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Deriving surface-energy anisotropy for phenomenological phase-field models of solidification
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The free energy of classical density functional theory of an inhomogeneous fluid at coexistence with its solid
is used to describe solidification in two-dimensional hexagonal crystals. A coarse-graining formalism from the
microscopic density functional level to the macroscopic single order parameter level is provided. An analytic
expression for the surface energy and the angular dependence of its anisotropy is derived and its coefficients
related to the two-point direct correlation function of the liquid phase at coexistence.
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I. INTRODUCTION

Phase-field modeling has seen an explosive growth in re-
cent years, particularly in the study of solidification and solid
state transformations. The basic physics of some otherwise
complex free boundary problems have been studied using
this methodology. Most phase-field models employ a similar
approach: one or more phenomenological order parameter
equations are coupled to one or more diffusion fields. Dy-
namical evolution of these fields is simulated by dissipative
minimization of a phenomenological free energy, the latter of
which is written such as to respect certain symmetries and
properties of the physics at hand.

The recent development of second-order matched
asymptotic analysis [1] to phase-field models has also made
it possible to quantitatively simulate free boundary problems
of certain solidification phenomena in the limit of quite dif-
fuse interfaces (so-called “thin-interface limit”) [2—7]. This
has been a significant step toward making phase-field mod-
eling practical in materials science and engineering applica-
tions [2,5,6,8—13].

A limitation of traditional phase-field models is that they
are formulated in terms of fields that are spatially uniform in
a single phase region in equilibrium. This precludes phenom-
ena that arise from the periodic symmetries inherent in crys-
talline phases, including elastic and plastic deformation, an-
isotropy and multiple grain orientations. A way around this
problem has been to couple the traditional order parameter
fields with one or more auxiliary fields describing such fea-
tures as the density of dislocations, continuum stress and
strain fields and the crystal grain orientation. These ap-
proaches have proven quite useful in various applications
such as polycrystalline solidification. Nevertheless, it has
proven quite challenging to incorporate elasto-plasticity, dif-
fusive phase transformation kinetics and anisotropic surface
energy effects into a single, consistent formalism.

A recent innovation in phase-field modeling has seen the
introduction of the so-called phase-field crystal (PFC) meth-
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odology [14-18]. This formalism has made it possible to
incorporate the kinetics of phase transformations with prop-
erties of solids that arise due to their periodic structure. This
includes elastic strains, topological defects, vacancy diffu-
sion and polycrystalline grain boundary interactions. PFC
models have been applied to several phenomena [19]. These
include grain growth and epitaxial growth [14,15,20], dislo-
cation flow and rapid strain relaxation in crystals [16,17],
and spinodal decomposition in binary alloys [18].

An appealing feature of the phase-field crystal methodol-
ogy is its connection with classical density functional theory
(DFT) [18,21-24]. This makes it possible to develop differ-
ent classes of PFC models whose form and parameters are
microscopically motivated. Moreover, the recent use of
renormalization group techniques to project the dynamics of
the original PFC model onto a set of complex amplitude
equations [25] has demonstrated the potential of coarse-
graining PFC-type models (or, equivalently, DFT-type mod-
els) to large spatial scales. One obvious numerical advantage
of this approach is the use of adaptive mesh refinement to
numerically simulate experimentally relevant length scales
[26].

Another advantage of coarse-graining density functional
theories involves the potential of calculating certain param-
eters that enter phase field models of solidification—or their
associated free boundary problems—from microscopic prop-
erties. Two critically important parameters for solidification
modeling is the surface energy and the angular form of its
anisotropy. These are difficult to measure experimentally and
are often only estimated in many studies. Analogously, the
diffusion constant and atomic attachment mobility are also
very difficult to measure. They can be related to properties of
transport coefficients theoretically [23,27,28], although these
relations rely on parameters that are difficult to measure ex-
perimentally.

A step in the direction of using coarse-grained DFTs to
calculate microscopic parameters was recently taken by Wu
et al. [22,29]. They extended an approach of Shih [30] that
used a density wave expansion in a free energy functional of
an inhomogeneous liquid to tune the parameters of a
Ginzburg-Landau (GL) model of freezing. The GL ampli-
tudes were solved for along specific lattice directions and
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then substituted back into the GL free energy to compute the
corresponding surface energies. Surface energies and their
differences were then compared to those predicted by mo-
lecular dynamics simulations, obtaining good agreement for
fcc iron.

In this paper, a density functional theory of an inhomoge-
neous liquid is directly coarse grained in two spatial dimen-
sions using a single mode density wave expansion of the
density. A simple projection operator method [31,32] is ap-
plied to the amplitude equations obtained from the density
expansion to yield an analytic and a numerical approxima-
tion of the surface energy and its anisotropy. This paper is
organized as follows. Section II presents the density func-
tional theory used in this work. Section III uses volume av-
eraging to coarse grain the free energy functional, leading to
a GL-type model written in terms of three amplitudes. Sec-
tion IV presents a formalism for semi-analytically calculat-
ing the anisotropic surface energy from this Ginzburg-
Landau model. Section V compares the results of our
semianalytical derivation to numerical simulations from the
full nonlinear Ginzburg-Landau model. Section VI proposes
a simple procedure for going from a three amplitude repre-
sentation of the of the original DFT to a an effective single
order parameter free energy.

II. CLASSICAL DENSITY FUNCTIONAL THEORY
A. Free energy functional

The classical density functional used in this work is writ-
ten as

F\[p] = Falp]l+ Fglp] + Fclpl, (1)

where each term is defined in terms of the dimensionless
field p=n/ p,y, where n is the atomic number density and p
is the average liquid number density at solid-liquid coexist-
ence. In these units, F| represents the dimensional free en-
ergy divided by kzTp, where kp is Boltzmann’s constant and
T is temperature. The units of F| are thus a volume.

