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Experiments and theoretical calculations of conservative forces measured by frequency modulation atomic
force microscopy (FM-AFM) in vacuum are generally in reasonable agreement. This contrasts with dissipative
forces, where experiment and theory often disagree by several orders of magnitude. These discrepancies have
repeatedly been attributed to instrumental artifacts, the cause of which remains elusive. We demonstrate that
the frequency response of the piezoacoustic cantilever excitation system, traditionally assumed flat, can actually
lead to surprisingly large apparent damping by the coupling of the frequency shift to the drive-amplitude signal,
typically referred to as the “dissipation” signal. Our theory predicts large quantitative and qualitative variability
observed in dissipation spectroscopy experiments, contrast inversion at step edges and in atomic-scale dissipation
imaging, as well as changes in the power-law relationship between the drive signal and bias voltage in dissipation
spectroscopy. The magnitude of apparent damping can escalate by more than an order of magnitude at cryogenic
temperatures. We present a simple nondestructive method for correcting this source of apparent damping, which
will allow dissipation measurements to be reliably and quantitatively compared to theoretical models.
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I. INTRODUCTION

Since its invention in 1991, frequency modulation atomic
force microscopy1 (FM-AFM) has proven to be an indispens-
able method for probing forces at the atomic scale in vacuum
environments. The heart of the instrument is a cantilever that
is self-excited at its natural frequency, which shifts upon inter-
action with a sample under study. The cantilever oscillation
amplitude is kept constant by an automatic-gain-controller
(AGC), which adjusts the amplitude of the drive signal used
to actuate the cantilever by piezoacoustic excitation. One
nominal advantage of FM-AFM over other techniques is the
decoupling of conservative and dissipative forces: the shift
of the self-excited oscillation frequency is proportional to the
effective interaction stiffness,2 while the drive amplitude of
the AGC directly relates to the interaction damping with negli-
gible coupling between both signals.3,4 This situation should
greatly simplify the interpretation of data acquired by FM-
AFM.

The unprecedented understanding and control of tip-sample
conservative forces in FM-AFM has enabled impressive
room-temperature manipulation of single atoms5 and chemical
identification of individual surface atoms,6 for example. On the
other hand, the poorly understood dissipation measurements
using FM-AFM have mainly been the source of questions7 and
controversies.8,9

Dissipation contrast mechanisms in FM-AFM have
been extensively studied from both experimental10–17 and
theoretical18–28 perspectives. Although most postulated dis-
sipation mechanisms have been experimentally verified, the
variability in the data often exceeds theoretical predictions
by orders of magnitude.29,30 The large discrepancies between
theory and experiment have led to the notion of “apparent
damping”—also known as “apparent dissipation.”31 It refers
to any change in the drive amplitude that is not related to
tip-sample dissipative forces; rather, it is assumed to be caused
by nonideal behavior of the instrument. Despite numerous
investigations,11,29,32 the large variability in experimental
observations remains elusive.

At the forefront of nanoscience, many experiments
performed at cryogenic temperatures identify theoretically
predicted physical processes with FM-AFM dissipation mea-
surements. The degenerate energy-level structure in quantum
dots was identified by measuring the amplitude dependence
of dissipation.33–35 The suppression of electronic friction
on Nb films in the superconducting state was identified by
a change in the power law between the dissipation and
bias voltage (V 2 → V 4).36 The chemical identification of
tip-apex termination37 and recognition of atomic species
at semiconductor surfaces38 are aided by measurements of
single atomic-contact adhesion studied by dissipation-distance
spectroscopy.

Our detailed analysis of FM-AFM clearly demonstrates that
drawing robust conclusions from dissipation experiments re-
quires an accurate measurement of the transfer function of the
piezoacoustic excitation system used to oscillate the cantilever.
Omitting this measurement can lead to false interpretation of
changes in the drive signal, which relate to the physics of
the FM-AFM system as opposed to tip-sample physics. For
example, the piezoacoustic transfer function can cause contrast
inversion at step edges or in atomic contrast in dissipation
images, as well as change the dependence between the drive
signal and bias voltage from quadratic to quartic, or com-
pletely distort dissipation-distance spectroscopy results both
quantitatively and qualitatively. Notably, although the piezoa-
coustic transfer function affects measurements performed at
any temperature, it becomes exceedingly problematic at cryo-
genic temperatures at which sensitive dissipation experiment
are being performed.

In this study, we discuss the apparent damping caused
by the piezoacoustic excitation transfer function. Recent
communications39,40 have derived theories and methods for
eliminating this source of apparent damping in air and
liquid environments. Here, we present a theory tailored for
vacuum environments, demonstrate a noninvasive method for
its implementation, and assess its impact on a wide range of
dissipation experiments at different temperatures.
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FIG. 1. (Color online) The amplitude |X | and phase θX compo-
nents of the piezoacoustic excitation transfer function X (ω) acquired
at two different temperatures. This measurement was obtained by
piezoacoustically driving a cantilever well below its resonance
frequency (∼160 kHz) and detecting its response with a lock-in
amplifier across [70, 100] kHz. The mechanical cantilever transfer
function is approximately flat within this frequency range. Both |X |
and θX are much more corrugated at lower temperatures as the quality
factors of mechanical components of the AFM increase. Assuming
that X (ω) is flat leads to a false interpretation of the drive signal
acquired during an experiment. Our choice for using a logarithmic
scale for |X | is important and justified elsewhere (see supplementary
material, Sec. 244).

