1/fy). Thus far we have
only made an assumption regarding the functional form of the
tip—sample capacitance. This relation (Equation 8) is thus valid
for arbitrary oscillation amplitudes and timescales as long as the
tip—sample interaction remains a small perturbation to the
overall mechanical energy of the cantilever oscillation. This
condition is fulfilled for a periodic voltage pulse with its fre-
quency, fy, away from any of the mechanical resonances of the
cantilever (fy < fi+1 and fy ¢ f; where f; is the i-th mechanical
eigenfrequency of the cantilever). This is due to the large
quality factor enhancement present on resonance, which would
lead to a significant contribution to the total mechanical energy
from even a small voltage (and thus field) applied near reso-
nance, invalidating the perturbation approach to derive Equa-
tion 8.

Validation measurement

To demonstrate the time resolution of this technique a valida-
tion measurement was performed using a cantilever with a low
resonance frequency (16.7 kHz) and a conducting tip over a
gold sample. The tip was retracted a short distance (ca. 20 nm)
with the z-feedback turned off and a train of exponential voltage
pulses was applied, resulting in a change in the average fre-
quency shift as a function of the width of the voltage pulse (7),
illustrated in Figure 3a. The frequency shift was averaged over
several seconds for each value of 7, and T was then stepped as
illustrated in Figure 3b. This full measurement was repeated
20 times with the z-feedback turned on and then back off be-
tween each measurement to minimize drift. Each pulse had the
form V(¢) = Vy + AV(1 — exp[—t/t)] during the pulse-on period
and V(f) = V) during the pulse-off period with a duty cycle of
20%. To fit the data, the integral in Equation 8 was performed
piecewise over the corresponding on and off time periods for
one full cantilever oscillation: (0—7/5, T/5—T), (T—6T/5,

Beilstein J. Nanotechnol. 2019, 10, 617—633.
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Figure 3: (a) Schematic illustration of the voltage-pulse averaging
EFM technique: the top shows the applied voltage pulses with differ-
ent pulse width (T), while the bottom shows the (simulated) instanta-
neous (Af) and average ((Af)) frequency shift due to an exponentially
varying sample response. (b) Measured average frequency shift
response as a function of the pulse width (T) for exponential voltage
pulses with 1 ps (blue), 500 ns (red) and 200 ns (purple) time con-
stants (1), cantilever fy = 16.7 kHz, 2 s averaging per measurement,
20 measurements per point. Error bars are the standard deviation of
20 measurements, and the black lines show fits to Equation 8.

(c) Extracted time constant, (1), as a function of the programmed time
constant for the three measurements in (b); the solid gray line has a
slope of unity to illustrate where points would lie for a perfect 1:1 rela-
tionship. Measured values: 1= 1.05 + 0.03 ps, 1= 633 + 20 ns,

T =192 % 3 ns. Note that a decay time of 190 ns is ca. 300-times faster
than the cantilever oscillation period.
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67/5—2T), ..., (..., (SN — 4)T/5—NT), where NT =~ 1/f; (note
that NT # 1/fy because the pulse width cannot be an integer
multiple of the oscillation period as discussed above). This inte-
gral has no closed-form solution and therefore must be com-
puted numerically in order to fit the data. Since the phase be-
tween the applied pulses and the cantilever oscillation is arbi-
trary, the integral must be computed for many oscillation cycles
(starting with an arbitrary phase) and then averaged to mini-

mize the effect of the initial relative phase.

The results are shown in Figure 3 along with the fits to Equa-
tion 8 where we set: V(f) = 4 + B-exp(—t/t), giving three fit pa-
rameters: A, B, and the time constant 1. The effect of the finite
number of oscillation cycles appears in the fitted curves (black
lines in Figure 3) as small deviations from a perfectly smooth
function. This can be minimized by integrating over more
cycles at the expense of increased computation time, which can
be significant and has a negligible effect on the extracted fit pa-
rameters. The extracted time constants are plotted as a function

of the programmed time constants in Figure 3c.

Extending this technique to ionic transport systems requires
only the insertion of an explicit time dependence of the capaci-
tance C(¢) in place of the time-dependent voltage in Equation 8.
The capacitance follows the time dependence of the system
after a bias is applied, which is typically a stretched exponen-
tial as in Equation 1. Although this is in principle feasible, the
main challenge is to perform the fitting. We attempted to fit the
data in Figure 3 to a stretched exponential with an additional
parameter, 3, which should result in an extracted value of f =1
since this is a ‘pure’ exponential decay. The fitting was very
problematic due to the dependence of the fit results on the
chosen initial conditions. This is a general challenge when using
functions with numerous fit parameters, in accordance with the
famous quote about fitting an elephant by John Von Neumann
[40].