The terms of F| are as follows:

F,= J dr f dr' Sp(r)S(r—r")Sp(r'), (2)

where dp=p—1. This term represents the local short-range
interaction part of the free energy. Nonlocal long-range in-
teractions are contained in Fjp,

FBE—ferdr’ép(r)c(r—r’)ﬁp(r’), (3)

where c(r—r') = pyc*P(r-r’), with ¢**P(r-r’) being the ex-
perimental two-point direct correlation function of the fluid
phase at solid-liquid coexistence. The third term in Eq. (1)
represents the ideal gas (noninteracting) contribution to the
total free energy

Fe= J dr{p(r)In p(r) - Sp(r)}. (4)
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B. Density wave expansion of p(r)

In what follows, we will expand the free energy using a
one-mode approximation given by

3
p(r) = Po_ 1+ E A,,(r)e’Kn'r +c.c., (5)

ﬁ() n=1
where A,(r) are dimensionless spatially dependent ampli-
tudes and the symbol c.c. denotes complex conjugate. For
the two-dimensional (2D) hexagonal crystal structure consid-
ered here, the reciprocal lattice vectors K" are [in units of the
inverse lattice spacing go=4/(\3a), where a is the lattice
constant]

In general the amplitudes can be decomposed as
A(r) = a,(r)e' ), )

where a"(r) is a real amplitude corresponding to the density
wave n, while 10,(r) is a phase factor required for taking
into account the effects of long-range elasticity and small
scale defect structure.

II1. DERIVATION OF AMPLITUDE MODELS
A. Complex amplitude equations

This section uses a volume averaging technique to coarse
grain F,, Fp, and F into functionals of the slowly varying
order parameter fields A,(r), which are analogous to those
used in traditional phase-field or Ginzurg-Landau theories.
The volume averaging method is described in Appendix A.
Loosely speaking coarse graining can be thought of as a
procedure by which the terms of the free energy are homog-
enized over lengths scales that are large compared to the
lattice constant but still small compared to the detail of most
microstructures.

The first step is to substitute the density expansion (5) into
the terms of the free energy F,, Fj, and F. The nonlocal
term Fp will generate four terms of the form

3
L= 2

n,m=1

dr’ J drA, (1) & (F)e(r = ')A, ()LL),
®)

where £, (r) =¢*K"r To coarse grain terms of the form I,
we expand the slowly varying amplitudes A,(r’) to second
order about r’=r according to

A (r') = a,(r')e )

=A,(r) + (r] = r)9A,(r)

1
+ 5(",’ - ri)(r; = 7)3;A,(x) + -+, )

where summation over repeated indices is implied. We also
substitute into /; the Fourier transform of the two-point cor-
relation function

011607-2



DERIVING SURFACE-ENERGY ANISOTROPY FOR...

c(r-r')) Eﬁoce"f’(|r—r’|)=fdké(|k|)e’k'(r"r). (10)

The amplitudes A,(r’) are slowly varying over the domain
r’ <|r+L|, where |L| defines a range of rapid variation of the
phase factors eiAK"'r, where AK" are sums or differences of
the K" in Eq. (6), emerging from the multiplication of phase
factors in Eq. (8). As discussed in Appendix A, terms in I;
for which AK"=K"-K" #0 vanish under coarse graining,
while those for which AK"=0 have nonzero volume aver-
ages. In other words, the amplitude equations will hold for
scales kgg>1, where ¢ is the inverse lattice constant.

The density expansion (5) is also used to transform the
terms F4 and F into functionals of A, (r). For simplicity, the
reference free energy F- was only expanded to fourth order
in the Sp(r). The resulting expressions for F, and F do not
contain derivatives A(r). The resonance conditions described
at the end of the previous paragraph can again be used to
determine which terms of the potential part of the free energy
survive coarse graining.

The results of coarse graining on F,[p], Fglp], and F[p]
yield, after some straightforward but lengthly algebra, the
following free energy functional in terms of the A, (r):

3
F=fdrz An(r)(—Mz)(K”~V)2An(r)+fdrV(r),
n=1
(11)

where V=id,+jd,, and the potential V is defined as

V(r) = 3 [3 - 28(K")]a? - cos(E ®n(r))a1a2a3

+6l(ayan) + (@10 + (@) + 3 S al - (12)

n

The function M, is defined by

(KD
K

&K
K

M(|K") = (13)
where hereafter |K"|=¢, and the superscripts (2) and (1)
denote second and first derivatives, respectively. In the spe-
cial case where the correlation function is chosen to repro-
duce the original PFC model [ 18], the free energy in Eq. (11)
is, to the lowest order in derivatives, equivalent to the
Lyapunov functional constructed from the equations of mo-
tion of Ref. [25]. It should be noted that in Ref. [25] the
operator (K”"-V)? is replaced by V? terms since there the
amplitude equations are derived directly from the PFC
model, which includes a V? operator for the conservation of
chemical potential.