II. MOTIVATION

Figure 1 displays a measurement of the transfer function
of the piezoacoustic excitation system X (ω), which describes
how the piezoelectric transducer converts the drive voltage of
the AGC into an effective force felt by the cantilever tip. This
measurement was acquired by piezoacoustically driving the
cantilever well below resonance where its transfer function is
nearly flat and the driven cantilever response reflects changes
in X (ω). Figure 1 demonstrates that X (ω) is far from flat
in vacuum environments: hardware components mechanically
coupled to the cantilever and piezoelectric transducer cause
spurious resonances. In fact X (ω) can be more corrugated
in vacuum than in liquid environments, where it is typically
referred to as the “forest of peaks” (see supplementary
material, Sec. 141). Furthermore, cooling the vacuum AFM to
77 K greatly accentuates features inX (ω), as seen in Fig. 1; just
as the cantilever quality factor Q increases, the quality factor of
each spurious resonance also increases. These measurements
of the phase θX and amplitude |X | components ofX (ω) clearly
demonstrate that both carry a strong frequency dependence.
This has profound effects on FM-AFM measurements, as
described in the following paragraphs.

The frequency dependence of θX , commonly assumed
negligible, affects the tracking of the cantilever resonance
frequency and thus modifies the measured frequency shift �ω

caused by conservative interactions with the sample.42,43 This
problem disappears as Q → ∞ (see supplementary material,

Sec. 244), such that the effect of θX can usually be neglected
when the conservative force is calculated from �ω in vacuum
experiments where Q is large. However, it is important to note
that the cantilever phase is not kept constant in the presence of
a nonflat θX , regardless of Q. This is explained by the fact that
the cantilever self-oscillates by positive feedback, such that the
total phase around the self-excitation loop is always an integer
multiple of −360◦. If θX varies by 10◦ upon some frequency
shift, the cantilever phase will change by −10◦ to compensate.
This fact holds even if the phase spectrum of the self-excitation
electronics is flat compared to θX , as was verified on our system
(see supplementary material, Sec. 445). Driving a cantilever
off resonance is less efficient, resulting in an increase of the
drive amplitude necessary to maintain a constant oscillation
amplitude. Importantly, this increase in drive amplitude is
not related to tip-sample dissipative processes—it is purely
instrumental.

The amplitude spectrum |X | does not affect the tracking of
the cantilever resonance, however, it determines the efficiency
for driving the cantilever at any given frequency. If |X |
increases by 10% upon some frequency shift �ω, the drive
amplitude will decrease by 10% simply to maintain a constant
cantilever amplitude. Again, this decrease in drive amplitude
is not related to tip-sample dissipative processes.

These heuristic explanations suggest that θX and |X | must
be considered when deriving the relationship between the drive
amplitude and the damping due to tip-sample interaction. In
other words, the drive-amplitude signal is expected to have a
frequency dependence which must be corrected.

III. THEORY

This section presents the derivation which relates the
drive amplitude to the tip-sample damping in FM-AFM in
vacuum environments. Alternatively, this derivation can also
be performed in the time-domain based on the approach of
Hölscher et al.;46 see supplementary material, Sec. 3.47

To high accuracy, a cantilever in vacuum environments can
be modeled as a damped harmonic oscillator with a transfer
function C(ω) in units of m/N, which describes the response
of the cantilever to a driving force exerted by the piezoacoustic
excitation system. The amplitude component of C(ω) is defined
by (see Appendix)

|C(ω)| = − sin θC(ω)

ω × γ
, (1)

where θC(ω) is the phase spectrum of the cantilever, and γ

is the damping (in Ns/m). Although this form of the transfer
function is mathematically identical to the more conventional
form, it provides a more useful way to describe the cantilever
in the context of FM-AFM as it allows us to directly distinguish
how changes in phase, drive frequency, and damping affect the
cantilever amplitude response.

With this definition, the cantilever response before any tip-
sample interaction is simply

|C(ωs)| = − sin θCs

ωs × γs

, (2)

where θCs , ωs , and γs are the phase of the cantilever,
the self-excited oscillation frequency, and the damping; the
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FIG. 2. The transfer functions comprising the self-excitation
loop are represented as four grey boxes. The evolution of the
self-excitation signal is described within the loop, along with
units. The cantilever tip interacts with the sample; the bias voltage
Vb between the two is adjustable. The AGC maintains a constant
cantilever amplitude A by modulating the drive amplitude Vd ; this
is valid if the amplitude response of the detection system |D| is
flat, as assumed through this article (dropping this assumption leads
to a more complicated derivation40). The derivation in this article
also assumes that self-excitation electronics (θD + θS ) have flat phase
spectra, where θD is the phase spectrum of the detection system.

subscript “s” denotes measurements taken at the start of the
experiment before any tip-sample interaction occurs. The
intrinsic cantilever damping γs is typically estimated by
γs ≈ k/Qωs , where k and Q are the stiffness and quality factor
of the unperturbed cantilever.