Assumptions and limitations

As shown by this validation measurement, this technique can be
used to measure transport processes occurring faster than the
period of the cantilever. Fundamentally, the time resolution
should only be limited by the minimum electrical pulse width
that can be reliably applied to the sample (which is likely much
larger than the theoretical limit [18]). The only assumption used
that may not be true for all cases is the functional form of the
tip—sample capacitance (Equation 7). To test the accuracy of
this assumption we investigated both a conducting sample and a
thick dielectric sample (200 pum thick sapphire, &, = 11.3) by
measuring the frequency shift as a function of the distance with
a constant applied bias. The force was then extracted from the

frequency shift using the Sader—Jarvis method [41] while taking
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care to ensure that the inversion procedure is mathematically

well-posed for this particular experiment [42,43].

The results are shown in Figure 4 where the black lines are fits
to the approximate force between a conducting sphere held at a
constant potential and a conducting plane:

~ 1
FrxF|l—————|, ©

(z/R)+ (/)

where F and R are fit parameters. Theoretically, F =412,
where ¢ is the permittivity and V is the applied voltage, and Ris
the effective tip radius. The oscillation amplitude for both ex-
periments was 6 nm, thus the x-axis is the average tip—sample
separation and the zero-point was chosen as the point when the
oscillation stopped due to contact with the sample. The result-
ing values for F were 0.6 nN for gold and 38.5 nN for sapphire
and the effective tip radii obtained were R =43 nm and
0.23 nm for gold and sapphire, respectively. The F value ob-
tained for gold is very close to the theoretical value of 0.53 nN,
but the value for sapphire is off by approximately a factor of 5,
while the tip radii are significantly smaller than the true tip
radius (ca. 30 nm). These results are not surprising as there are
many potential sources of error that can affect the absolute
value of the force including the calibration of the cantilever
spring constant, background forces from the conical probe and
the cantilever itself, and uncertainty in the zero-point for both
the tip—sample separation and the force itself, which are typical-
ly chosen arbitrarily [44-49]. Note that this experiment aims

i + Gold
0.6 F « Sapphire| |
0.5+ 1
2 0.4+ - 1
o 03F
&
£ 02¢
0.1F
0F
= 0.1f
<
< 0} ISR i St Vit i?
|7} c 0
Q
/A 0.1 ¢ 1

10 15 20
Distance (nm)

Figure 4: Measured tip—sample force as a function of the distance for
a gold-coated tip over a grounded gold substrate (red) and a grounded
200 um thick sapphire substrate (blue) with 4 V applied to the tip. Can-
tilever parameters: fy = 295.621 kHz, k = 27 N/m, A = 6 nm (Mikro-
masch NSC15/CR-AU).
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only to demonstrate the validity of the functional form of the
relationship and not as a quantitative measurement of these pa-
rameters. Better approximations than the simple sphere—plane
one used here have been developed, but would introduce signif-
icant challenges in computing the integral in Equation 8. Using
this simple approximation for both gold and sapphire substrates,
the residuals are normally distributed to within experimental
uncertainty (i.e., the x2 goodness of fit test performed on the
residuals does not reject the null hypothesis to 0.05 signifi-
cance [50]). This demonstrates that the functional form of this
approximation is valid with this particular probe type on sam-
ples of two extremes (a smooth conductor and a thick dielectric
material). However, it is not necessarily valid in all cases and
should therefore be verified through spectroscopy measure-

ments such as this on a case-by-case basis.

Sapphire was chosen for its high dielectric constant (g, > 10),
which is similar to those found in many solid ionic conductors
such as LiFePO4 and LiCoO,, and for its low electronic
conductivity and lack of mobile ions. This experiment is there-
fore a reliable validation of the z-dependence of the tip—sample
capacitance expected for actual ionic transport measurements on
relevant samples.