B. Real amplitude equations

To obtain the isotropic and anisotropic contributions of
the surface energy of a crystal interface, we leave out, in the
first approximation, the phase factors from the complex am-
plitudes by setting ®,=0. Thus, A,=a, in the free energy Eq.
(11) and cos{Z,[0,(r)]}=1 in the potential V(r). The varia-
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tion of the resulting F with respect to the real a, then yields
the following Euler-Lagrange equation for a;:

mlr?ial =2[3-2¢(qg)]a; — aras + 6a? + 12a1(a§ + ag),
(14)

where the equation has been written in a curvilinear coordi-
nate frame local to the interface, with coordinate transverse
to the interface denoted by u. Two more equations for a, and
as that are obtained by permutation of the symbols in Eq.
(14). We have defined in Eq. (14)

m, = —2M,(|K"|)(n - K")?, (15)

where n=cos 6i+sin 6j is the surface normal whose direc-
tion forms an angle @ with a (reference) x axis. Since M, is
negative, the “mass” m,, is a positive number.

IV. DERIVING SURFACE ENERGY OF THE THREE-
AMPLITUDE MODEL

A. Expression for surface energy

The surface energy per unit length (L,) of the multiorder
parameter theory can be calculated by writing

E:fdu{%XTMX+V(X)}, (16)

L,

where the shorthand notation x=4,x, x=(a,,a,,a;)” has
been wused here, and M is the mass matrix, M
=diag(m,,m,,m3). Specifically, the Euler-Lagrange equa-
tions from Eq. (16) read

- M%+V,V(x)=0, (17)

which make %XTMX=V(X)+h, where the constant & is zero
for properly chosen boundary conditions. In Eq. (17) we
have also introduced VXEexl(?Xl+~--+ex3r9X3, where e
=(1,0,0), exZE(O,l,O), ex3E(0,0,1). Writing Eq. (16) in
terms of the optimized solutions of Eq. (17), denoted x*,
gives

F
—=0y= f du(x*)TMx* (18)
LV

for the total surface energy o3 (the subscript 3 refers to the
number of amplitudes a, that we will be using below for the
hexagonal lattices). Note that the potential V is implicit in
Eq. (18) through x*.

For the model studied here, it will be shown to good
numerical accuracy that the total surface tension will take the
following form:

o3= 01 + ecos(66) + -], (19)

where 6 is the angle 6 that the surface normal makes with the
reference direction, o™ is the isotropic part of the surface
tension, and € is the anisotropy factor. Equation (19) is also
derived analytically for a simple case in Appendix B.

B. Scaling form of the amplitude fields

To solve for the surface tension semianalytically from
Egs. (14), it is assumed that these equations have solutions of
the form
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ay = f1(ul&,my,my,ms), (20)
ay = f>(ul &,my,my,ms), (21)
ay = f5(ul &,my,my,ms), (22)

where §; are correlation lengths corresponding to each am-
plitude and u is the coordinate transverse to the interface.

To avoid messy algebra but still make progress toward the
goal of approximating the surface energy and its anisotropic
form, the scaling forms in Egs. (20)—(22) will be further
assumed to simplify to the form

a, = f(ul§,) = f(ul§,). (23)

This assumption will allow us to obtain analytically a crude
but illuminating approximation for the surface energy aniso-
tropy in Appendix B. The same assumption is also useful for
the more precise numerical solution of the surface tension
anisotropy presented in Sec. IV D.

Substitution of the ansatz (23) into Eq. (11) allows the
free energy to be written as a function of &, &, &

Fla,(&)),a,(&),a5(8)] = FIf(£)./(&)./(&)],  (24)

=F(&,6.&). (25)

The equations from which the optimal values of the correla-
tion lengths are derived from are

’ _OF da (u)
m ,21 “Sa) de, 20
== J duuf’ (u/§n)5a 0 =0, (27)

where 6F/ éa,, is obtained from Eq. (14) or one of its permu-
tations. To make notation compact, we define

iy = - é f duef (w/€,)h(a) (28)

as a projection operation on h(u), which will be applied to
the individual terms of Eq. (14) following Eq. (26).

As will be numerically shown in Sec. V, we assume that
the amplitudes a, in Eq. (23) can be represented to reason-
able accuracy as

a, =~ fu&,) = cflulg,), (29)

flx) = %(tanh(x) +1). (30)

The magnitude of c,, which is the value of the amplitude a,,
in the bulk, is typically assumed less than unity for weakly
first order transitions [22].

C. Balancing the free energy wells of the three-amplitude
model

Since the free energy in Eq. (1) is a truncated theory, the
wells of the potential (12) are not generally balanced at co-
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existence. To enforce coexistence in the truncated multiam-
plitude theory, we consider a modification to the potential
(12) of the following form:

V(ay,aaz) = 2 ala,)? - as(ayayas)

a4{32 (a,)* + 6[(aya2)? + (1"

+ (a2a3)2]} , (31)

where
a=3-2¢q). (32)

The phases ©, of the complex amplitudes have been set to
zero. Two new parameters az and ay can be determined from
the extremal conditions

V(e cpnc,) = Ve, ep,e) =0, (33)

[dV(a,,a,,a5)/da,]| 0, (34)

01:(,{2:6!3:CS
where ¢, and c¢; denote the dimensionless bulk amplitude
values in the liquid and solid, respectively. The second
equality in Eq. (33) is simply a consequence of the fact that
¢;=0. From these conditions, a3 and «a, can be fixed in two
different ways that shall be indexed by “1” (for Shih et al.
[30]) and “2” (for Wu et al. [22]). In the case (1) of Wu et al.
[22], ¢, is taken from molecular dynamics simulation and
Egs. (33) and (34) can be considered as two equations for
two unknowns a3 and ay. In the case (2) of Shih er al. [30],
the latent heat A; is given in terms of « and a4 as

T,

m

2H' (Tm) ay

o

A= (35)

where T, is the melting temperature and H'(T,,), is in the
notation of Ref. [30], the temperature derivative of
12/8(k,T), where S is the structure factor. Equation (35) can
be solved for a, in terms of A, leaving ¢, and a3 to be
solved from Egs. (33) and (34).