During the experiment, the cantilever transfer function (see
Fig. 2) undergoes perturbation due to tip-sample conservative
interactions, causing the self-excited oscillation frequency ω

to vary. Also, the perturbed cantilever damping becomes γ =
γs + γtip, where the additional damping γtip relates to the tip-
sample dissipative interactions. As described in the previous
section, the phase of the cantilever θC(ω) varies to compensate
for changes in the excitation system phase response �θX (ω). In
the limit that the self-excitation electronics respond instantly,
the cantilever phase is θC(ω) = θCs − �θX (ω), where the
convention �θX (ωs) = 0◦ is adopted for simplicity. Finally,
from Eq. (1), the resulting perturbed cantilever amplitude
transfer function becomes

|C∗(ω,γtip)| = − sin (θCs − �θX (ω))
ω × (γs + γtip)

. (3)

Note that θCs , θX , γs can be measured before the experiment,
and the self-excited oscillation frequency ω is measured during
the experiment; therefore, γtip is the only unknown variable
remaining to fully define |C∗(ω,γtip)|.

In order to maintain a constant cantilever oscillation
amplitude, the AGC adjusts the drive amplitude to account
for changes in the amplitude response of the piezoacoustically
driven cantilever |X | × |C∗(ω,γtip)|. Measuring the drive

amplitude during the experiment allows determining γtip as
follows.

For a given drive amplitude Vd , the resulting cantilever
oscillation amplitude A can be calculated by

A = Vd × |X | × |C|, (4)

as can be understood from Fig. 2. This equation holds
under the approximation that the detection system, which
converts the cantilever displacement into a measurable voltage,
has a frequency independent (flat) transfer function. This
approximation is usually valid in vacuum environments48 and
is assumed herein. Throughout the whole experiment, A is
kept constant by the AGC such that

Vd × |X (ω)| × |C∗(ω,γtip)|︸ ︷︷ ︸
during the experiment

= Vs × |X (ωs)| × |C(ωs)|︸ ︷︷ ︸
start of the experiment

, (5)

where Vs is the drive amplitude measured at the start of the
experiment. Rearranging Eq. (5) results in

� = Vd

Vs

=
∣∣∣∣X (ωs)

X (ω)

∣∣∣∣ ×
∣∣∣∣ C(ωs)

C∗(ω,γtip)

∣∣∣∣, (6)

where the normalized drive-amplitude signal � is defined for
the convenience of avoiding units of volts. Notice that the drive
signal � changes as a function of |X |, which can be measured
before or after the experiment, as will be thoroughly described
in the next section. Both |C|s are defined by Eqs. (2) and (3)
with γtip as the only remaining unknown variable. Solving
Eq. (6) allows us to infer the tip-sample damping γtip from the
measured drive signal � by

γtip = γs

(
� − 1

)
, (7)

where [the Japanese katakana symbol pronounced “ne”] is
defined as

(ω) =
∣∣∣∣ sin(θCs − �θx(ω))

sin(θCs)

∣∣∣∣︸ ︷︷ ︸
θ−f actor

−1 ∣∣∣∣ X (ω)

X (ωs)

∣∣∣∣︸ ︷︷ ︸
x−f actor

−1 (
ω

ωs

)
︸ ︷︷ ︸

˜1

. (8)

As can be understood from Eq. (7), is the unitless
calibration factor that corrects for the frequency dependence
of the drive signal �, which otherwise can be mistaken
for tip-sample damping. Note that for a purely conservative
interaction, the drive-amplitude signal varies as � = , which
correctly results in γtip = 0 if processed by Eq. (7). Incorrectly
assuming a constant X (ω) by omitting in Eq. (7) results in
nonzero damping γs

( −1
)
, which is designated as “apparent

damping.” In other words, apparent damping in the context
of this article refers to the interpretation of the frequency
dependence ( ) of the drive signal using standard FM-AFM
theory4,32,49 rather than Eq. (7).

In Eq. (8) is broken down into the θ -factor (“phase
factor”) and X -factor (“excitation factor”), which describe
how the drive-signal calibration is affected by a nonflat θX
and |X |, respectively. These two factors were heuristically
described in the Motivation section. Finally, we henceforth
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omit the ω/ωs factor from the discussion because it is usually
two to three orders of magnitude smaller than the X -factor in
vacuum environments.

In most FM-AFM experiments, the accuracy in determining
γtip is limited by the accuracy and precision in measuring ,
consisting of |X |, θX , and θCs . This will be investigated in the
following sections.

Before proceeding, we note that tip-sample dissipated
power Ptip is proportional to γtip within the approximation
ω/ωs ∼ 1, such that

Ptip = Ps

(
� − 1

)
, (9)

where the starting cantilever dissipated power Ps is typically
approximated by Ps ≈ 1

2kωoA
2/Q.

IV. CHARACTERIZING THE EXCITATION SYSTEM

This section presents the protocol used to measure the
piezoacoustic excitation transfer function X , which is subse-
quently used to determine the starting phase of the cantilever
θCs .

Piezoacoustically driving the cantilever and recording its
response inevitably leads to the combined transfer function
XC of the cantilever and the excitation system, as can be
understood from Fig. 2. However, by independently measuring
the cantilever transfer function C, the X can be isolated by
division. Applying a small amplitude AC bias voltage between
the cantilever and sample results in an electrostatic driving
force.50 By sweeping the frequency of this AC bias, the
transfer function of the cantilever C can be measured across
any desired frequency range. This independent measurement
of C allows the isolation of X , as shown in Fig. 3. Note that
the electrostatic excitation transfer function is assumed flat for
this measurement.