Fast free time-resolved EFM

Motivation

It is clear that there are challenges in using time-averaged AFM
signals to extract fast sample dynamics, namely a priori know-
ledge or assumptions of the specific temporal functional form of
the dynamics. Some techniques have sought to avoid this by
directly capturing the deflection signal using high-speed data
acquisition systems and performing offline analysis to recon-
struct the sample response. One such technique is fast free time-
resolved electrostatic force microscopy (FF-trEFM), first pro-
posed by Giridharagopal and co-workers [22]. FF-trEFM
captures the full dynamics of an oscillating cantilever when an
interaction force between the tip and sample is turned on. An
overview of this technique is shown in Figure 5 (reproduced
from [51]).

Description and implementation

To implement FF-trEFM requires the addition of a high-speed
data acquisition system to a standard AFM, which is not overly
expensive or onerous. Acquiring the raw deflection signal in the
time-domain precludes the necessity for expensive detection
electronics that are commonly used to acquire and demodulate
the oscillation of the cantilever. The only limitation on standard
AFM systems are the photodetectors, which typically have
bandwidths of 1-2 MHz, although faster photodiodes are avail-
able. The raw signal can then be filtered and postprocessed

using a Hilbert transform to extract the analytical signal and
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what is known as the ‘instantaneous frequency’ (the time deriv-
ative of the instantaneous phase). Examining the extracted in-
stantaneous frequency after applying a voltage with an expo-
nential rise time T (shown in Figure 5b for simulated data), it is
clear that the response shows observable differences as a func-
tion of t. Since the cantilever is continuously driven throughout
the experiment, the instantaneous frequency shows a fast tran-
sient response to the applied pulse, followed by a slow relaxa-
tion towards a new steady-state value. This leads to a clear
initial peak in the frequency shift, which is defined as the ‘time
to first frequency shift peak’ (fgp) by Giridharagopal and
co-workers [22]. The authors demonstrated that simulated
results (both numerical simulations of a damped-driven
harmonic oscillator and finite element simulations) and their ex-
perimental results show excellent agreement given the same pa-
rameters and subject to the same postprocessing (windowing,
filtering, and analytical signal extraction).

It is instructive to note that the extracted instantaneous frequen-
cy contains a time delay introduced by the bandpass filter used
in the processing to smooth the response, which cannot be com-
pletely corrected for. This leads to the attenuation of high-fre-
quency components, especially for decay times faster than the
oscillation period. Because of this attenuation, the extracted
signal is a representation of the true ‘instantaneous frequency’,
leading to difficulties in determining the full functional form of

the time-dependent tip—sample interaction.

Application to ionic transport measurements

To accurately quantify ionic transport requires the capability to
fully resolve the functional form of a stretched exponential
response to extract the two main parameters of interest, T and f3.
To test the suitability of FF-trEFM for these measurements, we
performed numerical simulations (of a damped driven harmonic
oscillator, see Supporting Information File 1 for MATLAB
code) similar to those performed by Karatay and co-workers
[51], using instead a resonance frequency varying in time as a
stretched exponential and a stretched exponential electrostatic

force term:

® (t20)=c00(t=0)+A(o[l—e_(t/r)BJ (10)

and

F, (t)zFeo[l—e_(t/T)B}. (1)

The parameters employed were oy = 2n x 277 kHz,
Ao = 2m x 277 Hz, and Fy = 3 nN, similar to those used in
[22]. The results after windowing, filtering, and performing the
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Figure 5: “(a) Schematic of the experimental setup: (i) Computer requests a trigger at a defined phase of the oscillation, (ii) trigger circuitry triggers
the digitizer and the excitation source accordingly, and (iii) the digitizer transfers the acquired signals to computer. (b) Flow diagram of the data analy-
sis procedure after the acquisition: (iv) signals are averaged together, (v) windowed and filtered, and (vi) demodulated via Hilbert transform to find the
instantaneous frequency of the cantilever (instantaneous frequency curves for excitations with time constants of 25 ns and 100 ps are shown).”

Reproduced with permission from [51], copyright 2016 AIP Publishing.

Hilbert transform are shown in Figure 6. The colours denote
different time constants and the p values are shown by different
line styles. For slower time constants (t > 10 ps) the different
values of B are visually distinct; however, at much smaller
timescales these distinctions are no longer visible, making ionic
transport measurements using FF-trEFM challenging and

possibly no more advantageous than direct time-domain EFM.