When expressed in terms of the bulk amplitude c,, both
ways of determining a3 and a4 will give rise to the same
form of the evolution equations of the amplitude a;:

m .. 6
—a = 2a1 — T aajs +
a s

12
s, 2[al +2a2(a2+a3)] (36)

(and similarly for amplitudes a, and a;), where the bulk
amplitude c,=c; or c¢,=c,,, with

e =[2a/(15a,)]"2, (37)

¢y = ¢, from the MD simulation. (38)

The acronym MD stands for molecular dynamics. From Eq.
(37) it follows that the magnitude of the ¢, can become small
if the latent heat of the substance is small.

It should be noted that by rescaling the amplitudes a,
—c,a, in Eq. (36) shows that ¢, scales out of the Euler-
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Lagrange equations. For higher order polynomial theories c;
cannot be scaled out. Moreover it is clear from Eq. (36) that
a (or, M,/ @) can also be scaled out of the amplitude equa-
tions. This yields a prediction of the anisotropy that depends
only on the form of the crystal structure selected by the
model and not its specific materials parameters. This conclu-
sion is consistent with the finding of Wu and Karma [29] and
is also a consequence of a weakly fourth order nonlinear
amplitude theory.

D. Nonlinear algebraic derivation of correlation lengths

This subsection derives a form of the correlation lengths
from the full nonlinear amplitude model. These will be used
in the next section to compute the surface energy and its
anisotropy using Eqgs. (23) and (18).

Applying the projection operator in Eq. (28) on the am-
plitude equation (14) yields

L) = 2a - ),

s

12
+ 2((“?)1 + 2<ala§>l
Sc;

+2(a,a3);) (39)

(and similarly for a, and as). Proceeding further we invoke
Eq. (29) along with Eq. (30), which is shown to hold to
reasonable accuracy in Sec. V. Using the specific form in Eq.
(30) is done merely to arrive at an approximation of the
anisotropy and its elucidate its angular form. Using different
numerically determined f,(x)’s for each amplitude will in-
crease the accuracy of our results. The main physics and
procedures outlined using the simple choice in Eq. (30) will,
however, remain essentially unchanged. In terms of the cor-
relation lengths, Eq. (39) thus becomes

2 ernl§ )2 l8) ()]
ad &'&/) 15 & &

where

(40)

rﬁlgmlfduuf’(u)f’(u), (41)

J duuf’ (u)f(u)+— f dunf' WFW)P, (42)

Wi(x,y) = f duuf’ (u) fux) fuy), (43)
Wy(x) = J duuf" (u) f(u) [ flux) P, (44)
X = 51/52’ y = 51/53» (4‘5)

with m, given by Eq. (15), 7 by Eq. (30), and a by Eq. (32).
By cyclically reshuffling the variables, three nonlinear
equations for all correlation lengths are given as

PHYSICAL REVIEW E 79, 011607 (2009)

Al 6W1<§1 fl) 24{%(51) Wz(aﬂ
a & &' &) 15 & &
(46)
@l—B 6W(é é)+2—4_w<§2>+w(§2>_
a8 Ne'g) s g )T g/ T
(47)
@l—B 6Wl<é é)+% W2<§3>+W2<§3> .
a 53 & 6 15] & &/
(48)

Rescaling the £, in Egs. (46)—(48) according to

MZ(Tqu) f u"’/ u g u
Z—Q(T) duf’ (u)f" (u)
(49)

makes both sides of Egs. (46)—(48) material independent. As
discussed above, this is a consequence of the fourth order
expansion of the amplitude equations and leads to a material-
independent anisotropy. The isotropic part of the surface en-
ergy depends on the correlation function M, (which depends
on 7).

Equations (46)—(48) can be cast into a material-
independent form by using Eq. (45). Dividing Eq. (46) by
Eq. (47) and Eq. (46) by Eq. (48) gives

gn = h(T)gn’ h(T) =-

24
B-6W(x,y) + E[Wl (x)+W,(y)]

(Kl'n)z_ 2
2_ 9
R P R
(50)
24
(K, - n)? 5 B—6W](x,y)+E[Wl(x)_,_wl(y)]
T E (1 x) 24{ (1> (x)J
B - 6W1 -~ |+ = ‘/V1 +W1 —

(51)
Once the solutions x=x* and y=y* are found from Egs. (50)

and (51), the correlation length &; is found from Eq. (46)

ﬁl/a 12

gl = 24 (52)
B —6W,(x*,y*) + G[Wl (x*) + Wy (y¥)]

and &, and & are given by Eq. (45).

Equations (50) and (51) are universally true for any 2D
hexagonal crystal represented by a fourth order amplitudes
model, and for which the dimensionless average density
jump Ap=0. The prefactors appearing in Egs. (50) and (51)
have different numerical values for the case Ap+# 0, as dis-
cussed in Appendix C.

In the next section the algebraic equations will be numeri-
cally solved for the correlation lengths &;. These lengths will
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O3

0.494

0.4935

0.493 |/

0.4925;

FIG. 1. Anisotropic surface tension as a function of € from the
algebraic method. The cosine fit (solid line) has been shifted in the
y direction. Adjacent dots in the plot are spaced 0.025 radians apart.

then be used to approximate the magnitude and anisotropy of
the surface tension of a two-dimensional crystal. Appendix C
shows a simpler (and different) example where the correla-
tion lengths are calculated analytically and used to calculate
a crude approximation of the form of the anisotropy.