For technical clarity, the exact protocol used to obtain the
data in Fig. 3 is now explicitly outlined:

(i) Self-excite the cantilever with an AGC amplitude set
point of 1.6 nm and adjust the phase shifter to minimize the
drive amplitude (the self-excited oscillation frequency becomes
156.30 kHz).

(ii) Engage the tip-sample distance feedback controller with
a frequency shift set point of −10 Hz after applying a 2 V
tip-sample DC bias (this approaches the tip to 10–20 nm above
the sample).

(iii) Disable the tip-sample distance feedback to fix the tip-
sample distance.

(iv) Set the tip-sample bias to 10 V, thereby shifting
the self-excited oscillation frequency to 155.92 kHz. (This
optional step reduces the necessary dynamic range necessary
to perform the measurements in steps vi and vii and may reduce
the effects of tip-sample drift on the estimation of X in step
viii.)

(v) Disable cantilever self-excitation.
(vi) Measure the transfer function XC by piezoacoustically

driving the cantilever (Vd ) and measuring the cantilever
response (VA) across [156.00 kHz, 156.33 kHz] (this frequency
range was selected to cover the frequency range used through-
out the actual experiment).

FIG. 3. (Color online) On the primary axes (black), the driven
transfer functions of the cantilever for both the piezoacoustic (XC)
and the electrostatic (C) methods of excitation are plotted in their
(a) amplitude and (b) phase components. For this measurement, a
∼10 V bias was applied to the cantilever to shift the resonance
frequency to below 156 kHz, whereas this measurement was only
taken above 156 kHz: this reduces the necessary dynamic range for
measuring C and XC because the measurement is taken where C is
flatter. The dotted lines are extrapolated and only plotted for clarity.
Dividing these transfer functions results in the piezoacoustic transfer
function X = XC/C, plotted on the secondary axes (blue/gray). The
resonance frequency at the zero contact potential difference is labeled
fo, which corresponds to a null frequency shift in Fig. 4.

(vii) Measure the transfer function C by driving the cantilever
with a tip-sample AC bias (Vb) and measuring the cantilever
response (VA) across [156.00 kHz, 156.33 kHz].
(viii) Infer the excitation transfer function byX = XC/C and
calculate its magnitude |X | and phase θX .

This protocol was performed before and after the exper-
iment, which is described in the next section, to verify that
the transfer function X remained constant throughout the
experiment. Linearity of the cantilever response was verified
by acquiring both transfer functions at double the drive voltage.

Now, this measurement of X will be used to determine the
starting phase of the cantilever θCs . Typically, the AFM user
minimizes the drive amplitude at the start of the experiment
by adjusting the phase shifter in an attempt to drive the
cantilever on resonance. However, this method locates the
maximum of |XC|—not |C|. Solving for ∂ |XC| /∂f = 0 (see
supplementary material, Sec. 551) returns a starting cantilever
phase

θCs = atan
2Q

(αXfo − 1)
, (10)

where the normalized slope of the amplitude spectrum αX =
|X |−1 ∂ |X | /∂f is evaluated at the resonance frequency fo.
Applying Eq. (10) to the data from Fig. 3 results in θCs =
−90.8◦ ± 0.5◦. Note the Q dependence in Eq. (10); the
commonly used drive-minimization method can misidentify
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the true cantilever resonance by more than 10◦ in situations
where Q ∼ 1000 (see supplementary material, Sec. 551).

Now |X |, θX , and θCs can be used to determine , according
to Eq. (8), allowing an accurate recovery of the damping signal
in the following experiment.

V. EXPERIMENT

A home-built AFM52 equipped with a piezoacoustic drive
and a RF modulated interferometer53 was cooled to ∼77 K. A
tip-side platinum-coated cantilever was approached to a height
of a few nm above an octanethiol-covered gold surface. The
cantilever resonance frequency was 156 301 Hz with a quality
factor near 15 000. The cantilever oscillation amplitude was
set to 1.6 nm. Sweeping the sample bias voltage resulted in
a typical parabolic frequency shift signal vs voltage curve
(not shown). In Fig. 4(a) the frequency-shift signal �ω and
drive-amplitude signal � are plotted against each other. The
calculated is overlaid and shows that most of the drive signal
� originates from coupling with �ω due to the non-negligible
frequency dependence ofX (ω). Note that no fitting parameters
were used; (ω) was fully determined before the experiment.
Applying Eq. (7) recovers the true damping signal γtip, plotted
in Fig. 4(b), which is free of apparent damping. There is no
measurable damping in between 0 Hz and −200 Hz. Beyond
−200Hz, true damping is observed only at a positive bias
voltage, providing the evidence that γtip is not caused by
coupling with �ω. The exact cause of the polarity dependence
of this dissipation is currently under investigation. Clearly,
assuming a flat X (ω) would have resulted in an overwhelming
amount of apparent damping, which would have affected our
interpretation of the tip-sample physics. It is instructive to note

FIG. 4. (Color online) (a) The normalized drive amplitude � was
measured while sweeping the sample bias voltage twice, as shown
in the inset, and the same data is replotted vs measured frequency
shift. The drive amplitude predicted for a conservative interaction
( ) is plotted and shows that most of the measured drive-amplitude
signal is an instrumental artifact. (b) Using Eq. (7), the damping was
recovered (γtip). Assuming a flat piezoacoustic excitation transfer
function would have resulted in additional apparent damping, also
plotted, and the additional true damping (γtip) would have been
overestimated by almost 3×.

that simply subtracting the background ( ) from the drive
signal � to isolate the true damping would have overestimated
γtip by nearly a factor of 3, because follows a multiplicative,
not additive, relationship with �, as seen in Eq. (7).