Demonstration of spatial resolution

In more recent work by Karatay and co-workers, they analyzed
how a variety of factors including noise and the phase differ-
ence between the cantilever oscillation and the applied pulses
affect the achievable time resolution [51]. They presented
guidelines for implementation of their technique, in particular
the use of photothermal excitation to reduce other sources of
mechanical noise. To study the relationship between the system
dynamics and the measured fgp response they mapped fgp as a
function of true exponential time constant t to generate a cali-
bration curve (Figure 7a). They observed statistically signifi-

cant differences in the measured signal in differences in T down

100 + —p =1 = 1ms
—B =09 T = 300 s T dus
50 F ——p =08 T =30ps =03 ps
P 0T A S YT
B =06 T = 3us T

Frequency Shift (Hz)

20

15

Time (ms)

25 30

Figure 6: Extracted FF-trEFM signals from numerical simulations of
tip—sample interactions with a stretched-exponential time response
(Equation 1) with various relaxation time constants, 1, and stretching
factors, .
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Figure 7: “(a) Calibration curve for a range of characteristic times of
exponential decay (1) (inset shows a zoom-in for shorter times).

(b) Topography and (c) inverse Tep (Tep~ 1) images of a 1:4 ratio
MDMO-PPV:PCBM thin film photovoltaic device cast from toluene. Ex-
citation wavelength is 488 nm and intensity at the tip is ~290 W/cm?2.
Data are acquired at 10 nm lift height, 10 V bias between the cantile-
ver and the sample, with 60 averages per pixel.” Adapted with permis-
sion from [51], copyright 2016 AIP Publishing.

to 10 ns, which they designated as the minium attainable time
resolution. The authors then utilized #gp to study differences in
local charging times of an organic photovoltaic thin film
(MDMO-PPV:PCBM), shown in Figure 7, and demonstrated
the ability of the technique to spatially resolve heterogeneities.
Due to the difficulty in quantitatively extracting t from the
measured Tgp, spatially resolved measurements are limited to
relative charging rates presented as spatial mapping of tgp.
These results can still provide useful insight into sample dy-
namics (in this case the quantum efficiency of the photovoltaic
material) even though direct quantitative measurements of

decay time constants may not always be possible.

Phase-kick EFM

Background and implementation

Another technique recently developed by Dwyer and
co-workers, referred to as “phase-kick” EFM (pk-EFM), uses an

indirect measurement of the cumulative change of a cantilever
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parameter (phase or amplitude) in order to reconstruct a time-
varying signal [23]. One implementation of pk-EFM utilizes a
carefully timed voltage pulse applied between tip and sample
that controls the tip—sample coupling while a light pulse is also
applied, as illustrated in Figure 8 (reproduced from [23]).
Initially, the cantilever is driven on resonance at a steady-state
amplitude and a voltage is applied. The voltage engages the
tip—sample coupling and leads to an initial frequency shift,
which can be seen at t = —50 ms in Figure 8F. A short time later
the drive is turned off so that the cantilever is freely oscillating;
practically, this removes the drive signal as a source of noise in
the experiment. At ¢ = 0 a light pulse is then applied and the ca-
pacitance varies temporally as the sample charges due to the
photoexcitation. By then abruptly turning off the tip—sample
coupling (by setting the voltage back to 0) the total photocapac-
itance change measured by the cantilever can be controlled. The
applied voltage therefore acts as a gate that controls the cumula-
tive sample response that is captured in the cumulative change
in the cantilever oscillation. The total phase shift A¢ from the
time the light pulse is applied (¢ = 0) to the time when the
voltage is returned to 0 (¢ = ) is then proportional to the inte-
grated photocapacitance since the voltage is held constant over
this time:

(12)

foV? E:
Ap=— Cr(z) ds,
0=~ { ;

where Cf is the is the second derivative of the tip—sample ca-
pacitance with respect to vertical separation, f; is the resonance
frequency, and k is the spring constant. This result is derived
from the relationship between the frequency shift and the capac-
itive force between the tip and sample:

5 (1) =~ cr ()2,

4k, (13

which is a valid approximation in the limiting case of small
oscillation amplitudes [37]. More specifically, this approxima-
tion is only valid if the force gradient is constant over one full
oscillation of the tip [52]. This can be achieved under typical
experimental conditions (1-5 nm oscillation amplitude) by
simply performing the measurement with a larger tip—sample
separation, but this comes at the cost of degraded spatial resolu-
tion. Achieving smaller oscillation amplitudes (much smaller
than 1 nm) is possible using more sensitive detection methods
(interferometry, for example [53]) and cleaner excitation
schemes such as photothermal excitation [54]. Using probes of
higher stiffness, however, is not expected to be advantageous
due to the inverse relationship between the measured phase shift

and cantilever spring constant.
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Figure 8: “For three representative pulse times, we plot (A) cantilever amplitude; (B) cantilever drive voltage, turned off at = =10 ms; (C) tip voltage,
with the pulse time ¢, indicated; (D) sample illumination intensity, turned on at t = 0; (E) sample capacitance; and (F) cantilever frequency shift.