V. NUMERICAL DETERMINATION OF SURFACE
ENERGY

This section compares the results of the algebraic method
presented in the previous section to the numerical solution of
the full Euler-Lagrange equations for the real amplitudes
(14) with suitable boundary conditions, which are then sub-
stituted back into the free energy (11) to obtain the surface
energy and its anisotropy. In the latter case no simplifying
assumptions are used contrary to the former method, which
utilizes the scaling forms (29) and (30).

The total surface energy o3(6) computed using Egs. (23)
and (18), and the § from Sec. IV D is plotted in Fig. 1. The
continuous line indicates the best fit o*f”(ﬁ) 0.49245
+0.00069 cos(66+ ), where the total number of data points
is 250 taken at intervals A#=0.025 rad (=2/250). When
expressed in the form of Eq. (19), the anisotropy factor e
becomes 0.00069/0.49245~=0.14%.

Figure 2 compares the total surface energy from the alge-
braic method (lower curve) and from the direct solution of
the Euler-Lagrange equations (14) (upper curve). In the di-
rect solution of the Euler-Lagrange equations a value of «
=1.0 was used, while ¢,=1.0 was used for the far-field am-
plitude and M,=1.0. The algebraic method gives an anis-
tropy ~0.14% whereas the full Euler-Lagrange solution
yields ~0.20%. Hence, the value of the anistropy
~0.1-0.2 % is consistent with both methods. As for the iso-

TINANANND
IRRETEVEN

FIG. 2. Comparison of the anisotropies obtained from the alge-
braic (upper curve) method and the direct solution of the Euler-
Lagrange equations (lower curve).
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FIG. 3. (Color online) Amplitude profiles are not perfectly self-
affine. The blue curve a,(x) and the black curve a;(kx), where k
=0.82 has been chosen to maxize the overlap (6=0.025). The
curves are entirely overlapping for x= 170 (in the units of the lat-
tice constant a) whereas for the smaller values a, rises slightly
above a;.

tropic parts, the difference between the two methods is of the
order ~0.1%. Solving the full Euler-Lagrange equation with
other values of « yielded the same result. As discussed
above, this is a consequence of Egs. (18) and (36), which
allow the spatial argument of a, to be rescaled so that all
materials and temperature dependences are transferred into
the isotropic part of surface tension but not the anisotropy €.

The difference in the two methods originates from two
factors. First, there is a small dependence on n=1,2,3 (the
amplitude index) in the Euler-Lagrange solutions for the am-
plitudes as shown in Fig. 3, which shows the best scaling
collapse for a; and a, (a, and aj are practically overlapping).
As can be seen from Fig. 3 there is no perfect common
scaling behavior for distances less than ~150 in the units of
lattice spacing Ax. The second reason for the lack of com-
plete overlap in Fig. 2 is due to the slight deviation of the a,
from the tanh-ansatz (30), which was utilized in Eq. (39).
The deviations, depicted in Figs. 4 and 5, while small, are
large enough to cause the algebraic and Euler-Lagrange
methods to deviate by ~0.1% in the total surface tension.

Figure 6 illustrates the stifness o3(6)+0%(6), where
tan §=d,a/d.a. Due to the second derivative oy even a small
anisotropy can give rise to strongly nonconvex shapes in
contrast to the Wulff plot, which is practically a circle for
anisotropies less than 1%.

ai

o o o o
N o 00

x
200 400 600 800 1000

FIG. 4. (Color online) tanh-like profile fits to amplitudes over
the entire range of x as in Fig. 3 (with x in the same units). On the
scale of the figure the tanh fit (blue curve) of the form a(x)
=(1/2)tanh[ (x—x,)/ &] with fitting parameters & and x, is indistin-
guishable from the simulated result a; (black line). See enlarge-
ments in Fig. 5 for deviations.
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FIG. 5. (Color online) Enlargement of the top-right shoulder
region in Fig. 4 reveals a deviation of the simulated profile (lower
black curve) from the fitted tanh shape (upper blue curve). The x
axis is in the same units as Fig. 3.

Dimensionality has an effect on the surface energy aniso-
tropy. Various definitions and calculations of anisotropy have
been reported in the literature with values ranging from
0.4—1 % in 3D [22,33]. In 3D there are more directions (see
Fig. 7) in the reciprocal lattice vector space and consequently
there are larger differences in the free energy barriers be-
tween these directions. This is illustrated in Fig. 8, obtained
using a truncated analytic method analogous to Eq. (B8) for
a corresponding 3D bcc lattice. For a specific azimuthal
angle ¢=0.8 the anisotropy of the bcc crystal is ~11.5%,
roughly double the 6.7% quoted in Eq. (B9). The results of
the truncated series are not quantitatively correct as they will
be renormalized by nonlinearities in 2D and 3D as seen from
the numerical results of Fig. 2. Nevertheless, these approxi-
mate anisotropies indicate that the 3D anisotropy can be sig-
nificantly higher than its 2D counterpart.

The larger differences in the free energy landscape in 3D
compared to 2D are also consistent with the fact that in gen-
eral surfaces are less rigid in 2D than in 3D. Ising-type mod-
els with short-range interactions exhibit a roughening transi-
tion, which takes place at 7=0 in 2D and at 7=T7,>0 in 3D
destroying the faceted structure when the crystal surface
width diverges as a function of the system size L [34]. In 2D,
faceted structures can therefore only exist as metastable
states, in the mean-field sense with zero noise.

Y

FIG. 6. Stifness plot as a function of the angle 6 for the three
amplitude model.
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FIG. 7. (Color online) Surface tension o,(6,¢) using the 3D
analog of Eq. (B8) for bcc crystal.