We now investigate the dominant cause of the frequency
dependence of . In our particular experiment, the X -factor
dominated . The θ -factor only began to affect noticeably
beyond −250 Hz and represented only 5% of the frequency
dependence of at −300 Hz. This is due to the highly
nonlinear behavior of the sine function in Eq. (8), which
governs the impact of θX on the drive signal �. Small phase
deviations about θCs = −90◦ have no measurable impact on

, because the sine function remains fairly flat. Once the
cantilever phase deviates by more than ±10◦ from resonance,
the θ -factor becomes noticeable.

VI. CHARACTERIZATION OF SEVERAL AFMS

This single experiment was adequate in demonstrating
the utility of Eq. (7). However, properly characterizing six
AFMs across the [60, 140] kHz bandwidth (see supplementary
material, Sec. 754) allows us to make more a general statement
about the frequency dependence of the drive amplitude in
FM-AFM. Although AFMs should be characterized on an
ad hoc basis to determine their susceptibility to apparent
damping, the following investigation allows us to discuss the
general impact this source of apparent damping has had on
different types of FM-AFM experiments in vacuum.

The figure of merit which quantifies the impact of the
X -factor is the normalized derivative of the amplitude transfer
function αX , defined in Eq. (10). Assigning αX units of
%/10 Hz, which are equal to kHz−1 used previously,39

describes this derivative as the percentage change in the drive
amplitude � for a 10 Hz frequency shift due to a conservative
interaction. In other words, αX summarizes the coupling
between � and �ω caused by the X -factor. Note that αX
was in between 2.5%/10 Hz and 6.5%/10 Hz for the data in
Fig. 4, which led to significant apparent damping (up to 3×
the intrinsic cantilever damping).

Our study of six AFMs suggests that |αX | > 1%/10 Hz
should be commonly observed at 300 K on most vacuum
AFMs. We have noticed that AFMs for which the cantilever
is epoxied directly to the piezoelectric transducer have lower
|αX | values. Figure 1 is representative of the excitation transfer
function of such an AFM which has a slow-varying |X |
that is characterized by a small number of resonances at
300 K. In general, the coupling value αX is as likely to be
negative as positive. However, if there is a large mechanical
resonance just above the typical operating frequency, an AFM
user can expect a consistently positive apparent damping for
negative frequency shifts. This would be the case, for example,
if experiments were always performed around 85 kHz on
our system at 300 K (see Fig. 1). On the other hand,
AFMs with intricate cantilever holders, where the piezoelectric
transducer is far from the cantilever, have an |X | that is highly
corrugated due to the multitude of hardware components
that are acoustically driven along with the cantilever (see
supplementary material, Sec. 755). Such an AFM can have
|αX | > 3%/10 Hz for every tenth experiment performed at
300 K. Negative and positive coupling values αX are expected
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to be equally likely, even between cantilevers with similar
resonant frequencies.

The magnitude of the θ -factor depends on the slope of the
phase transfer function βX , in units of ◦/10 Hz. The discussion
about αX in the previous paragraph qualitatively applies to βX ,
although typically the value of βX (in ◦/10 Hz) is roughly half
the value of αX (in %/10 Hz). Whereas the previous discussion
concerning αX was independent of βX , the reverse is not true:
a nonzero αX causes the starting phase of the cantilever θCs �=
−90◦ and affects the impact that βX has on the θ -factor, as
can be understood from Eq. (8). The quantitative effects of a
nonzero βX on the drive signal are highly nonlinear, far from
intuitive, and should be assessed on an ad hoc basis.

As shown in Fig. 1, the excitation transfer functionX (ω) has
a strong temperature dependence. The X (ω) of our home-built
AFM was tested at 300, 77, and 4 K, with |αX | values larger
than 0.4, 2.6, and 10%/10 Hz, respectively, affecting one tenth
of the studied frequency range. The corresponding values of
|βX | were 0.2, 1.3, 5◦/10 Hz. Roughly speaking, the problem
of apparent damping is 25× larger at 4 K than it is at 300 K on
our system. These observations are consistent with previous
reports of exceedingly large apparent dissipation occurring at
low temperatures.29

VII. SIMULATIONS

In this section, we discuss different experiments performed
using FM-AFM to gauge the impact of the piezoacoustic
excitation transfer function characterized in the previous
section. The first subsection elaborates on the quantitative and
qualitative effects of apparent damping in force spectroscopy.
The second subsection deals with apparent damping observed
in constant frequency shift FM-AFM imaging.

A. Force spectroscopy

The difference in apparent damping between room temper-
atures and cryogenic temperatures is not only quantitative.
Whereas αX and βX , defined in the previous section, are
typically fairly constant for a single experiment performed at
300 K, they can change dramatically as a function of frequency
during a single experiment at 77 K, and especially at 4 K,
because X (ω) can be highly corrugated within a frequency
window as small as 100 Hz.