(G) Timing of applied voltages and light pulses. The voltage and light turn off simultaneously at ¢ = t,. After a delay {y (typically 5 to 15 ms), the cantile-
ver drive voltage is turned back on. Next, we illustrate how the phase shift A¢ is calculated using the f, = 10.3 ms data. We process the cantilever dis-
placement data using a software lock-in amplifier. (H) The software lock-in amplifier reference frequency changes at ¢ = t,. The software lock-in ampli-
fier outputs (1) the in-phase (solid) and out-of-phase (dashed) components of the cantilever displacement; (J) cantilever amplitude; (K) frequency shift;
and (L) phase shift. The total phaseshift A¢ is equal to the highlighted area under the cantilever frequency shift curve. (M) The voltage- and light-in-
duced phase shift A¢ is measured as a function of the pulse time ¢,. We show only every other data point for clarity. The t, = 10.3 ms data point is
denoted with a star. Experimental parameters: PFB:F8BT on indium tin oxide (ITO) film, h = 250 nm, V; = 10 V, /5, = 0.3 kW m~2, delay time between
pulses = 1.5 s.” The cantilever used had a resonance frequency of 62 kHz. Reproduced with permission from [23].

Validation measurement

To demonstrate the sub-cycle time resolution of this technique,
Dwyer et al. used the Magnus expansion in order to solve the
system of linear differential equations describing the cantilever
motion [23]. Modelling the photocapacitance as a single expo-
nential with a risetime of 1,

() =cr(0)+acy, (1-e/7),

resulted in two expressions relating the cumulative amplitude
(AA) and phase shifts (A¢) to the time constant:

o} - .
MQthvﬁ[tp—rﬂe t”/ﬂsmd)p, (14)
T 0
oxhv ® ~ty /T
Ap= 4 1Jr%[tp—r+re P }cosd)p, (15)
T 0

where 8x;, =V2ACj},, / (2ky) (3xp, is the dc deflection due to
the photocapacitive force). This result is valid for very short
times after the voltage is abruptly returned to 0. It is especially
interesting as it relates the change in amplitude and phase with
the phase of the cantilever when the voltage is turned off,
¢p =0(t = tp)- By tuning fp, a phase shift, an amplitude change,
or a combination of both can be induced. The technique is fully
illustrated in Figure 9 where the amplitude data in Figure 9E
(AA) was obtained by voltage pulses alone. The voltage pulses
resulted in charging/discharging of the sample (PFB:F8BT on
ITO), which was also modelled as a single exponential in time:
V(t) = V1 — exp(—t/t.)]. This allowed for the amplitude to be
written as a function of #, and t. where it again displayed a
sinusoidal dependence on ¢p. Note that ¢, in Figure 9 refers to
the width of the voltage pulse, whereas ¢, used in the derivation
was the time at which the voltage was returned to zero.
Relabelling the width of the voltage pulses as 7, this yields
Iy = tl') +14; in other words the #, in Equation 14 and
Equation 15 can be tuned by changing the delay time #4. This is
shown in Figure 9E where the sinusoidal behaviour of A4 as a

627



Beilstein J. Nanotechnol. 2019, 10, 617—633.