We note that surface anisotropies of short-range lattice
models [35] and their continuum generalizations are ex-
pected to be temperature dependent. In the frame work of the
model presented in this work (suitable for weakly first-order
transitions [29]), however, the temperature dependence of
anisotropy is expected to be less than ~0.1%, the difference
in the methodologies depicted in Fig. 2. This is because there
is no temperature or materials dependence in the anisotropy
determined by the method of Sec. IV D.

VI. EFFECTIVE PROCEDURE FOR COARSE GRAINING

It is instructive to consider how to construct the potential
part V; of a single-order parameter theory from our three
parameter theory. To do so, we use the following simple
replacement rule:

where V is the potential of the three amplitude theory Eq.
(31) and g satisfies the same scaling form as Eq. (23) for f
but has a different effective correlation length. There are in-
finitely many potentials which could be chosen as far as only
the surface tension of the single order parameter model is
considered. This is due to the relations (16) and (18). How-
ever, fixing V; will affect f, and in the present construction
all f, are assumed (to a good approximation) to be indepen-
dent of the index n. Only then does the gradient part of the
free energy reduce to a form whose prefactor can be easily

O3

8.75
8.5
8.25

7.75
7.5
7.25

FIG. 8. (Color online) ¢=0.8 plane cut of Fig. 7 showing
0,(6,0.8) (black curve). The azimuthal angle ¢=0.8 yields an ef-
fective four-fold anisotropy locally. The purple curve is a three-
parameter (d,,d,,ds) fit to do+d, cos(46)+d, cos*(46). The two
curves are almost entirely overlapping on the scale of the plot. The
angle O takes values in the interval [0,27] rad.
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fixed. The direction-dependent surface energy of the three
amplitude theory is given by

oo o3z ()]
+V[f*<§>f*<é)fk(i)” 59

arle)]
=fdu§mn i )| (55)

This surface energy can now be obtained from the procedure
of Sec. V, namely, solving numerically for 5: and obtaining
an expansion of the form of Eq. (19) (see also Appendix B to
justify this expansion). The magnitude of the higher order
anisotropies in the cosine series are expected to diminish fast
with increasing power of the cosine.

The gradient energy coefficient w%(@) can be fixed in of
an effective single amplitude theory in such a way that sur-
face energy will be given by o3(6). Comparing the single
amplitude free energy

Fylg]= J dr{%Wf(ﬁ)IVg(r)I2+Vl[g(r)]} (56)

to Eq. (54), we obtain
% 3(9)
(cy2?@"fdul flu) P

where Egs. (B13), (B14), and (B16) have been used, along
with the assumptions that é=w/ V@ and that the solution of
the Euler-Lagrange equation of the single-order parameter
theory g*(u)=(c,/2)[tanh(u/&)+1], where, in general, &
#§&,&,&. The determination of @ has been discussed in
Appendix B 2. To work with a general g*, without making
the assumptions above, solving the self-consistent equation
for w? becomes much harder.

Since the order parameter of a theory is not unique, one
could, for example, use the mean amplitude or the geometric
mean of a;, a,, and a3 as the effective single-order param-
eter. These have simple mathematical expressions, and their
interpretation is easy (mathematically and physically). How-
ever, the technical computation of Fg becomes extremely
hard in these cases, at least when derived by removing de-
grees of freedom from the partition function defining F.

wi(6) = (57)

VII. CONCLUSIONS

Coarse graining of a simple classical density functional
theory (DFT) for freezing of a pure material was presented.
The form of a three-amplitude representation of the original
free energy was derived. The surface energy and the orien-
tational dependence of its anisotropy was calculated analyti-
cally and numerically for a 2D hexagonal crystal at coexist-
ence with a liquid. It was also demonstrated numerically and
analytically that the general form of the anisotropy for the
simple classical density functional theory used here can be

PHYSICAL REVIEW E 79, 011607 (2009)

expressed as power series in cos(66), for hexagonal 2D ma-
terials. The procedures presented in this work can also be
generalized to 3D and to higher order density wave expan-
sions.

The techniques developed in this work constitute a step
towards deriving thermodynamically consistent phase-field-
type models from fundamental microscopic theories, which
self-consistently incorporates atomic-scale properties. This
approach can have several important applications in micro-
structure modeling. These include the prediction of surface
energy and its anisotropy, and more realistic phase-field free
energies than those typically generated by phenomenological
phase-field approaches.

In general, fourth-order truncation of the bulk potential in
the free energy can distort the phase diagram significantly
despite the fact that the latent heat can be fitted correctly
with a fourth-order expansion. Future studies will address a
more systematic technique for including higher order local
terms in the potential part reference free energy as well as
the parametrization of nonlocal correlations in F.
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APPENDIX A: LOCAL VOLUME AVERAGING

In this work, local volume averaging, or box averaging,
uses the following convolution kernel together with a nonin-
vertible limiting procedure;

F) = — f v, (Al
NTLJ —w
- f dx' o (x = X)) (A2)

Consider as an example coarse graining a rapidly oscillating
field p(x), expressed as a density wave expansion in 1D with
x-dependent amplitudes as introduced in Eq. (5). Assume
further that these amplitudes contain Fourier modes k satis-
fying |Lk| < 1. This gives

3
(p(x)), = po+ 2 <an(x)€lKnx>L, (A3)
n=1
3
~po+ 2 {a"(x)) (X", (A4)
n=1
3
~Bo+ >, a"(x)e LK, (AS)

n=1

where p, is a constant equal to 1 in the unit convention used
above. In this case the latter sum vanishes in comparison
with the constant term. Physically this implies that a"(x) is
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very slowly varying over the scale on which the phase factor
oscillates, allowing it to decouple from the average of the
phase factor. If a function such as [py(x)]* is averaged, some
terms emerge that contain wave vector combinations that
sum up to zero. These terms correspond to slowly varying
terms that do not vanish.