The excitation system transfer function was acquired at 4 K
just above the cantilever resonance of ∼157.5 kHz. Figure 5(a)
shows one of the many mechanical resonances which afflict
X . Note that such mechanical resonances are plentiful even
though the cantilever is glued directly to the piezoelectric
transducer—inevitably, the cantilever is mechanically coupled
to all the AFM hardware and its countless resonances.
Figure 5(b) demonstrates that recording a transfer function of
the driven cantilever (XC) does not provide a clear indication
that the cantilever is above or near a mechanical resonance,
especially if the amplitude transfer function is plotted on a
linear scale (see supplementary material, Sec. 244).

In Fig. 5(c) a drive signal � was simulated assum-
ing a purely conservative electrostatic interaction for both
cantilevers defined in Fig. 5(b). The maximum frequency shift
was −50 Hz, corresponding to a bias voltage of ±5V . The

FIG. 5. (Color online) (a) The excitation system transfer function
X (ω) was measured at 4 K. (b) The driven cantilever response
is modeled for both resonance frequencies indicated by arrows
in (a). In either case, the driven transfer function does not seem
problematic because the high Q value (105) of the cantilever provides
a seemingly clean driven response. (c) An experiment is simulated for
both cantilevers in (b), assuming a purely conservative electrostatic
interaction with a quadratic dependence �f ∼ V 2; the ±5 V bias
voltage corresponds to a frequency shift of −50 Hz. The dotted
line represents the ideal case where the excitation transfer function
is flat. (d) The same experiment is simulated by assuming a true
tip-sample dissipation, which scales as γtip ∼ V 2. At ±5 V bias, the
tip-sample damping is equal to the intrinsic cantilever damping in
this simulation. Clearly, the drive-amplitude signal strongly depends
on X (ω).
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large variations and multiple peaks in the drive signal are
representative of what we observe most of the time in our
experiments at 4 K. Combined with Fig. 4, this simulation
illustrates that the frequency dependent calibration ( ) of the
drive amplitude can increase, decrease, or be highly corrugated
as a function of frequency.

In the simulated data starting at 160.45 kHz, was
dominated by the X -factor (by >98%). However, for the data
starting at 160.35 kHz, the θ -factor exceeded the X -factor at
frequency shifts beyond −45 Hz. The high Q-factor of the
cantilever (105) ensured that the drive-minimization method
accurately set the starting cantilever phase near −90◦ within
1◦, but the steep phase spectrum of the excitation system
(〈βX 〉avg = −8.4◦/10 Hz) caused the cantilever phase to reach
θC = −132.0◦ at a frequency shift of −50 Hz. Operating the
cantilever off resonance, at −132.0◦, results in a θ -factor
equal to 1.35. Note that measuring the phase response of
the driven cantilever using a lock-in amplifier56 would not
identify the problem. In fact, a lock-in amplifier measures
the combined phase response of the excitation system and
the cantilever θXC such that θX and θC can vary wildly
during an experiment despite an ideal phase-locked loop (PLL)
maintaining a constant θXC .

On many systems, “negative apparent damping” corre-
sponding to � < 1, seen in Fig. 5(c), is rarely or never
observed. The reason for this is demonstrated by the following
simulation. Figure 5(d) represents the same simulation of an
electrostatic interaction as shown in Fig. 5(c), however a
nonzero tip-sample damping γtip was modeled as γtip ∼ V 2,
where V is the bias voltage (Joule heating, for example,
follows this quadratic dependence36,57). The magnitude of the
true damping was arbitrarily adjusted such that γtip = γs at
±5V bias voltage. For these conditions, the drive amplitude
remains above 1; nevertheless, affects the drive amplitude
by the same factor as in the absence of true damping. This
can severely distort the drive-amplitude signal by introducing
features that do not relate to tip-sample physics or by skewing
the power-law behavior between (� − 1) and the bias voltage
V , for example. The power-law behavior within the ±3V bias
range in Fig. 5(d) is closer to V 4 than to V 2 by virtue of .

B. Imaging

FM-AFM is most often used for acquiring images by raster
scanning the sample and maintaining a constant frequency
shift set point �fset by adjusting the tip-sample distance
accordingly. In the ideal case where �fset remains perfectly
constant throughout the experiment, will remain constant
and therefore apparent damping will affect the entire drive-
amplitude image by a constant factor. However, the ideal
condition of a constant �fset is usually not fulfilled in practice,
even if the PLL and AGC parameters are set to their optimal
values (PLL locking time = 0.35 ms; AGC response time =
2 ms as defined in Ref. 29).

Figure 6 illustrates an atomic step edge and the resulting
frequency-shift deviation despite imaging with a typical imag-
ing speed (10 nm/s) and ideal PLL parameters.29 Assuming
that the amplitude transfer function of the excitation system
has a slope αX = ±3%/10 Hz, which is expected to occur on
our commercial AFM every tenth experiment at 300 K (see

FIG. 6. (Color online) A step edge was modeled as shown. The
scanning speed was set to 10 nm/s and the frequency-shift set point
�fset = −60 Hz. The optimal, but finite, locking time of the PLL
(0.35 ms) results in a transient frequency-shift deviation of nearly
−30 Hz, as determined by Nony et al.29 (a) If the amplitude spectrum
of the excitation system has a slope of αX = ±3%/10 Hz, the drive
amplitude will shift considerably upon approach to the surface and
additionally during the transient frequency-shift deviation from set
point. (b) If the phase spectrum of the excitation system has a slope
βX = ±2◦/10 Hz, the cantilever phase will deviate from −90◦, even
if the PLL is ideal. This results in a positive drive-amplitude deviation.

supplementary material, Sec. 755), the transient frequency-
shift deviation will cause the drive amplitude to vary by nearly
±9%, as seen in Fig. 6(a). If the true tip-sample damping
at the step edge is much smaller than the cantilever intrinsic
damping, a change in |X | in between experiments can lead
to contrast inversion in between two drive-amplitude images.
This can occur after a change in temperature, for example, or
if cantilevers with different resonant frequencies are used.