A -t [0V E F
Vi k_’tp oV
] UL B
xm /\ t € _ 50@ i
"\ £ )
%100 < €
B _ T T E 2
45 F 4 = &
£ Al G 52T y
c <t 35 L { — § Z]q= T.=34+5ns
= =
i 15 | 1 =
S~ E 0 P | |
< < 0 1
10 10
D =1 [us]
) p LH
g L |
< 0 8 16

Time t [ms]

Delay time t4 [us]

Figure 9: “Experiments and simulations demonstrating subcycle time resolution in pk-EFM. (A) Subcycle voltage-pulse control experiment (PFB:F8BT
on ITO, h =250 nm). A voltage pulse of length t, is applied to the cantilever tip (top) at a delay of {4 relative to the cantilever oscillation (middle) for
100 consecutive cantilever oscillations. (B) The pulses shift the cantilever amplitude by AA.(C) Measured frequency shift and (D) phase shift, demodu-
lated with a 3-dB bandwidth of 4.8 kHz (blue) and 1.5 kHz (green). (E) The amplitude shift AA versus delay time tq4 for three representative pulse
lengths. (F) The normalized response AAnay/t, obtained by fitting data in (E) shows the cantilever wiring attenuating the response at short pulse
times. The gray line is a fit to a single-exponential cantilever charging transient.” Adapted with permission from [23].

function of 74 is clear. Figure 9F shows the maximum ampli-
tude change A4,,x as a function of the inverse pulse width
1/ ti” An exponentially decreasing amplitude change at smaller
pulse widths is clearly visible, which the authors explain by the
charge being unable to get in and out of the sample on these fast
timescales. The extracted time constant for the charging time,
T, was 34 + 5 ns.

Application to ionic transport measurements

From this voltage-pulse measurement it is clear that this tech-
nique can easily be extended to measure ionic transport. In fact,
it may even be best suited to this application as it requires only
a precisely timed voltage pulse instead of phase-locked voltage
and light pulses. This technique operates in much the same way
as the voltage-pulse averaging method previously described: A
parameter of the cantilever oscillation (be it phase, frequency
shift, or amplitude) is averaged over a long time period while a
coherent (i.e., phase-locked with respect to cantilever oscilla-
tion) repeating signal is applied over a much smaller time
period that induces a change in the measured parameter. By
changing the length of time that the ‘fast’ signal is allowed to
interact with the cantilever it can then be reconstructed by
relating the slowly varying parameter to the fast dynamics. Al-
though similar to pump—probe style measurements, these tech-
niques are unique in that they operate by changing the cumula-
tive interaction time between the probe and the sample instead

of simply capturing ‘snapshots’ of the evolution of the sample

dynamics as a function of time. This allows for sample dynam-
ics that are driven only while the tip—sample coupling is
engaged to be measured, such as ionic transport, for example.
Directly applying this technique to measure ionic transport,
however, would require the addition of a stretching factor, f,
into the exponential as previously discussed. The main compli-
cation in this case is performing the time-integral over the
capacitive gradient, which was assumed to be a simple expo-
nential in Equation 14 and Equation 15. The integral will not
have a closed-form solution, which would require either a series
expansion approximation or a numerical approximation in order
to extract useful information from the data. This will likely
result in the same challenge as we encountered with the voltage-
pulse averaging technique where the least-squares fitting has
many local minima for the fit parameters resulting in a strong
dependence of the fit results on the initial conditions. Nonethe-
less, this technique is promising in terms of achieving better
time-resolution in EFM-based measurements.

Intermodulation spectroscopy

Background and implementation

Significant progress has clearly been made in measuring elec-
trostatic force microscopy signals in the time domain. The main
challenges of the techniques discussed thus far have been the
detection methods (specifically, bandwidth limitations) and
various assumptions and approximations that have been made,
which limit the useful parameter space of some experiments.
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Looking instead in the frequency domain, one very recent
method of extracting fast sample dynamics appears to be a
promising alternative to many of these challenges. Intermodula-
tion spectroscopy, developed by Borgani and Haviland [20],
utilizes the spectral response of a cantilever near resonance due
to an applied pulse train (optical or electrical) in order to probe
sample dynamics. This technique exploits the non-linear
tip—sample interaction due to the applied pulse train that results
in a spectrum of peaks at various sum and difference frequen-
cies, illustrated in Figure 10. Each of these frequency compo-
nents (referred to as intermodulation products, or IMPs)
contains information about the interaction, which can be
extracted by looking at the Fourier series expansion of the
tip—sample interaction. Since the interaction is purely capaci-

tive, the force is given by

which contains two separate variables each with their own peri-
odicity: the capacitive gradient 0C/0z, and the voltage V. Since
V is controlled by the applied excitation, it is periodic in g, the

(a) @ =200, =27 x 500 Hz
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repetition rate of the applied pulses. The Fourier series for V2(¢)
is therefore given by:

~+00

y? (1) = Z v;e

Jj=—©

i(wat+9j) (16)