In general, spatial coarse graining can be carried out by
applying Eq. (A1) to a functional of the free energy density

f(x)=fIp(x)] as follows:

Flp] =de'f(x’)

:fdx'(f dxXL(x—X')>f(x')

:fdxfdx,XL(x_x,)f(x,):fde(x»L' (A6)

Assume that f(x) can be decomposed into a series of wave
modes of the form e**. For L>1/k, where k, represents
some cutoff frequency, the volume average of f(x) then sat-
isfies

lim f dx{f(x)), = f dx lim {f(x)),. (A7)
kL3 1

kL1

The notation limk(»1 implies that for all wave vectors k
=k, [=0(/K"|) in this work] in the Fourier decomposition of
f, the product k.L can effectively be taken to infinity.

Equation (A7) introduces the irreversibility into the
coarse-graining operation by switching the order of the limit
and the integration. Hence all modes of the function f(x)
greater than k~|k. will become exponentially suppressed
and vanish from the description (will be set to zero) as L
becomes much larger than 1/k,.

In the irreversible limit where |K"L| is kept finite, the
exponentially damped terms that arise from the volume av-
eraging remain in the free energy. This strictly violates the
exact translational invariance of the free energy under uni-
form space translations. For a density decomposition with
only a finite number of spatially dependent amplitudes [Eq.
(5)] these corrections are expected to be small and can for-
mally be eliminated by taking the irreversible box-averaging
limit |K"L| — .

In this work the box-averaging procedure defined by Eqs.
(A6) and (A7) (extendable to two or three spatial dimen-

sions) is be performed on terms of the form ~ f[a(r)]e 2K,

where AK is a sum or difference of the reciprocal lattice
vectors K"(r) (e.g., the free energy components F,, Fg, and
F¢). Since all reciprocal lattice vectors are comparable to g,
the net effect of volume averaging technique is that only
terms that contain sums of wave vectors that sum to zero
contribute a finite value to the volume average. Others essen-
tially cause the volume average to vanish.

PHYSICAL REVIEW E 79, 011607 (2009)

APPENDIX B: ORIGIN OF THE ANGULAR FORM
ANISOTROPY

1. Three amplitude model

To obtain crude estimates of the isotropic part of the sur-
face energy, as well as the functional dependence of its an-
isotropy on the angle 6, it is instructive to consider only the
first term on the right-hand side of Eq. (14). In dimensional
units (used through these appendixes), this leads to

Po

when Eq. (14) is substituted into Eq. (26). This assumption
will be dropped in Sec. IV D. It is emphasized that Eq. (B1)
can only be considered an expansion in small ¢, (weakly
first-order transition) if ¢, is independent of p,, which is not
generally true ( see Eq. (37), which reads c
=[2p5a/(15a4)]"? in the units where p, appears explicitly).
Using the projection operation in Eq. (28), Eq. (B1) can be
cast as

M

(&)
for n={1,2,3}. Equation (B2) gives the leading order corre-
lation lengths as

Jduuf’(u)f”(u) z26¥Jdlmf’(u)f(u) (B2)

& = ym,, (B3)
where
_ [ Jduuf ()f"(w)
"= N2afduuf (u)fu) (B4)

Substituting Eq. (23) into Eq. (18), with §n=§:, gives the
surface energy o of the three-order parameter theory of Sec.
I B as

o5(0) = f duz mndﬁ = 0'02 K" - n|, (B3)
where
o= 322 f dulf (). (B6)

The geometric part of Eq. (B5) gives an isotropic and
anisotropic contribution to the surface energy o, to the order
or approximation considered in this subsection. Specifically,

/

V3 )
——cos f— —sin 0
2

> K" n|=|sin 6 + 5

n

-
V3 )
—cos §— —sin 0
2 2

+ . (B7)

Using the relation between Chebychev polynomials of sixth
order and cos 6, one can express Eq. (B7) as an infinite
power series in the variable cos(66). Analytically this re-
quires a complicated inversion process, which is approxi-
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FIG. 9. (Color online) 2D surface tension vs 6 (in radians) using
the truncated algebraic solution (B7) (black line). The blue line is
the fit to Eq. (B8). The two curves are almost entirely overlapping
on the scale of the plot.

mated here numerically to first order in cos(66) according to
o, (0) = > K" -n| = 1.94-0.13 cos(66) — 0.07 cos*(6.6).
n

(B8)

This function is given by the continuous line in Fig. 9. The
isotropic contribution approaches o,(m/12)~1.932, and the
strength of the anisotropy, as evaluated from Eq. (B8), is

(B9)

To leading order, the anisotropy parameter € is only depen-
dent on the geometry. Its renormalization due to the effect of
the nonlinear contributions from Eq. (14) will studied in Sec.
IV D.