Figure 6(b) demonstrates the situation where only the phase
spectrum is nonflat with a slope of βX = ±2◦/10 Hz, which
is expected to occur on our commercial AFM every tenth
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FIG. 7. (Color online) Atomic-scale corrugation of KBr was
modeled as having 0.1 nm amplitude and a spatial wavelength of
0.66 nm. The scanning speed was set to 7 nm/s and the frequency shift
set point �fset = −60 Hz. Despite accurate topography tracking (not
shown), the frequency shift oscillates around the set point by ±2 Hz,
as simulated by Nony et al.29 It is assumed that there is no measurable
tip-sample dissipation. The drive-amplitude oscillations due to the
coupling to the frequency shift were calculated from the frequency-
shift signal according to coupling values αX = ±3%/10 Hz. Both
drive-amplitude signals clearly demonstrate that contrast inversion
can occur solely due to the excitation system transfer function |X |.
(a) The simulated drive-amplitude images assume that only cantilever
thermal noise and the detection noise nd affect the measurements.
(b) The second pair of images shows that contrast inversion is still
observable in the case where the electronic noise reaches 2% of the
drive-amplitude signal (cantilever parameters: k = 40 N/m, f0 =
160 kHz, Q = 15 000, A = 10 nm, nd = 40f m/

√
Hz).

experiment at 300 K. Both cases, positive and negative, result
in an increase of the drive amplitude because driving the
cantilever off resonance in either direction is less efficient.
Despite ideal PLL parameters, the cantilever is driven at
±12◦ off resonance when the frequency is kept constant
(�fset = −60 Hz) and reaches ±18◦ at the step edge resulting
in a significant contrast in the drive amplitude.

Contrast inversion can also occur at the atomic scale due
to apparent damping. However, due to the smaller magnitude
of the apparent damping in this context, noise becomes a key
consideration when assessing the experimental relevance of
the problem.

When scanning KBr with atomic resolution at a scan speed
of 7 nm/s with optimized PLL parameters and a set point
�fset = −60 Hz, the deviations from the set point reach values
of roughly ±2 Hz despite accurate topography tracking.29 As
seen in Fig. 7, these deviations are observable well above
the frequency noise computed using the theory of Kobayashi
et al.,58 assuming a detection noise of 40 fm/

√
Hz. Assuming

that only this detection noise and thermal noise of the cantilever
limit the ability of the AGC to maintain a constant cantilever
oscillation amplitude, contrast inversion in the drive amplitude
should be clearly visible between situations where |X | has
either αX = ±3%/10 Hz. This is illustrated by the simulated
drive-amplitude images in Fig. 7(a).

On many systems the measured drive-amplitude signal is
limited by other noise sources, such as additional electronic
noise. It has been well established that drive amplitude contrast
on the order of 2% or higher is experimentally relevant on
most systems because it can exceed true tip-sample damping
as well as instrumental noise.7,11,29 Adding white noise with a
standard deviation σ = 0.02 to the simulated drive-amplitude
images, shown in Fig. 7(b), demonstrates that atomic-scale
contrast inversion caused by piezoacoustic excitation should
be resolvable above noise on most systems.

VIII. SUMMARY

This section summarizes the effects of the transfer func-
tion of piezoacoustic excitation system X (ω) on dissipation
experiments. The frequency dependence of X (ω) couples
the detected cantilever frequency shift �ω to the AGC
drive amplitude �, typically referred to as the “dissipation”
or “damping” signal. Neglecting this frequency dependence
of � leads to apparent damping and therefore inaccurate
interpretation of measured FM-AFM data. The frequency-
dependent changes in the drive-amplitude calibration are
described by the unitless (ω), which should be measured
before or after the experiment to allow for the correction of this
apparent damping. The dominant component of , for most
experiments, is the X -factor, which accounts for changes in
the amplitude spectrum |X | of the excitation system. Further
in this section, the effects of the θ -factor caused by the nonflat
phase spectrum θX will also be summarized.

Dissipation spectroscopy is the technique most strongly
affected by this source of apparent damping, particularly at
cryogenic temperatures where the X -factor can be corrugated
on a frequency window as small as 100 Hz. Depending on the
shape of the transfer function, this may result in qualitatively
inconsistent damping measurements for different cantilevers,
unless corrected for. That is, repeated experiments may result
in drive-amplitude profiles with different shapes effectively
only reflecting the shape of |X |, as opposed to changes in
tip-sample damping. At room temperature, the X -factor is
nearly always smooth across a 100 Hz bandwidth, with a
shallower amplitude-spectrum slope αX . Although apparent
damping is much less severe at room temperature, it can
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significantly affect sensitive dissipation experiments where
the tip-sample damping is much smaller than the cantilever
intrinsic damping.