In the case where the sample capacitance remains constant (in a
conducting sample, for example), the capacitance gradient has
the same periodicity as the cantilever oscillation since the canti-
lever sweeps through the gradient as it oscillates. The Fourier
series expansion for

1 oc [z(t)]

2 0z
can then be written as

(a7

10C < | i(kopog)
__[Z(t)]: z ckel D k .
2 0z s
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Figure 10: Synthetic data of cantilever deflection spectrum around the fundamental resonance frequency, wg =21 x 247 kHz, with:
(a) 6 = 2 x 500 Hz and a quality factor typical for ambient measurements, Q = 200; (b) & = 2m x 500Hz and Q = 5000, typical of vacuum measure-
ments; (c) & = 21 x 50 Hz and Q = 200; and (d) & = 2 x 50 Hz and Q = 5000.
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The authors proposed three distinct excitation schemes based on
the frequency of the applied pulses, o, relative to the mechani-
cal drive frequency op: resonant excitation, where o = op + 9,
with & < ®; sub-resonant excitation, where mg =38 < wp; and
super-resonant excitation, where og = 2op + 6. For each excita-
tion scheme they showed the Fourier coefficients for the first
six IMPs, which have the form

Py, = ckvjei(q’kiej)

For resonant excitation, they determined that taking the ratio
and product of certain pairs (}:“n 4+ and I:",,,) yields quantities
that depend only on the electrical response, which completely
eliminates the dependence on the capacitance gradient. Thus, to
extract information about the system using these quantities does
not require any assumptions about the functional form of the ca-
pacitance gradient. The only (major, and possibly limiting)
assumption is that the sample is metallic (see discussion
below). The authors also derived similar ratios for both the sub-
resonant and super-resonant schemes, allowing them to
directly compare the time resolution and signal-to-noise ratio of
each.

Validation measurement

As a validation measurement, they applied electrical pulses with
known exponential charging times between a conducting tip and
sample and extracted the rise and fall time constants, 1, and 1y,
using an analytical model for V2(r). This allows for a high-
fidelity reconstruction of the true signal using only a few

(a) Resonant

(b) Sub-resonant
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Fourier coefficients. Using the resonant excitation scheme, they
accurately extracted the time constants down to ca. 20 ns,
approaching the theoretical limit they derived for the technique.
Their results are shown in Figure 11 for each of the three excita-
tion schemes. Both the resonant and super-resonant schemes
allowed signals more than an order of magnitude faster than the
oscillation period of the cantilever to be extracted.

They report that mapping of system dynamics can be done even
at standard imaging speeds due to the simultaneous acquisition
at multiple frequencies using a multi-frequency lock-in ampli-
fier. This is a drastic improvement over many other time-
resolved EFM variations that require lengthy averaging times,

which makes spatial mapping difficult and time consuming.

Challenges and application to ionic transport
measurements

Thus far, measurements using this technique have only been
performed under ambient conditions and on a conducting sam-
ple with known voltage pulses. One foreseeable challenge will
be in performing measurements under vacuum conditions,
which is typically beneficial due to the large increase in quality
factor that leads to a greater force sensitivity. However, for
intermodulation spectroscopy measurements, this will lead to a
smaller frequency window in which quality factor enhancement
will be available to boost the relative amplitudes of the IMPs.
This is illustrated in Figure 10 where panel (a) shows synthetic
data for a standard cantilever in ambient (Q = 200) with several
IMPs clearly visible above the noise. Figure 10b shows the
exact same simulated experiment with a much higher quality

(c) Super-resonant
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Figure 11: “Results from simulations and from the experimental validation for the proposed excitation schemes: (a) resonant, (b) sub-resonant and
(c) super-resonant. The cantilever has a resonance frequency of about 21 x 250 kHz, a value of & = 21 x 500 Hz is used in the sub-resonant scheme
and & = 21 x 50 Hz in the resonant and super-resonant schemes. The fittted values T¢ are plotted versus the value programmed in the simulation and
in the MLA. The gray dashed lines have slope unity and indicate where a perfect data point would be. For the experimental data, a series of