To extract the complete isotropic part of the approximate
three amplitude theory 03°, we utilize the cosine-series rep-
resentation of Eq. (B8), whose oscillating contribution van-
ishes when evaluated at 6=m/12. Specifically, combining
Egs. (B5) and (B7) gives

o0 = oo (7/12), (B10)
=Py\- 2M2\r'%f dulf'(u)]?, (B11)
where
_ Jduuf' (u)f(u)
h= { St w)f ) " 12)} B

2. Single amplitude derivation of isotropic surface tension

As a consistency check, we consider the isotropic surface
energy from a theory where all the three amplitudes are the
same: a,=a in Eq. (11). In the (s,u) curvlinear (s,u)-surface
coordinate representation, where u is the normal to the inter-
face and s is the coordinate along the phase boundary curve,

F 1
—= f duy —w?d* + Vy(a) (,
L, 2

where w?=3>_ m, and

(B13)
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1 45
V, = 3aa2—_—2a3+—_3a4. (B14)
Po 2py

The wells of V; can be balanced for two-phase coexist-
ence by tuning the coefficients of the third and fourth order
terms in V (see Sec. IV C). Alternatively, one can add a
constant chemical potential term g to the free energy (B13)
to determine the surface tension. Specifically, a shift a—a
+const can be performed together with rescaling of @ in such
a way that the odd terms vanish from V; once w, is chosen
correctly. Equation (B13) then becomes

F 1 ~, 45c}
2 2 s (R 2
This is of the standard ¢* form and, consequently, the ex-

tremal solution f=tanh(u/&), with £= = and

a

_ 3¢, 135¢2
a=3a-—5+—_5 . (B16)
Po 2P

The denominator @ collects contribution from all terms in V;
due to the shift which was performed to eliminate the third
order term in V.

Approximating @= 3« in Eq. (B16) makes it possible to
compare terms of the same order as that in the three ampli-
tude theory of Sec. B1. Specifically, the effective single am-
plitude isotropic surface energy becomes

iso — F[a*] _ W_2 '
=TT dulf' ()] (B17)
—w\@ f dulf (). (B18)

(Note that the amplitude f is proportional to c,). Since w?

=>,m,=(3/2)(-2M,) which can be seen from Egs. (15) and
(6), we thus obtain

o=\ 2B [adr iy, w19
R T

Comparing this with the three amplitude result (B11) shows
that the expressions are the same except for the factors 3/2
in Eq. (B20) and P; in Eq. (B12). Numerically, however, it
turns out that P;=~1.57 and thus the isotropic surface ten-
sions from the two different methods (Appendixes B 1 and B
2) agree within the accuracy of 4%, which is of the same
order of magnitude as the anistropy 6.7%. However, we note
that neither o} nor 03" is exactly correct. To determine the
isotropic as well as anistropic contributions more precisely,
the numerical techniques presented in Sec. IV D are used.

APPENDIX C: SOLID-LIQUID DENSITY JUMP

A more complete density expansion than Eq. (5) can in-
clude higher order modes or a nonzero Ap density jump be-
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tween solid and liquid phases. The latter can be included as
follows:

3
p(r) =py+ Ap(r) + > A (r)eX" T+ e (C1)

n=1

In general, however, the density difference between the solid
and its melt is very small, especially as compared to the
density jump between the liquid and gas phases [36].

In the existing literature on the phase-field crystal models
the effects of Ap have not been explicitly considered in den-
sity expansions despite the fact that both the phase diagram
and the simulations confirm that a nonzero Ap exists. It is
argued that one-mode density expansions are only valid close
to the spinodal, where Ap is very small. On the other hand,
in freezing literature it has been argued that neglecting Ap
without considering simultaneously the compressiblity
[which is controlled by ¢(0)] in Ramakrishnan-Yussouff—
type density functional theories [37] leads to a qualitatively
and quantitatively inaccurate description. For almost incom-
pressible melts one can set Ap—0 and ¢(0) ——= by keep-
ing the combination ¢(0)Ap finite [38].

At the level of the Euler-Lagrange equations Ap repre-
sents a new independent field which is coupled with a,(k)
and therefore can have an effect on the surface tension. An
explicit expression for the surface tension in Ramakrishnan-
Yussouff-type theory has been provided for a spatially
slowly varying density jump in Ref. [38]. Despite the cou-
pling in Euler-Lagrange equations, Ap can behave in the dy-
namic sense “independently” of the modes a,. Specifically,
Ap stays constant during the first structuring stage of crys-
tallization, which largely involves enhancement of the am-
plitudes a,, with Ap changing only later [39].

PHYSICAL REVIEW E 79, 011607 (2009)

In the case of the present theory, the effects of a nonzero
Ap can be included in the first-order approximation as fol-
lows. By substituting the density expansion (C1) into F box
averaging and assuming small Ap close to a spinodal, the
order (Ap)? contribution to F can be worked out. Following
the same argumentation as in Ref. [30], by extremizing F
with respect to Ap and back substituting the result into F, the
coefficient of the fourth-order amplitude term becomes
renormalized, F— F+AF, where

AF ~ - [%(E aﬁ)z (C2)

with A=1/24 in our three amplitude model. The estimate
presented in Eq. (C2) represents the upper bound with the
inclusion of O(A?) terms. A gradient term ¢”(0)|VAp|*> has
been left out due to the smallness of ¢”(0), and it is this
assumption [38] that turns the Euler-Lagrange equation for
Ap into an algebraic equation approximately satisfying Eq.
(C2). Consequently, the prefactors of the third- and fourth-
order terms of the free energy F+AF will change as com-
pared to those of F, resulting in the change of the values of
a5 and ay. The effect of these changes turns out to be quan-
titatively very small on the anisotropy, for h=1/24. There
are values of A for which the difference becomes larger but
not all of them are expected to be physically accessible.

These findings are consistent with the observation pre-
sented in Ref. [40], which shows that for phenomenologi-
cally adjusted free energies the contribution to the surface
energy from a, is about 10 to 100 times larger than the
contribution from the density jump. Finally, it is pointed out
that the form of the equations of motion is not affected
whether one uses F+AF or F.
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