For applications using constant frequency shifts with some
set point �fset, such as typical FM-AFM topography imaging,
apparent damping can appear in two ways. Each cantilever will
have a different drive-amplitude calibration at identical �fset

because of differences in theirX -factor; if left uncorrected, this
can lead to quantitatively variable-dissipation measurements
taken at identical �fset with different cantilevers and may
prevent drawing conclusions about dissipative mechanisms
under study. In the second scenario, transient deviations
from a constant set point �fset, due to the finite response
time of the PLL or distance regulation feedback, may cause
experimentally significant apparent damping, for example,
at step edges. This can cause inconsistent results between
cantilevers, or even for the same cantilever if operated at a
different �fset. Atomic-scale contrast inversion in the drive
amplitude is also likely to occur because coupling constants
on the order of ±3%/10 Hz, which can be observed on most
AFMs even at room temperature, cause apparent damping,
which exceeds the true tip-sample damping and instrumental
noise.

Although the θ -factor rarely dominates the X -factor in
typical experiments (see supplementary material, Sec. 654), the
former should not be neglected. At cryogenic temperatures,
a very corrugated phase spectrum θX implies that carefully
setting the cantilever on resonance away from the surface
(at �f = 0 Hz) does not ensure proper resonance tracking
during the experiment; once �fset �= 0 Hz, the cantilever will
be driven off resonance and even small modulations of the
cantilever phase may significantly enhance apparent damping
by a large θ -factor contribution. At room temperature, the
much shallower phase spectrum reduces the magnitude of this
problem. However, the drive-minimization method is more
likely to fail because of a lower cantilever Q-factor which can
misidentify the true cantilever resonance by more than 10◦ in
certain situations. This could lead to a significant θ -factor even
for small frequency shifts.

IX. CONCLUSION

In FM-AFM operated with a piezoacoustically excited
cantilever, the AGC drive-amplitude signal can only be
accurately converted into a damping or dissipation signal after
measuring the transfer function X (ω) of the piezoacoustic
excitation system. This measurement allows the decoupling
of conservative and dissipative forces by correcting for the
frequency dependence of the drive amplitude, which does
not relate to tip-sample damping. Using standard FM-AFM
theory leads to apparent damping in force spectroscopy as
well as topography imaging, thereby potentially altering the
quantitative and qualitative interpretation of the tip-sample
physics. We have demonstrated a nondestructive and robust
method which enables measuring X (ω), thereby eliminating
apparent damping which can dominate the true tip-sample
damping signal.

The impact of apparent damping depends on numerous
parameters, such as frequency shift, Q-factor, temperature,
feedback parameters, and most importantly the details of the

mechanical construction of the AFM. Due to the complexity
of the problem, the impact of apparent damping must be
considered on an ad hoc basis for any particular experiment
performed at any temperature. Conclusive statements about
qualitative and quantitative FM-AFM dissipation studies
(using a piezoacoustically excited cantilever) rely on a proper
investigation of the piezoacoustic excitation system, as pre-
sented in this paper.

Whereas we are not denying that other studied sources
of apparent damping can be significant, we have shown that
the transfer function of the piezoacoustic excitation system
accounts for a large part of the observed variability in reported
dissipation experiments to date. Applying the methodology
presented in this paper can reconcile many discrepancies
between theory and experiment, which have thus far prevented
advancement in FM-AFM dissipation applications and studies.
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APPENDIX : REPARAMETRIZING THE CANTILEVER
TRANSFER FUNCTION

A cantilever interacting with a sample can be described
as a damped harmonic oscillator with two time-varying
parameters. The choice of these parameters is somewhat
arbitrary. Typically, the amplitude transfer function is defined
by the resonance frequency ω0 and the quality factor Q as in

|C(ω|ωo,Q)| = 1

k

√
1

[1 − (ω/ωo)2]2 + (ω/ωoQ)2
, (A1)

with its associated phase transfer function

θC(ω) = tan−1

{
− ω/ωo

Q[(1 − (ω/ωo)2]

}
, (A2)

where k is the cantilever stiffness, which remains constant.
This is not a very useful parameterization of the cantilever
transfer function in FM-AFM because the perturbed cantilever
resonance due to tip-sample interaction is unknown to the
AFM user during the experiment. Furthermore the quality
factor Q carries an intrinsic dependence on the variable
resonance frequency.

Using the rules of trigonometry, Eq. (A2) can be rewritten
as

sin θC(ω) = − ω/ωoQ√
[(1 − (ω/ωo)2]2 + (ω/ωoQ)2

, (A3)
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which, combined with Eq. (A1), results in

|C (ω|ωo,Q)| = −ωoQ

k

sin θC (ω)

ω
. (A4)

Using the well-known relations

Q = mωo

γ
and k = mω2

o, (A5)

the cantilever amplitude transfer function can be
reparametrized to

|C (ω|θC,γ )| = − sin θC (ω)

ω × γ
. (A6)

Note that Eq. (A6) is mathematically identical to Eq. (A1).
This reparametrized version of the cantilever transfer function
is useful for FM-AFM applications because it directly relates
changes in phase, frequency, and damping to the amplitude
response |C|.
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