256 measurements is performed at each value of programmed T1g: the blue dots indicate the median of the reconstructed values, and the error bars in-
dicate the inter-quartile range. The vertical red dashed lines mark the time resolution calculated in Sec. IV.” of [20]. “(a) in the resonant scheme, both
simulations without noise (green dots) and experiments fail to reach the predicted time-resolution, due to the violation of Eq. (7). (b) in the sub-reso-
nant scheme, simulations with detector and force noise (orange dots) and experiments show the predicted time resolution. (c) in the super-resonant
scheme, simulations without noise approach the predicted time resolution, while experiments are limited to about 50 ns. Simulations with detector and
force noise reproduce the experimental data.” Reproduced with permission from [20], copyright 2019 AIP Publishing.
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factor (Q = 5000), which is typical for vacuum applications. In
both cases 6 = 2w x 500 Hz. Reducing 6 to 50 Hz, as was done
for the resonant and super-resonant experiments, yields many
more IMPs above the noise level as shown in Figure 10c. Si-
multaneously demodulating several of these components allows
for accurate reconstruction of the time-varying voltage. Howev-
er, in the case of high O, we see that many of the peaks are now
well below the noise level due to the size of the resonance peak
compared to the IMP spacing (3). The signal-to-noise ratio is
significantly lower in this case, requiring a much smaller value
of & and, in turn, longer averaging times. Note that since the
time resolution is proportional to & (Equations 15 and 16 in
[20]), using a smaller 6 values actually results in better time

resolution, at the expense of longer measurement times.

Another complication that may be encountered will be ob-
served when performing measurements on samples with non-
static capacitance gradients. For the analysis performed in this
case the capacitance was assumed to have only the periodicity
of the cantilever oscillation, op, which is, of course, valid
because the sample is a conductor. This will not be the case
when the capacitance gradient has an explicit time-dependence,
as with many photovoltaic and ionic conductors. In these sam-
ples, the tip—sample capacitance gradient will evolve with time
after the application of the pulse (be it optical or electronic) and
will therefore have a frequency component matching that of the
applied pulses, og. This is due to sample dynamics such as pho-
toexcitation or ionic transport [12,23,55]. This may make ex-
tracting the time response of the sample much more difficult if
the capacitive Fourier coefficients cannot be eliminated by
taking ratios of certain components. There may be methods of
minimizing this effect, especially in the case of optical pulses
for measuring time-resolved photocapacitance similar to the
pk-EFM method discussed previously [23]. In this implementa-
tion, Dwyer et al. applied a large bias between the tip and sam-
ple to engage the coupling, having the fortunate side-effect of
rendering the measurement insensitive to small variations in
surface potential as the sample charges. This results in a
response that is only sensitive to the time-varying capacitance,
simplifying the analysis significantly. Similar techniques may
be required to extract information from samples where large
time-dependent changes in capacitance and surface potential are
expected.

Conclusion

We have reviewed several established techniques that achieve
time resolution using EFM and examined their assumptions,
limitations, and potential applications. Direct time-domain EFM
is the most straightforward to implement, but is limited to
measuring on timescales much slower than the cantilever oscil-

lation. The new technique we have demonstrated — voltage-
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pulse averaging EFM — allows for time resolution much faster
than the cantilever oscillation period, but requires a priori
knowledge of the time-evolution of the signal and the func-
tional form of the tip—sample capacitance. FF-trEFM, which
uses post-processing to extract the instantaneous frequency of
the cantilever, allows for rapid data acquisition while scanning
and high spatial resolution, but suffers from a nonlinear varia-
tion of the measured signal with the time constant of the sam-
ple response for fast responses. Phase-kick EFM provides a
pathway to extract sample dynamics indirectly by observing
cumulative changes in the cantilever oscillation, but relies on
the assumption that the oscillation amplitude is small with
regards to the capacitance gradient, which can be violated for
large amplitudes and/or small tip—sample separations. Finally,
we have looked in detail at intermodulation spectroscopy,
which exploits the non-linear signal mixing of the cantilever
oscillation and an applied pulse train by recording the various
frequency components corresponding to specific Fourier coeffi-
cients. This technique may encounter difficulties in extracting
information for measurements where the tip—sample capaci-

tance also changes as a result of the applied pulse train.

Despite many of these assumptions and potential limitations, all
of these techniques represent great strides in the advancement
of time-resolution in EFM. With the need for measurements of
faster and faster dynamics with higher spatial resolution, the
role of time-resolved EFM as a key tool is more significant than

cver.

Supporting Information

Supporting Information File 1

MATLAB code to simulate FF-trEFM measurements with
a stretched exponential response.
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-10-62-S1.m]
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